用户名: 密码: 验证码:
石墨烯改性锂硫电池正极材料的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂硫电池具有理论比容量高、成本低、环境友好等优点,被公认为最有前景的下一代二次电池之一。硫正极材料作为锂硫电池的重要组成部分,直接决定了锂硫电池的性能。本论文通过对锂硫电池正极材料的结构设计、改性和制备一体化研究,得到了电化学性能较好的正极材料,为锂硫电池的应用研究提供了重要参考。
     采用超声辅助化学沉积法和真空抽滤法制备了石墨烯-硫(RGO-S)正极材料,研究了硫含量对RGO-S正极材料电化学性能影响。采用SEM、TEM、XRD、比表面积分析仪、电池测试仪和电化学工作站等对正极材料微观形貌、晶型结构、比表面积、导电率与电化学性能进行了表征和分析,探讨了电极结构与电化学性能之间的关系。研究结果表明,所制备的RGO-S正极材料具有石墨烯包覆硫的结构、较高的比表面积和导电率。当硫含量为26%时,0.1C倍率下,首次放电比容量可达1250mAh·g-1sulfur,50次充放电循环后仍保持598mAh·g-1sulfur。RGO包覆硫缩短了电子的传输路径、提高了硫的反应活性和化学反应动力学速率;并且通过RGO的包覆和吸附作用限制了循环过程中间产物多硫化锂的扩散和迁移,减缓了穿梭效应,使得电极材料具有较高的比容量、较好的循环性能和倍率性能。
     利用经酸化处理的碳纤维(FCNFs)对RGO-S正极材料进行改性。采用化学沉积法制备了一维管壳状FCNFs-S材料,并以之为前驱体制备了具有同轴包覆结构的RGO-S-FCNFs正极材料,通过对FCNFs增强改性前后正极材料微观形貌、晶型结构、导电率与电化学性能的表征和分析,探讨了FCNFs对RGO-S正极材料的增强改性机制。研究结果表明,硫含量为33%时,1C倍率下,首次放电比容量可达745mAh·g-1sulfur,1500次充放电循环后保持273mAh·g-1sulfur,具有极好的高倍率长循环稳定性。RGO和FCNFs的共同作用能够有效提高RGO-S正极材料的电导率;RGO-S-FCNFs的同轴包覆能够使得硫及其循环过程中间产物多硫化锂被包夹在石墨烯和FCNFs之间,抑制了硫的团聚,阻止了大颗粒硫的生成,降低了电极材料的内部应力和电荷转移电阻,缓解了体积和穿梭效应,从而高了RGO-S正极材料的比容量、循环性能和倍率性能。
     采用水热法和热处理法制备了具有高硫含量和单位面积负载量的三维结构FCNFs改性石墨烯-硫(3D-CGOS)正极材料。通过对FCNFs增强改性前后正极材料的微观形貌、晶型结构、导电率与电化学性能的表征和分析,探讨了FCNFs对3D-GOS正极材料的增强改性机制。研究结果表明,在硫含量为80%,单位面积硫负载量为11.9mg·cm-2时,FCNFs增强改性后3D-GOS正极复合材料2C倍率下的可逆放电比容量从0.5mAh·cm-2cathode提高到3.1mAh·cm-2cathode。FCNFs增强改性提高了3D-GOS材料导电性能,缩短了电子的传输路径、提高了硫的反应活性和化学反应动力学速率;并通过吸附作用将循环过程中间产物多硫化锂限制在三维结构内部,减缓穿梭效应;FCNFs改性提高了三维石墨烯的机械性能,缓解了循环过程中的体积效应,降低了电极材料的内应力,进而改善电极材料的比容量、循环性能和倍率性能。
Lithium-sulfur(Li-S) batteries are widely considered as one of the most promising next generation of secondary batteries, due to its various advantages, such as high theoretical specific capacity, low cost, environmental friendliness. As an important part of Li-S batteries, the sulfur-based cathode materials play the crucial role on the performance of the battery. In this paper, sulfur-based cathode materials with good electrochemical performance were obtained by the structure design, modification, synthesis of cathode materials. It will provide an important reference for the practical application of Li-S batteries.
     The reduced graphene oxide-sulfur(RGO-S) cathode composites were synthesized using ultrasonic-assisted chemical co-deposition and vacuum filtration methods. The effect of the sulfur content on the electrochemical properties of RGO-S cathode materials was studied. Morphology, crystal structure, specific surface area, electric conductivity and electrochemical performance of the cathode materials were characterized and analyzed by scanning electron microscope(SEM), transmission electron microscope(TEM), X-ray diffraction(XRD), battery testing system and electrochemical work station, in order to study the relationship between the structure and electrochemical properties of the cathode. As a result, the as-prepared RGO-S cathode materials show a core-shell structure by graphene wrapping over sulfur particles, as well as high specific surface area and conductivity. When the sulfur content was26wt%, the RGO-S cathode could deliver a high initial capacity of1250mAh·g-1sulfur, and a reversible capacity of598mAh·g-1sulfur after50charge-discharge cycles at0.1C. The RGO wraping over the sulfur could shorten the transmission path of both electron and ion, leading the enhancement of the reaction activity and the rate of chemical reaction kinetics. And also, it could trap the diffused intermediates and remit the shuttle effect. As a result, the electrode materials showed a high specific capacity, good cycle performance and rate properties.
     The RGO-S cathode materials were modified by functional carbon nanofibers (FCNFs). Firstly, FCNFs-S composites were synthesized with a uniform sulfur layer on the outside of FCNFs using chemical deposition method. And it was used as the precursor in the preparation of RGO-S-FCNFs multilayered coaxial cathode composites. In order to study the modification mechanism of the FCNFs for RGO-S cathode materials, micro-morphology, crystal structure, conductivity and electrochemical performance of RGO-S materials before and after the modification were studied. As a result, the cathode with33%sulfur could deliver an initial specific capacitance of745mAh·g-1sulfur, and maintained273mAh·g-1sulfur after1500charge-discharge cycles at a rate of1C, showing excellently long cycle stability at high rate. The conductivity of RGO-S cathode materials were improved by synergistic effect of RGO and FCNFs. Because of the coaxial-coated structure, sulfur and intermediates during charge-discharge process could be trapped between graphene and FCNFs, the reunion and growth of big sulfur particles was suppressed, the volume change was accommodated, the shuttle effect, the internal stress of the cathode materials and the resistance of charge-transfer was decreased. As a result, the specific capacity, cycle performance and rate capability could be further improved.
     FCNFs modified three-dimensional graphene-sulfur cathode materials with large sulfur content and areal mass loading were prepared by hydrothermal method and thermal treatment. In order to investigate the modification mechanism of the FCNFs for3D-CGOS cathode materials, micro-morphology, crystal structure, conductivity and electrochemical performance of RGO-S materials before and after the FCNFs modification were studied. The results showed that the reversible discharge-specific capacity of the3D-CGOS composites were increased from0.5mAh·cm-2cathode to3.1mAh·cm-2cathode at2C, when the sulfur content was80%and the areal mass loading of sulfur was11.9mg cm-2. The modification of FCNFs can be enhanced and the conductivity of3D-GOS materials was improved. Both of the electron and ion transportation length were shorted, the reaction activity and the rate of chemical reaction kinetics were accelerated, as well as the shuttle effect was slowed. Meanwhile, the mechanical property of3D graphene can be enhanced, which is benefit for the accommodation of volume changes during the charge-discharge process. As a result, the specific capacity, cycle performance and rate capability were significantly improved.
引文
[1] F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen. Functional Materials forRechargeable Batteries. Advanced Materials [J].2011,23(15):1695-1715.
    [2] M. S. Dresselhaus, I. L. Thomas. Alternative energy technologies. Nature [J].2001,414(6861):332-337.
    [3] M. Armand, J. M. Tarascon. Building better batteries. Nature [J].2008,451(7179):652-657.
    [4] P. Simon, Y. Gogotsi. Materials for electrochemical capacitors. NatureMaterials [J].2008,7(11):845-854.
    [5] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk.Nanostructured materials for advanced energy conversion and storagedevices. Nature Materials [J].2005,4(5):366-377.
    [6] M. Winter, R. J. Brodd. What are batteries, fuel cells, and supercapacitors?Chemical Reviews [J].2004,104(10):4245-4269.
    [7] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeablelithium batteries. Nature [J].2001,414(6861):359-367.
    [8] P. G. Bruce. Energy storage beyond the horizon: Rechargeable lithiumbatteries. Solid State Ionics [J].2008,179(21-26):752-760.
    [9]许晓雄,邱志军,官亦标,黄祯,金翼.全固态锂电池技术的研究现状与展望[J].储能科学与技术.2013,2(4):331-341.
    [10] W. Wei, J. L. Wang, L. J. Zhou, J. Yang, B. Schumann, Y. N. NuLi. CNTenhanced sulfur composite cathode material for high rate lithium battery.Electrochemistry Communications [J].2011,13(5):399-402.
    [11] G. Y. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui. Hollow CarbonNanofiber-Encapsulated Sulfur Cathodes for High Specific CapacityRechargeable Lithium Batteries. Nano Letters [J].2011,11(10):4462-4467.
    [12] C. D. Liang, N. J. Dudney, J. Y. Howe. Hierarchically StructuredSulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery.Chemistry of Materials [J].2009,21(19):4724-4730.
    [13] F. Wu, J. Z. Chen, L. Li, T. Zhao, R. J. Chen. Improvement of Rate andCycle Performence by Rapid Polyaniline Coating of a MWCNT/SulfurCathode. Journal of Physical Chemistry C [J].2011,115(49):24411-24417.
    [14] B. Kang, G. Ceder. Battery materials for ultrafast charging and discharging.Nature [J].2009,458(7235):190-193.
    [15] A. Manthiram, A. V. Murugan, A. Sarkar, T. Muraliganth. Nanostructuredelectrode materials for electrochemical energy storage and conversion.Energy&Environmental Science [J].2008,1(6):621-638.
    [16] C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y.Cui. High-performance lithium battery anodes using silicon nanowires.Nature Nanotechnology [J].2008,3(1):31-35.
    [17] H. L. Wang, Y. Yang, Y. Y. Liang, L. F. Cui, H. S. Casalongue, Y. G. Li, G. S.Hong, Y. Cui, H. J. Dai. LiMn1-xFexPO4Nanorods Grown on GrapheneSheets for Ultrahigh-Rate-Performance Lithium Ion Batteries. AngewandteChemie-International Edition [J].2011,50(32):7364-7368.
    [18] L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, Y. Cui.Highly conductive paper for energy-storage devices. Proceedings of theNational Academy of Sciences of the United States of America [J].2009,106(51):21490-21494.
    [19] M. Duduta, B. Ho, V. C. Wood, P. Limthongkul, V. E. Brunini, W. C. Carter,Y. M. Chiang. Semi-Solid Lithium Rechargeable Flow Battery. AdvancedEnergy Materials [J].2011,1(4):511-516.
    [20] M. He, L. X. Yuan, W. X. Zhang, X. L. Hu, Y. H. Huang. EnhancedCyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. Journalof Physical Chemistry C [J].2011,115(31):15703-15709.
    [21] X. L. Ji, L. F. Nazar. Advances in Li-S batteries. Journal of MaterialsChemistry [J].2010,20(44):9821-9826.
    [22] X. L. Ji, S. Evers, K. T. Lee, L. F. Nazar. Agitation induced loading of sulfurinto carbon CMK-3nanotubes: efficient scavenging of noble metals fromaqueous solution. Chemical Communications [J].2010,46(10):1658-1660.
    [23] Y. Yang, G. H. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. A. Bao, Y.Cui. Improving the Performance of Lithium-Sulfur Batteries by ConductivePolymer Coating. Acs Nano [J].2011,5(11):9187-9193.
    [24] X. L. Ji, K. T. Lee, L. F. Nazar. A highly ordered nanostructuredcarbon-sulphur cathode for lithium-sulphur batteries. Nature Materials [J].2009,8(6):500-506.
    [25] D. Peramunage, S. Licht. A Solid Sulfur Cathode for Aqueous Batteries.Science [J].1993,261(5124):1029-1032.
    [26] S. E. Cheon, K. S. Ko, J. H. Cho, S. W. Kim, E. Y. Chin, H. T. Kim.Rechargeable lithium sulfur battery-II. Rate capability and cyclecharacteristics. Journal of the Electrochemical Society [J].2003,150(6):A800-A805.
    [27] S. E. Cheon, K. S. Ko, J. H. Cho, S. W. Kim, E. Y. Chin, H. T. Kim.Rechargeable lithium sulfur battery-I. Structural change of sulfur cathodeduring discharge and charge. Journal of the Electrochemical Society [J].2003,150(6): A796-A799.
    [28] Y. V. Mikhaylik, J. R. Akridge. Polysulfide shuttle study in the Li/S batterysystem. Journal of the Electrochemical Society [J].2004,151(11):A1969-A1976.
    [29] J. Jin, Z. Y. Wen, X. Hang, Y. M. Cui, X. W. Wu. Gel polymer electrolytewith ionic liquid for high performance lithium sulfur battery. Solid StateIonics [J].2012,225:604-607.
    [30] H. Ogawa, A. Unemoto, I. Honma. Quasi-Solid-State Lithium-Sulfur BatteryUsing Room Temperature Ionic Liquid-Li-salt-Fumed Silica NanoparticleComposites as Electrolytes. Electrochemistry [J].2012,80(10):765-767.
    [31] S. S. Zhang, D. T. Tran. A proof-of-concept lithium/sulfur liquid battery withexceptionally high capacity density. Journal of Power Sources [J].2012,211:169-172.
    [32] S. S. Zhang. Role of LiNO3in rechargeable lithium/sulfur battery.Electrochimica Acta [J].2012,70:344-348.
    [33] K. F. Li, B. Wang, D. W. Su, J. Park, H. Ahn, G. X. Wang. Enhanceelectrochemical performance of lithium sulfur battery through asolution-based processing technique. Journal of Power Sources [J].2012,202:389-393.
    [34] J. Hassoun, J. Kim, D. J. Lee, H. G. Jung, S. M. Lee, Y. K. Sun, B. Scrosati.A contribution to the progress of high energy batteries: A metal-free,lithium-ion, silicon-sulfur battery. Journal of Power Sources [J].2012,202:308-313.
    [35] Z. A. Zhang, W. Z. Bao, H. Lu, M. Jia, K. Y. Xie, Y. Q. Lai, J. Li.Water-Soluble Polyacrylic Acid as a Binder for Sulfur Cathode inLithium-Sulfur Battery. Ecs Electrochemistry Letters [J].2012,1(2):A34-A37.
    [36] J. Hassoun, M. Agostini, A. Latini, S. Panero, Y. K. Sun, B. Scrosati.Nickel-Layer Protected, Carbon-Coated Sulfur Electrode for Lithium Battery.Journal of the Electrochemical Society [J].2012,159(4): A390-A395.
    [37] S. S. Zhang. Binder Based on Polyelectrolyte for High Capacity DensityLithium/Sulfur Battery. Journal of the Electrochemical Society [J].2012,159(8): A1226-A1229.
    [38] Z. Q. Wang, X. Li, Y. J. Cui, Y. Yang, H. G. Pan, Z. Y. Wang, C. D. Wu, B. L.Chen, G. D. Qian. A Metal-Organic Framework with Open Metal Sites forEnhanced Confinement of Sulfur and Lithium-Sulfur Battery of LongCycling Life. Crystal Growth&Design [J].2013,13(11):5116-5120.
    [39] W. D. Zhou, H. Chen, Y. C. Yu, D. L. Wang, Z. M. Cui, F. J. DiSalvo, H. D.Abruna. Amylopectin Wrapped Graphene Oxide/Sulfur for ImprovedCyclability of Lithium-Sulfur Battery. Acs Nano [J].2013,7(10):8801-8808.
    [40] H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui,H. J. Dai. Graphene-Wrapped Sulfur Particles as a RechargeableLithium-Sulfur Battery Cathode Material with High Capacity and CyclingStability. Nano Letters [J].2011,11(7):2644-2647.
    [41] S. R. Chen, Y. P. Zhai, G. L. Xu, Y. X. Jiang, D. Y. Zhao, J. T. Li, L. Huang,S. G. Sun. Ordered mesoporous carbon/sulfur nanocomposite of highperformances as cathode for lithium-sulfur battery. Electrochimica Acta [J].2011,56(26):9549-9555.
    [42] J. W. Park, J. H. Yu, K. W. Kim, H. S. Ryu, J. H. Ahn, C. S. Jin, K. H. Shin,Y. C. Kim, H. J. Ahn. Surface Morphology Changes of Lithium/SulfurBattery using Multi-walled carbon nanotube added Sulfur Electrode duringCyclings. Korean Journal of Metals and Materials [J].2011,49(2):174-179.
    [43] J. Hassoun, Y. K. Sun, B. Scrosati. Rechargeable lithium sulfide electrode fora polymer tin/sulfur lithium-ion battery. Journal of Power Sources [J].2011,196(1):343-348.
    [44] X. L. Li, Y. L. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. M. Nie, J. Mietek, J. G.Zhang, B. Schwenzer, J. Liu. Optimization of mesoporous carbon structuresfor lithium-sulfur battery applications. Journal of Materials Chemistry [J].2011,21(41):16603-16610.
    [45] S. Li, M. Xie, J. B. Liu, H. Wang, H. Yan. Layer Structured Sulfur/ExpandedGraphite Composite as Cathode for Lithium Battery. Electrochemical andSolid State Letters [J].2011,14(7): A105-A107.
    [46] T. Xu, J. X. Song, M. L. Gordin, H. Sohn, Z. X. Yu, S. R. Chen, D. H. Wang.Mesoporous Carbon-Carbon Nanotube-Sulfur Composite Microspheres forHigh-Areal-Capacity Lithium-Sulfur Battery Cathodes. Acs AppliedMaterials&Interfaces [J].2013,5(21):11355-11362.
    [47] D. A. Dornbusch, R. Hilton, M. J. Gordon, G. J. Suppes. Effects of carbonsurface area on performance of lithium sulfur battery cathodes. Journal ofIndustrial and Engineering Chemistry [J].2013,19(6):1968-1972.
    [48] G. C. Li, J. J. Hu, G. R. Li, S. H. Ye, X. P. Gao. Sulfur/activated-conductivecarbon black composites as cathode materials for lithium/sulfur battery.Journal of Power Sources [J].2013,240:598-605.
    [49] X. F. Wang, Z. X. Wang, L. Q. Chen. Reduced graphene oxide film as ashuttle-inhibiting interlayer in a lithium-sulfur battery. Journal of PowerSources [J].2013,242:65-69.
    [50] T. S. Sonia, N. Sivakumar, S. Nair, A. Balakrishnan, S. V. Nair, K. R. V.Subramanian. Thin Film Carbon-Sulfur Cathodes by ElectrophoreticDeposition for a Prototype Lithium Sulfur Battery System. Science ofAdvanced Materials [J].2013,5(12):1828-1836.
    [51] X. W. Wang, Z. Zhang, Y. H. Qu, Y. Q. Lai, J. Li. Nitrogen-dopedgraphene/sulfur composite as cathode material for high capacitylithium-sulfur batteries. Journal of Power Sources [J].2014,256:361-368.
    [52] K. Han, J. M. Shen, C. M. Hayner, H. Q. Ye, M. C. Kung, H. H. Kung.Li2S-reduced graphene oxide nanocomposites as cathode material forlithium sulfur batteries. Journal of Power Sources [J].2014,251:331-337.
    [53] X. F. Gao, J. Y. Li, D. S. Guan, C. Yuan. A Scalable Graphene SulfurComposite Synthesis for Rechargeable Lithium Batteries with GoodCapacity and Excellent Columbic Efficiency. Acs Applied Materials&Interfaces [J].2014,6(6):4154-4159.
    [54] W. Z. Bao, Z. A. Zhang, Y. H. Qu, C. K. Zhou, X. W. Wang, J. Li. Confinesulfur in mesoporous metal-organic framework@reduced graphene oxidefor lithium sulfur battery. Journal of Alloys and Compounds [J].2014,582:334-340.
    [55] G. M. Zhou, S. F. Pei, L. Li, D. W. Wang, S. G. Wang, K. Huang, L. C. Yin, F.Li, H. M. Cheng. A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast,Long-Life Lithium-Sulfur Batteries. Advanced Materials [J].2014,26(4):625-631.
    [56] X. Y. Zhou, J. Xie, J. Yang, Y. L. Zou, J. J. Tang, S. C. Wang, L. L. Ma, Q. C.Liao. Improving the performance of lithium-sulfur batteries by graphenecoating. Journal of Power Sources [J].2013,243:993-1000.
    [57] Y. G. Zhang, Y. Zhao, A. Konarov, D. Gosselink, H. G. Soboleski, P. Chen. Anovel nano-sulfur/polypyrrole/graphene nanocomposite cathode with adual-layered structure for lithium rechargeable batteries. Journal of PowerSources [J].2013,241:517-521.
    [58] C. X. Zu, A. Manthiram. Hydroxylated Graphene-Sulfur Nanocomposites forHigh-Rate Lithium-Sulfur Batteries. Advanced Energy Materials [J].2013,3(8):1008-1012.
    [59] J. Q. Huang, X. F. Liu, Q. Zhang, C. M. Chen, M. Q. Zhao, S. M. Zhang, W.C. Zhu, W. Z. Qian, F. Wei. Entrapment of sulfur in hierarchical porousgraphene for lithium-sulfur batteries with high rate performance from-40to60degrees C. Nano Energy [J].2013,2(2):314-321.
    [60] C. H. Xu, B. H. Xu, Y. Gu, Z. G. Xiong, J. Sun, X. S. Zhao. Graphene-basedelectrodes for electrochemical energy storage. Energy&EnvironmentalScience [J].2013,6(5):1388-1414.
    [61] L. W. Ji, M. M. Rao, H. M. Zheng, L. Zhang, Y. C. Li, W. H. Duan, J. H. Guo,E. J. Cairns, Y. G. Zhang. Graphene Oxide as a Sulfur Immobilizer in HighPerformance Lithium/Sulfur Cells. Journal of the American ChemicalSociety [J].2011,133(46):18522-18525.
    [62] H. Sun, G. L. Xu, Y. F. Xu, S. G. Sun, X. F. Zhang, Y. C. Qiu, S. H. Yang. Acomposite material of uniformly dispersed sulfur on reduced graphene oxide:Aqueous one-pot synthesis, characterization and excellent performance asthe cathode in rechargeable lithium-sulfur batteries. Nano Research [J].2012,5(10):726-738.
    [63] S. Evers, L. F. Nazar. Graphene-enveloped sulfur in a one pot reaction: acathode with good coulombic efficiency and high practical sulfur content.Chemical Communications [J].2012,48(9):1233-1235.
    [64] U. M. Patil, J. S. Sohn, S. B. Kulkarni, H. G. Park, Y. Jung, K. V. Gurav, J. H.Kim, S. C. Jun. A facile synthesis of hierarchical alpha-MnO2nanofibers on3D-graphene foam for supercapacitor application. Materials Letters [J].2014,119:135-139.
    [65] S. X. Deng, D. Sun, C. H. Wu, H. Wang, J. B. Liu, Y. X. Sun, H. Yan.Synthesis and electrochemical properties of MnO2nanorods/graphenecomposites for supercapacitor applications. Electrochimica Acta [J].2013,111:707-712.
    [66] B. You, N. Li, H. Y. Zhu, X. L. Zhu, J. Yang. Graphene Oxide-DispersedPristine CNTs Support for MnO2Nanorods as High PerformanceSupercapacitor Electrodes. Chemsuschem [J].2013,6(3):474-480.
    [67] Y. M. He, W. J. Chen, X. D. Li, Z. X. Zhang, J. C. Fu, C. H. Zhao, E. Q. Xie.Freestanding Three-Dimensional Graphene/MnO2Composite Networks AsUltra light and Flexible Supercapacitor Electrodes. Acs Nano [J].2013,7(1):174-182.
    [68] I. Shakir, Z. Ali, J. Bae, J. Park, D. J. Kang. Layer by layer assembly ofultrathin V2O5anchored MWCNTs and graphene on textile fabrics forfabrication of high energy density flexible supercapacitor electrodes.Nanoscale [J].2014,6(8):4125-4130.
    [69] C. H. Wu, S. X. Deng, H. Wang, Y. X. Sun, J. B. Liu, H. Yan. Preparation ofNovel Three-Dimensional NiO/Ultrathin Derived Graphene Hybrid forSupercapacitor Applications. Acs Applied Materials&Interfaces [J].2014,6(2):1106-1112.
    [70] A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, N.Manyala. Chemical adsorption of NiO nanostructures on nickelfoam-graphene for supercapacitor applications. Journal of Materials Science[J].2013,48(19):6707-6712.
    [71] W. Li, Y. F. Bu, H. L. Jin, J. Wang, W. M. Zhang, S. Wang, J. C. Wang. ThePreparation of Hierarchical Flowerlike NiO/Reduced Graphene OxideComposites for High Performance Supercapacitor Applications. Energy&Fuels [J].2013,27(10):6304-6310.
    [72] X. H. Xia, J. P. Tu, Y. J. Mai, R. Chen, X. L. Wang, C. D. Gu, X. B. Zhao.Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications.Chemistry-a European Journal [J].2011,17(39):10898-10905.
    [73] Y. Sun, S. B. Yang, L. P. Lv, I. Lieberwirth, L. C. Zhang, C. X. Ding, C. H.Chen. A composite film of reduced graphene oxide modified vanadium oxidenanoribbons as a free standing cathode material for rechargeable lithiumbatteries. Journal of Power Sources [J].2013,241:168-172.
    [74] Y. T. Liu, X. D. Zhu, Z. Q. Duan, X. M. Xie. Flexible and robustMoS2-graphene hybrid paper cross-linked by a polymer ligand: ahigh-performance anode material for thin film lithium-ion batteries.Chemical Communications [J].2013,49(87):10305-10307.
    [75] A. Manthiram, Y. Z. Fu, Y. S. Su. Challenges and Prospects ofLithium-Sulfur Batteries. Accounts of Chemical Research [J].2013,46(5):1125-1134.
    [76] J. Scheers, S. Fantini, P. Johansson. A review of electrolytes forlithium-sulphur batteries. Journal of Power Sources [J].2014,255:204-218.
    [77] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon. Li-O2andLi-S batteries with high energy storage. Nature Materials [J].2012,11(1):19-29.
    [78] X. A. Liang, Z. Y. Wen, Y. Liu, H. Zhang, L. Z. Huang, J. Jin. Highlydispersed sulfur in ordered mesoporous carbon sphere as a compositecathode for rechargeable polymer Li/S battery. Journal of Power Sources [J].2011,196(7):3655-3658.
    [79]王超.锂硫电池正极材料研究.华中科技大学.2012
    [80] M. Abbaspour, M. Monavari, A. R. Karbassi, N. Kargari. Nuclear Power andIts Role in CO2Emissions from the Electricity Generation Sector in Iran.Energy Sources Part a-Recovery Utilization and Environmental Effects [J].2012,34(1-4):43-52.
    [81] X. B. Cheng, J. Q. Huang, H. J. Peng, J. Q. Nie, X. Y. Liu, Q. Zhang, F. Wei.Polysulfide shuttle control: Towards a lithium-sulfur battery with superiorcapacity performance up to1000cycles by matching the sulfur/electrolyteloading. Journal of Power Sources [J].2014,253:263-268.
    [82] W. Y. Li, Q. F. Zhang, G. Y. Zheng, Z. W. Seh, H. B. Yao, Y. Cui.Understanding the Role of Different Conductive Polymers in Improving theNanostructured Sulfur Cathode Performance. Nano Letters [J].2013,13(11):5534-5540.
    [83] G. Y. Zheng, Q. F. Zhang, J. J. Cha, Y. Yang, W. Y. Li, Z. W. Seh, Y. Cui.Amphiphilic Surface Modification of Hollow Carbon Nanofibers forImproved Cycle Life of Lithium Sulfur Batteries. Nano Letters [J].2013,13(3):1265-1270.
    [84] G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, L. F. Nazar. TailoringPorosity in Carbon Nanospheres for Lithium-Sulfur Battery Cathodes. AcsNano [J].2013,7(12):10920-10930.
    [85] G. M. Zhou, L. C. Yin, D. W. Wang, L. Li, S. F. Pei, I. R. Gentle, F. Li, H. M.Cheng. Fibrous Hybrid of Graphene and Sulfur Nanocrystals forHigh-Performance Lithium-Sulfur Batteries. Acs Nano [J].2013,7(6):5367-5375.
    [86] Z. Lin, Z. C. Liu, N. J. Dudney, C. D. Liang. Lithium Superionic SulfideCathode for All-Solid Lithium-Sulfur Batteries. Acs Nano [J].2013,7(3):2829-2833.
    [87] J. Fanous, M. Wegner, M. B. Spera, M. R. Buchmeiser. High energy densitypoly (acrylonitrile)-sulfur composite-based lithium-sulfur batteries. Journalof The Electrochemical Society [J].2013,160(8): A1169-A1170.
    [88] X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu. Improved cyclingperformances of lithium sulfur batteries with LiNO3-modified electrolyte.Journal of Power Sources [J].2011,196(22):9839-9843.
    [89] Z. Lin, Z. Liu, W. Fu, N. J. Dudney, C. Liang. Phosphorous Pentasulfide as aNovel Additive for High-Performance Lithium-Sulfur Batteries. AdvancedFunctional Materials [J].2013,23(8):1064-1069.
    [90] J. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y. B. Jiang, Y. Chen, Y. Duan, D.Wang. Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorptionof Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode withExceptional Cycling Stability for Lithium-Sulfur Batteries. AdvancedFunctional Materials [J].2013,24(9):1243-1250
    [91] L. Wang, Y. Zhao, M. L. Thomas, H. R. Byon. In Situ Synthesis ofBipyramidal Sulfur with3D Carbon Nanotube Framework forLithium–Sulfur Batteries. Advanced Functional Materials [J].2013,24(15):2248-2252
    [92] L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie,G. J. Exarhos, J. Liu. A Soft Approach to Encapsulate Sulfur: PolyanilineNanotubes for Lithium‐Sulfur Batteries with Long Cycle Life. AdvancedMaterials [J].2012,24(9):1176-1181.
    [93] B. Zhang, X. Qin, G. R. Li, X. P. Gao. Enhancement of long stability ofsulfur cathode by encapsulating sulfur into micropores of carbon spheres.Energy&Environmental Science [J].2010,3(10):1531-1537.
    [94] B. Ding, C. Z. Yuan, L. F. Shen, G. Y. Xu, P. Nie, X. G. Zhang.Encapsulating Sulfur into Hierarchically Ordered Porous Carbon as aHigh-Performance Cathode for Lithium-Sulfur Batteries. Chemistry-aEuropean Journal [J].2013,19(3):1013-1019.
    [95] C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, Z. Zhou. Synthesis andElectrochemical Performance of Sulfur/Highly Porous Carbon Composites.Journal of Physical Chemistry C [J].2009,113(11):4712-4716.
    [96] C. F. Zhang, H. B. Wu, C. Z. Yuan, Z. P. Guo, X. W. Lou. Confining Sulfurin Double-Shelled Hollow Carbon Spheres for Lithium-Sulfur Batteries.Angewandte Chemie-International Edition [J].2012,51(38):9592-9595.
    [97] N. Brun, K. Sakaushi, L. Yu, L. Giebeler, J. Eckert, M. M. Titirici.Hydrothermal carbon-based nanostructured hollow spheres as electrodematerials for high-power lithium–sulfur batteries. Physical ChemistryChemical Physics [J].2013,15(16):6080-6087.
    [98] N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer. PorousHollow Carbon@Sulfur Composites for High‐Power Lithium–SulfurBatteries. Angewandte Chemie [J].2011,123(26):6026-6030.
    [99] K. Zhang, Q. Zhao, Z. Tao, J. Chen. Composite of sulfur impregnated inporous hollow carbon spheres as the cathode of Li-S batteries with highperformance. Nano Research [J].2013,6(1):38-46.
    [100] L. W. Ji, M. M. Rao, S. Aloni, L. Wang, E. J. Cairns, Y. G. Zhang. Porouscarbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy&Environmental Science [J].2011,4(12):5053-5059.
    [101] G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, Y. Cui.Amphiphilic surface modification of hollow carbon nanofibers for improvedcycle life of lithium sulfur batteries. Nano letters [J].2013,13(3):1265-1270.
    [102] G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui. Hollow carbonnanofiber-encapsulated sulfur cathodes for high specific capacityrechargeable lithium batteries. Nano letters [J].2011,11(10):4462-4467.
    [103] L. F. Xiao, Y. L. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z.M. Nie, G. J. Exarhos, J. Liu. A Soft Approach to Encapsulate Sulfur:Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life.Advanced Materials [J].2012,24(9):1176-1181.
    [104] Z. W. Seh, W. Y. Li, J. J. Cha, G. Y. Zheng, Y. Yang, M. T. McDowell, P. C.Hsu, Y. Cui. Sulphur-TiO2yolk-shell nanoarchitecture with internal voidspace for long-cycle lithium-sulphur batteries. Nature Communications [J].2013,4:1331-1336.
    [105] J. Y. Li, B. Ding, G. Y. Xu, L. R. Hou, X. G. Zhang, C. Z. Yuan. Enhancedcycling performance and electrochemical reversibility of a novelsulfur-impregnated mesoporous hollow TiO2sphere cathode for advancedLi-S batteries. Nanoscale [J].2013,5(13):5743-5746.
    [106] H. Kim, J. T. Lee, D. C. Lee, A. Magasinski, W. i. Cho, G. Yushin. Plasma‐Enhanced Atomic Layer Deposition of Ultrathin Oxide Coatings forStabilized Lithium–Sulfur Batteries. Advanced Energy Materials [J].2013,3(10):1308-1315.
    [107] K. T. Lee, R. Black, T. Yim, X. Ji, L. F. Nazar. Surface‐Initiated Growth ofThin Oxide Coatings for Li-Sulfur Battery Cathodes. Advanced EnergyMaterials [J].2012,2(12):1490-1496.
    [108] M. Yu, W. Yuan, C. Li, J.-D. Hong, G. Shi. Performance enhancement of agraphene–sulfur composite as a lithium–sulfur battery electrode by coatingwith an ultrathin Al2O3film via atomic layer deposition. Journal of MaterialsChemistry A [J].2014,2(20):7360-7366.
    [109] J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, L. F. Nazar.Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity forLithium-Sulfur Batteries. Angewandte Chemie-International Edition [J].2012,51(15):3591-3595.
    [110] W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, Y. Cui. High-performancehollow sulfur nanostructured battery cathode through a scalable, roomtemperature, one-step, bottom-up approach. Proceedings of the NationalAcademy of Sciences [J].2013,110(18):7148-7153.
    [111] J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, Y. Li. Sulfur-carbon nano-compositeas cathode for rechargeable lithium battery based on gel electrolyte.Electrochemistry Communications [J].2002,4(6):499-502.
    [112] M. Sun, S. Zhang, T. Jiang, L. Zhang, J. Yu. Nano-wire networks ofsulfur–polypyrrole composite cathode materials for rechargeable lithiumbatteries. Electrochemistry Communications [J].2008,10(12):1819-1822.
    [113] W. Ahn, K. B. Kim, K. N. Jung, K. H. Shin, C. S. Jin. Synthesis andelectrochemical properties of a sulfur-multi walled carbon nanotubescomposite as a cathode material for lithium sulfur batteries. Journal of PowerSources [J].2012,202:394-399.
    [114] Q. Q. Wang, W. K. Wang, Y. Q. Huang, F. Wang, H. Zhang, Z. B. Yu, A. B.Wang, K. G. Yuan. Improve Rate Capability of the Sulfur Cathode Using aGelatin Binder. Journal of the Electrochemical Society [J].2011,158(6):A775-A779.
    [115] M. M. Rao, X. Y. Song, H. G. Liao, E. J. Cairns. Carbon nanofiber-sulfurcomposite cathode materials with different binders for secondary Li/S cells.Electrochimica Acta [J].2012,65:228-233.
    [116] S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann. Highcapacity vertical aligned carbon nanotube/sulfur composite cathodes forlithium-sulfur batteries. Chemical Communications [J].2012,48(34):4097-4099.
    [117] S. K. Behera. Enhanced rate performance and cyclic stability ofFe3O4-graphene nanocomposites for Li ion battery anodes. ChemicalCommunications [J].2011,47(37):10371-10373.
    [118] P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang, H. Wang. Enhanced cyclingperformance of Fe3O4-graphene nanocomposite as an anode material forlithium-ion batteries. Electrochimica Acta [J].2010,56(2):834-840.
    [119] R. Wang, C. Xu, J. Sun, L. Gao, C. Lin. Flexible free-standing hollowFe3O4/graphene hybrid films for lithium-ion batteries. Journal of MaterialsChemistry A [J].2013,1(5):1794-1800.
    [120] X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff. Nanostructuredreduced graphene oxide/Fe2O3composite as a high-performance anodematerial for lithium ion batteries. Acs Nano [J].2011,5(4):3333-3338.
    [121] X. Xin, X. Zhou, J. Wu, X. Yao, Z. Liu. Scalable Synthesis of TiO2/GrapheneNanostructured Composite with High-Rate Performance for Lithium IonBatteries. ACS nano [J].2012,6(12):11035-11043.
    [122] X. Zhang, P. Suresh Kumar, V. Aravindan, H. H. Liu, J. Sundaramurthy, S. G.Mhaisalkar, H. M. Duong, S. Ramakrishna, S. Madhavi. ElectrospunTiO2–graphene composite nanofibers as a highly durable insertion anode forlithium ion batteries. The Journal of Physical Chemistry C [J].2012,116(28):14780-14788.
    [123] F. Liu, J. Liu, D. Xue. CoO/graphene composite for high performance Li-ionbattery anode. Materials Focus [J].2012,1(2):160-163.
    [124] Y. Sun, X. Hu, W. Luo, Y. Huang. Ultrathin CoO/graphene hybrid nanosheets:A highly stable anode material for lithium-ion batteries. The Journal ofPhysical Chemistry C [J].2012,116(39):20794-20799.
    [125] M. Zhang, M. Jia, Y. Jin, X. Shi. Synthesis and electrochemical performanceof CoO/graphene nanocomposite as anode for lithium ion batteries. AppliedSurface Science [J].2012,263:573-578.
    [126] J. Li, Y. Zhao, N. Wang, Y. Ding, L. Guan. Enhanced performance of aMnO2–graphene sheet cathode for lithium ion batteries using sodiumalginate as a binder. Journal of Materials Chemistry [J].2012,22(26):13002-13004.
    [127] L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, G. Yu. Ultrathin two-dimensionalMnO2/graphene hybrid nanostructures for high-performance, flexible planarsupercapacitors. Nano letters [J].2013,13(5):2151-2157.
    [128] Y. Qian, S. Lu, F. Gao. Preparation of MnO2/graphene composite aselectrode material for supercapacitors. Journal of materials science [J].2011,46(10):3517-3522.
    [129] S. D. Perera, A. D. Liyanage, N. Nijem, J. P. Ferraris, Y. J. Chabal, K. J.Balkus Jr. Vanadium oxide nanowire–Graphene binder free nanocompositepaper electrodes for supercapacitors: A facile green approach. Journal ofPower Sources [J].2013,230:130-137.
    [130] L. Chen, M. Zhang, W. Wei. Graphene-based composites as cathodematerials for lithium ion batteries. Journal of Nanomaterials [J].2013,2013:2. Article ID940389
    [131] Y. Qian, A. Vu, W. Smyrl, A. Stein. Facile Preparation and ElectrochemicalProperties of V2O5-Graphene Composite Films as Free-Standing Cathodesfor Rechargeable Lithium Batteries. Journal of The Electrochemical Society[J].2012,159(8): A1135-A1140.
    [132] X. A. Sun, Y. Hu. Flexible Rechargeable Lithium Ion Batteries: Advancesand Challenges in Materials and Process Technologies. Journal of MaterialsChemistry A [J].2014, DOI:10.1039/C4TA00716F
    [133] Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, J. Wang. Flexible graphene/MnO2composite papers for supercapacitor electrodes. Journal of MaterialsChemistry [J].2011,21(38):14706-14711.
    [134] Y. Cheng, S. Lu, H. Zhang, C. V. Varanasi, J. Liu. Synergistic effects fromgraphene and carbon nanotubes enable flexible and robust electrodes forhigh-performance supercapacitors. Nano letters [J].2012,12(8):4206-4211.
    [135] X. L. Kong, Y. Huang. Applications of Graphene in Mass Spectrometry.Journal Nanoscience and Nanotechnology [J].2014,14(7):4719-4732.
    [136] M. Li, X. J. Bo, Y. F. Zhang, C. Han, L. P. Guo. One-pot ionic liquid-assistedsynthesis of highly dispersed PtPd nanoparticles/reduced graphene oxidecomposites for nonenzymatic glucose detection. Biosensors&Bioelectronics[J].2014,56:223-230.
    [137] Y. J. Yang, W. K. Li. CTAB functionalized graphene oxide/multiwalledcarbon nanotube composite modified electrode for the simultaneousdetermination of ascorbic acid, dopamine, uric acid and nitrite. Biosensors&Bioelectronics [J].2014,56:300-306.
    [138] M. Yi, S. S. Liang, L. Liu, Z. G. Shen, Y. T. Zheng, X. J. Zhang, S. L. Ma.Investigating the Nature of Graphene-Based Films Prepared by VacuumFiltration of Graphene Dispersions. Journal Nanoscience andNanotechnology [J].2014,14(7):4969-4975.
    [139] Z. N. Zhou, H. F. Ni, L. Z. Fan. Hydrothermal Synthesis of Graphene/NickelOxide Nanocomposites Used as the Electrode for Supercapacitors. JournalNanoscience and Nanotechnology [J].2014,14(7):4976-4981.
    [140] W. W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D.X. Yang, A. Velamakanni, S. J. An, M. Stoller, J. H. An, D. M. Chen, R. S.Ruoff. Synthesis and solid-state NMR structural characterization of(13)C-labeled graphite oxide. Science [J].2008,321(5897):1815-1817.
    [141] H. Y. He, J. Klinowski, M. Forster, A. Lerf. A new structural model forgraphite oxide. Chemical Physics Letters [J].1998,287(1-2):53-56.
    [142] H. Y. He, T. Riedl, A. Lerf, J. Klinowski. Solid-state NMR studies of thestructure of graphite oxide. Journal of Physics Chemistry [J].1996,100(51):19954-19958.
    [143] A. Lerf, H. Y. He, M. Forster, J. Klinowski. Structure of graphite oxiderevisited. Journal of Physics Chemistry B [J].1998,102(23):4477-4482.
    [144] A. Lerf, H. Y. He, T. Riedl, M. Forster, J. Klinowski. C-13and H-1MASNMR studies of graphite oxide and its chemically modified derivatives.Solid State Ionics [J].1997,101:857-862.
    [145] W. F. Chen, L. F. Yan, P. R. Bangal. Preparation of graphene by the rapid andmild thermal reduction of graphene oxide induced by microwaves. Carbon[J].2010,48(4):1146-1152.
    [146] S. R. Kim, M. K. Parvez, M. Chhowalla. UV-reduction of graphene oxideand its application as an interfacial layer to reduce the back-transportreactions in dye-sensitized solar cells. Chemical Physics Letters [J].2009,483(1-3):124-127.
    [147] G. Williams, B. Seger, P. V. Kamat. TiO2-graphene nanocomposites.UV-assisted photocatalytic reduction of graphene oxide. Acs Nano [J].2008,2(7):1487-1491.
    [148] D. Z. Chen, L. D. Li, L. Guo. An environment-friendly preparation ofreduced graphene oxide nanosheets via amino acid. Nanotechnology [J].2011,22(32): Article ID940389.
    [149] Y. Liu, J. K. Ma, T. Wu, X. R. Wang, G. B. Huang, Y. Liu, H. X. Qiu, Y. Li,W. Wang, J. P. Gao. Cost-Effective Reduced Graphene Oxide-CoatedPolyurethane Sponge As a Highly Efficient and Reusable Oil-Absorbent. AcsApplied Materials&Interfaces [J].2013,5(20):10018-10026.
    [150] O. K. Park, M. G. Hahm, S. Lee, H. I. Joh, S. I. Na, R. Vajtai, J. H. Lee, B. C.Ku, P. M. Ajayan. In Situ Synthesis of Thermochemically Reduced GrapheneOxide Conducting Nanocomposites. Nano Letters [J].2012,12(4):1789-1793.
    [151] M. Wang, L. D. Duong, J. S. Oh, N. T. Mai, S. Kim, S. Hong, T. Hwang, Y.Lee, J. D. Nam. Large-Area, Conductive and Flexible Reduced GrapheneOxide (RGO) Membrane Fabricated by Electrophoretic Deposition (EPD).Acs Applied Materials&Interfaces [J].2014,6(3):1747-1753.
    [152] P. Carnevale, S. Rasool, H. E. N. Bersee. Fibre-matrix interfaces in carbonfibre reinforced PPS composites: damage initiation and propagation intensile tests. Composite Interfaces [J].2014,21(4):337-352.
    [153] J. Choi. Comparative study of effective stresses of concrete beamsstrengthened using carbon-fibre-reinforced polymer and external prestressingtendons. Structure and Infrastructure Engineering [J].2014,10(6):753-766.
    [154] B. Y. Liu, X. J. Wang, S. R. Long, J. Yang. Interfacial micromechanics ofcarbon fiber-reinforced polyphenylene sulfide composites. CompositeInterfaces [J].2014,21(4):359-369.
    [155] Z. S. Liu, Y. H. Peng, W. K. Li. Effects of activated carbon fibre-supportedmetal oxide characteristics on toluene removal. Environmental Technology[J].2014,35(12):1499-1507.
    [156] M. M. Zhu, M. Li, Q. Wu, Y. Z. Gu, Y. X. Li, Z. G. Zhang. Effect ofprocessing temperature on the micro-and macro-interfacial properties ofcarbon fiber/epoxy composites. Composite Interfaces [J].2014,21(5):443-453.
    [157] M. M. Rao, X. Y. Geng, X. P. Li, S. J. Hu, W. S. Li. Lithium-sulfur cell withcombining carbon nanofibers-sulfur cathode and gel polymer electrolyte.Journal of Power Sources [J].2012,212:179-185.
    [158] C. X. Zu, Y. Z. Fu, A. Manthiram. Highly reversible Li/dissolved polysulfidebatteries with binder-free carbon nanofiber electrodes. Journal of MaterialsChemistry A [J].2013,1(35):10362-10367.
    [159] C. Wang, K. Su, W. Wan, H. Guo, H. H. Zhou, J. T. Chen, X. X. Zhang, Y. H.Huang. High sulfur loading composite wrapped by3D nitrogen-dopedgraphene as a cathode material for lithium-sulfur batteries. Journal ofMaterials Chemistry A [J].2014,2(14):5018-5023.
    [160] Y. Q. Li, Y. A. Samad, K. Polychronopoulou, S. M. Alhassan, K. Liao.Highly Electrically Conductive Nanocomposites Based on Polymer-InfusedGraphene Sponges. Scientific Reports [J].2014,4: doi:10.1038srep04652
    [161] J. Ge, H. B. Yao, W. Hu, X. F. Yu, Y. X. Yan, L. B. Mao, H. H. Li, S. S. Li, S.H. Yu. Facile dip coating processed graphene/MnO2nanostructured spongesas high performance supercapacitor electrodes. Nano Energy [J].2013,2(4):505-513.
    [162] D. D. Nguyen, N. H. Tai, S. B. Lee, W. S. Kuo. Superhydrophobic andsuperoleophilic properties of graphene-based sponges fabricated using afacile dip coating method. Energy&Environmental Science [J].2012,5(7):7908-7912.
    [163] X. Xie, G. H. Yu, N. Liu, Z. N. Bao, C. S. Criddle, Y. Cui. Graphene-spongesas high-performance low-cost anodes for microbial fuel cells. Energy&Environmental Science [J].2012,5(5):6862-6866.
    [164] F. Liu, T. S. Seo. A Controllable Self-Assembly Method for Large-ScaleSynthesis of Graphene Sponges and Free-Standing Graphene Films.Advanced Functional Materials [J].2010,20(12):1930-1936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700