用户名: 密码: 验证码:
纳米化及过渡族金属基催化剂包覆对MgH_2储氢性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管Mg基储氢材料是最有应用前景的储氢材料之一,然而其脱氢温度过高及脱氢速率较慢的问题仍未解决。本文首先综述了近年来在改善Mg基储氢合金的储氢性能所取得的研究进展,并指出:从动力学调控方面看,通过纳米化或添加催化剂等是改善其储氢性能的有效方法,但对于纳米结构而言,结构的稳定性问题必须解决,而就添加催化剂而言,传统添加催化剂的方法使得催化效率仍旧较低;从热力学调控方面看,虽然脱氢焓的变化得到了重视,但脱氢熵的的影响不可忽略,需寻找抑制熵降低或使熵增加的方法,并进行熵变的理论计算。
     本文以Mg基储氢材料为研究对象,分别对其结构稳定性、动力学性能以及热力学性能的调控方法开展了探索,研究了纳米限域结构及催化剂包覆结构的Mg基储氢材料循环性能、动力学及热力学性能;制备过程的结构调控和吸放氢过程中的结构变化及其对储氢性能的影响;探讨了纳米尺寸及催化剂对脱氢熵的热力学理论计算和实验调控。
     首先,采用气相传输沉积的方法获得了纳米AAO模板限域的Mg基复合材料。在Mg蒸气经氩气吹扫通过气相传输实现纳米多孔氧化铝限域Mg的过程中,与AAO孔壁表面接触,发生副反应生成MgO和Mg17Al12相。而生成的这一层MgO和Mg17Al12相将阻碍Mg进一步与孔壁接触,使后续进入孔道内的Mg蒸气则沿着孔壁形核生长,最终获得Mg-AAO复合材料,其有效负载率可达35wt%,主要相组成为Mg、Mg17Al12及MgO。该材料在300oC下25min内能完成吸氢,30min内能基本完成脱氢。吸氢后生成MgH2及Mg3Al2相,再脱氢后,MgH2转变成Mg,Mg3Al2相几乎不变。其脱氢焓和熵分别为73.2kJ mol-1及130.1J mol-1K-1,相比于相关纳米多孔材料限域Mg的报道,其负载率得到较大提高,动力学性能也得到更为明显的改善。
     通过球磨预制微米Mg粉并与TiCl3在THF溶液中反应,我们制备了多相、多价态Ti基催化剂(TiH2、TiCl3及TiO2)包覆微米级Mg颗粒表面的、具有核壳结构的Mg基储氢材料。与传统的通过球磨添加催化剂的材料相比,其性能改善十分显著。脱氢活化能降低至30.8kJ mol-1,起始脱氢温度为175oC,比球磨Mg-TiCl3材料降低了65oC。在250oC时15min内脱氢量达到5wt%,且在200oC时15min内能脱氢1.5wt%。这主要是因为多相、多价态Ti基催化剂作为吸/放氢中电子转移的媒介,成为催化活性中心,且与Mg/MgH2接触面积大。且该材料循环性能和结构稳定性良好,在275oC下,经10次吸/放氢循环后动力学性能未发生衰减,基本保持多相、多价态Ti基催化剂包覆的核壳结构形貌。此外,该材料脱氢焓和熵分别为75.1kJ mol-1与136.3J mol-1K-1,其熵增大了6.3J mol-1K-1,一定程度上降低了MgH2的稳定性。
     在此基础上,我们研究不同过渡族金属催化剂(TM=Ti、Nb、V、Co、Ni、Mo)构成的核壳结构,发现其脱氢动力学由快至慢的顺序依次为Mg-Ti、Mg-Nb、Mg-Ni、Mg-V、Mg-Co以及Mg-Mo。除Mg-Ni材料外,Mg-TM材料脱氢速率随着TM电负性χ的增大而减小,脱氢活化能随TM χ的增大而增大。Mg-Ni材料出现奇点的原因是因为Ni与Mg形成Mg2Ni,当将Ni基催化剂以Mg2Ni/Mg2NiH4为基相时,Mg-TM材料的脱氢活化能随TM基氢化物形成焓的增大而减小,仍与实验规律吻合。因此,TM基催化剂的催化效果本质上是和TM与H作用强度有关,TM与H作用越强,越能够扰动TM基催化剂与MgH2界面上的Mg-H,进而起到更强的弱化作用,使得Mg-TM材料中的Mg-H键更容易断裂,改善了脱氢反应动力学性能。
     将不同尺度的Mg颗粒与TiCl3在THF溶液中反应,制备了纳米晶Ti基催化剂包覆在不同尺寸的Mg材料。Mg平均颗粒尺寸约为40nm及500nm的材料分别记为N-Mg-Ti-with wash及N-Mg-L-Ti材料,相比于未包覆催化剂的材料,其吸/放氢动力学性能得到显著改善,其中N-Mg-Ti-with wash在275°C仅需0.3h即基本完成脱氢。我们发现脱氢动力学快慢的次序与材料中催化剂Ti含量由多至少的次序相符,杂质元素的含量及组成对材料动力学的影响作用也很明显。但当颗粒尺寸小于2μm时,其动力学与颗粒尺寸关系不明显,即催化剂及杂质元素的含量及组成直接影响Mg/MgH2颗粒的表面状态,因而成为影响吸/放氢动力学的关键因素。
     最后,通过建立理论模型,计算研究颗粒/晶粒尺寸、以及催化剂等因素对熵的作用。由于纳米化导致过剩体积增加,使Mg及MgH2的平动熵及振动熵均增加。并且MgH2的平动熵及振动熵均增加大于Mg的,导致其脱氢熵随颗粒/晶粒尺寸的减小而减小。当颗粒/晶粒尺寸小于3nm时,其脱氢熵将小于120.1J mol-1K-1。在类核壳结构的过渡族金属催化剂包覆Mg储氢材料表面,H2分子在过渡族金属催化剂表的解离活化能远低于在纯Mg表面,因此须考虑体系中解离态H的含量,这导致MgH2的脱氢熵随着解离活化能的增加而降低。我们的理论模型计算得出的脱氢熵的结果与文献报道结果及本文的实验结果相符。
Mg-base hydrogen storage material is one of the most promising candidates of hydrogenstorage materials. However, the dehydrogenation temperature is still too high and thedehydrogenation rate remains slow. In this thesis, the improvements in recent years onMg-base hydrogen storage material were firtly reviewed. It can be pointed out that addingcatalysts or nano-structuring could improve the kinetics of Mg/MgH2. For nano-structuring,the problem of the structure stability must be considered. For adding catalyst, it indeed needsto improve the catalytic efficiency which is relatively low by traditional method for addingcatalyst. In terms of thermodynamic tuning, although the enthalpy change is given attention,the effect of dehydrogenation entropy has rarely reported. It is indeed important to find waysto avoid the negative effects of the decrease of entropy (absolute value–all following isdefined as it), and theoretically calcutate for the entropy change.
     Hence, this thesis investigates the tunning methods for enhance the structure stability,dynamic performance and thermodynamic properties of Mg-based hydrogen storage materials.The kinetics, cycylic and thermodynamics properties of AAO nano-confined Mg andTM-based catalyst coating on Mg particle surfaces were studied. The structure tunning bypreparation process and its impact on kinetics, cyclic and thermodynamics properties werealso studied. The influence of nano-size and the catalysts coating on the dehydrogenationentropy of MgH2based on the thermodynamic models and the experiments are investigated.
     A new approach has been developed to successfully load Mg into the nanometre-sizedpores of an Anodic Aluminium Oxide (AAO) template for realizing the nano-confinement ofMg. Mg nano-particles were nucleated along the AAO pore walls. Mg-AAO can absorbhydrogen within25mins and desorb hydrogen within30mins under300°C. Afterhydrogenation, Mg and Mg17Al12phases transformed into MgH2and Mg3Al2. Although smallamount of MgO and Mg17Al12formed as by-products, the effective filling was about35wt%which is higher than that reported by other groups in Mg nano-comfinement. The confinedMg/MgH2shows favourable kinetics with high stability. Furthermore, the slight reduction inhydrogen desorption enthalpy and entropy of MgH2is found from74.4kJ mol-1to73.2kJmol-1and131.0J mol-1K-1to130.1J mol-1K-1, respectively, in the presentnano-confinement.
     The core-shell structured Mg with Ti-based catalyst (denoted as Mg-Ti) is prepared bythe chemical reaction between Mg powders and TiClxin THF solution, which is of~10nm in thickness and contains multiple phases and valences. Compared with Mg-TiCl3by traditionalball-milling method, the Mg-Ti system has superior dehydrogenation properties, which canstart to release H2at about175oC and release5wt%H2within15mins under250oC. And thecyclic kinetics is relatively stable as the kinetics performance from the3rdcycle to the10thcycle maintains well. The deh drogenation reaction entrop (ΔS) of the system is changedfrom130.5J K-1mol-1H2to136.1JK-1mol-1H2, which reduces the Tplateauto279oC from300oC at equilibrium pressure of1bar. A new mechanism has been proposed that the mulitiplevalence Ti sites act as the intermediate for electron transfers between Mg2+and H-, whichenables recombination of H2on Ti easier.
     Mg is coated by different transition metals (TM: Ti, Nb, V, Co, Mo, or Ni) with a crystalsize of nano-scale (less than10nm) to form a core (Mg)-shell (TM) nano-structure by areaction of Mg powders in THF solution with TMClx. It is experimentally confirmed that thesignificance of catalytic effect on the dehydrogenation is in a sequence of Mg-Ti, Mg-Nb,Mg-Ni, Mg-V, Mg-Co and Mg-Mo. This may be contributed to the decrease ofelectro-negativity (χ) from Ti to Mo. However, Ni shows a special case with high catalyticeffect in spite of the electro-negativity. It is supposed that the formation of Mg2Ni compoundmay play an important role to enhance the hydrogen de/hydrogenation of Mg-Ni system. Itcan also be found that the larger formation enthalpy, the worse dehydrogenation kinetics.
     On the basis of the above, Mg with different sizes (40nm,500nm,1μm) coated withTi-based catalyst is compared both in structure and properties. Although the particle size ofmicro-sized Mg-Ti is larger than nano-sized Mg-Ti, the micro-sized still show betterdehydrogenation kinetics than nano-sized Mg-Ti. It is suggested that the key factor effect onthe kinetics could be the surface conditions (the contents of positive catalyst and negativeimpurity element) of Mg/MgH2while the particle-size is under2μm.
     The particle/grain size and catalysts effect on dehydrogenation entropy of MgH2arecalculated by a theoretical model. The excess volume of Mg and MgH2is increased alongwith the decrease of particle/grain size. Thus, the translational and vibrational entropy of Mgand MgH2are both increased, while the increase in MgH2is larger than Mg. Hence, thedehydrogenation entropy decreases with the decrease of the particle/grain size. Besides, theconcentration of dissociative H on TM surface is considered as the catalyst can dissociate H2more easily. The dehydrogenation entropy increases with the concentration of dissociative H.The the experimental results support our theoretical calculations.
引文
[1] Chen P, Zhu M. Recent progress in hydrogen storage [J]. Materials today,2008,11-12:36-43.
    [2] Grochala W, Edwards P P. Thermal Decomposition of the Non-Interstitial Hydrides for theStorage and Production of Hydrogen [J]. Chemical reviews,2004,104(3):1283-1316.
    [3] Karkamkar A, Aardahl C, Autrey T. Recent Developments on Hydrogen Release fromAmmonia Borane [J], Material Matters,2007,2(2):6-8.
    [4] Badzian A, Badzian T, Brevel E, et al. Nanostructured, nitrogen-doped carbon materialsfor hydrogen storage [J]. Thin Solid Films,2001,398-399:170-174.
    [5] Li H L, Eddaoudi M, O’Keeffe M, et al. Desigh and synthesis of an exceptionally stableand highly porous metal-organic frame-work [J]. Nature,1999,402:276-279.
    [6] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organicframeworks [J]. Science,2003,300(5622):1127-1129.
    [7] Schlichtenmayer M, Hirscher M. Nanosponges for hydrogen storage [J]. Journal ofMaterials Chemistry,2012,22:10134-10143.
    [8] Panella B, H nes K, Müller U, et al. Desorption Studies of Hydrogen in Metal–OrganicFrameworks [J]. Angewandte Chemie International Edition,2008,47(11):2138-2142.
    [9] Hirscher Michael, Panella Barbara, Schmitz Barbara. Metal-organic frameworks forhydrogen storage [J]. Microporous and Mesoporous Materials,2010,129(3):335-339.
    [10] Reilly J J, Wiswall R H. Formation and properties of iron titanium hydride [J]. InorganicChemistry,1974,13(1):218-222.
    [11]徐艳辉,王国元,陈长聘. Ti基AB2Laves相合金的结构与电化学性能[J].电源技术2002,26(S1):250-254.
    [12] Sawa H, Wakao S. Electrochemical Properties of Zr-V-Ni System Hydrogen AbsorbingAlloys of Face-Centered Cubic Structure [J]. Materials Transactions,1990,31(6):487-492.
    [13] Ouyang L Z, Dong H W, Peng C H, et al. A new type of Mg-based metal hydride withpromising hydrogen [J]. International Journal of Hydrogen Energy,2007,32(16):3929-3935.
    [14] Tsukahara M, Takahashi K, Mishima T, et al. Metal hydride electrodes based on solidsolution type alloy TiV3Nix(0≦x≦0.75)[J]. Journal of Alloys and Compounds1995,226(1-2):203-207.
    [15] Orimo S, Fujii H, Ikeda K. Notable hydriding properties of a nanostructured compositematerial of the Mg2Ni-H system synthesized by reactive mechanical grinding [J]. ActaMaterialia1997;45(1):331-341.
    [16] Bogdanovi B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potentialnovel reversible hydrogen storage materials [J]. Journal of Alloys and Compounds,1997,253-254:1-9.
    [17] Zuttel A, Borgschulte A, Orimo S I. Tetrahydroborates as new hydrogen storage materials[J]. Scripta Materialia,2007,56(10):823-828.
    [18] Orimo S I, Nakamori Y, Ohba N, et al. Experimental studies on intermediate compoundof LiBH4[J]. Applied Physics Letters,2006,89(2):021920.
    [19] Sun T, Liu J, Jia Y, et al. Confined LiBH4: Enabling fast hydrogen release at100oC [J].International Journal of Hydrogen Energy,2012,37(24):18920-18926.
    [20] Orimo S I, Nakamori Y, Eliseo J R, et al. Complex Hydrides for Hydrogen Storage [J].Chemical Reviews,2007,107(10):4111-4132.
    [21] Gutowska A, Li L, Shin Y, et al. Nanoscaffold Mediates Hydrogen Release and theReactivity of Ammonia Borane13[J]. Angewandte Chemie International Edition,2005;44(23):3578-3582.
    [22] Karkamkar A, Aardahl C, Autrey T. Recent Developments on Hydrogen Release fromAmmonia Borane [J] Material Matters,2007,2(2):6-8.
    [23] Kang X D, Fang Z Z, Kong L Y, et al. Ammonia Borane Destabilized by LithiumHydride: An Advanced On-Board Hydrogen Storage Material [J]. Advanced Materials,2008,20(14):2756-2759.
    [24] He T, Xiong Z T, Wu G T, et al. Nnanosized Co-and Ni-Catalyzed Ammonia Borane forHydrogen Storage [J]. Chemistry Material,2009,21(11):2315-2318.
    [25] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage [J]. Advanced EnergyMaterials,2010,22(8): E28-E62.
    [26] Jain I P, Lal C, Jain A. Hydrogen storage in Mg: A most promising material [J].International Journal of Hydrogen Energy,2010,35(10):5133–5144.
    [27]杨智荣.我国菱镁矿矿产资源可持续开发利用研究[C].中国青岛:中国非金属矿工业协会,2005.
    [28] Züttel A. Materials for hydrogen storage [J]. Materials Today,2003,6(9):24-33.
    [29]大角泰章著.金属氢化物的性质与应用[M].吴永宽,苗艳秋译.北京:化学工业出版社,1990.
    [30] Bogdanoví B, Bohmhammel, hrist B, et al. Thermodynamic investigation of themagnesium-hydrogen system [J]. Journal of Alloys and Compounds,1999,282:84-92.
    [31] Bohmhammel K, Wolf U, Wolf G. Thermodynamic optimization of the systemmagnesium–hydrogen [J]. Thermochimica Acta,1999,337(1-2),195-199.
    [32] Hammer B, N rskov J K. Electronic factors determining the reactivity of metal surfaces[J].Surface Science,1995,343(3):211-220.
    [33] Uchida H, Ohtani Y, Ozawa M, et al. Surface processes of H2in the initial activation ofLaNi5[J]. Journal of the Less Common Metals,1991,172-174:983-996.
    [34] Christmann K. Some general aspects of hydrogen chemisorption on metal surfaces [J].Progress in Surface Science,1995,48(1-4):15-26.
    [35] Arboleda N B, Kasai H, Nobuhara K, et al. Dissociation and Sticking of H2on Mg(0001),Ti(0001) and La(0001) Surfaces [J]. Journal of the Physical Society of Japan,2004,73(3):745-748.
    [36] Kooi B J, Palasantzas G, Hosson J T M D. Gas-phase synthesis ofmagnesiumnanoparticles: A high-resolution transmission electron microscopy study [J]. AppliedPhysics Letters,2006,89(16):161914.
    [37] Martino P, Chiesa M, Paganini M. C, et al. Coadsorption of NO and H2at the surface ofMgO monitored by EPR spectroscopy. Towards a site specific discrimination ofpolycrystalline oxide surfaces [J]. Surface Science,2003,527(1-3):80-88.
    [38] Ostenfeld C W, Chorkendorff I. Effect of oxygen on the hydrogenation properties ofmagnesium films [J]. Surface Science,2006,600(6):1363-1368.
    [39] Andreasen A, Vegge T, Pedersen A S. Compensation Effect in the Hydrogenation/Dehydrogenation Kinetics of Metal Hydrides [J]. The Journal of Physical Chemistry B,2005,109(8):3340-3344.
    [40] Vegge T, Locating the rate-limiting step for the interaction of hydrogen with Mg(0001)using density-functional theory calculations and rate theory [J]. Physical Review B:Condensed Matter and Materials Physics,2004,70:035412.
    [41] Stioui M, Grayevsky A, Resnik A, et al. Macroscopic and microscopic kinetics ofhydrogen in magnesium-rich compounds [J]. Journal of the Less Common Metals,1986,123(1-2):9-24.
    [42] Gerard N, Ono S, Hydrogen in intermetallic compounds [M]. New York: Springer-Verlag1992.
    [43] Nishimura C, Komaki M, Amano M. Hydrogen permeation through magnesium [J].Journal of Alloys and Compounds,1999,293-295:329-333.
    [44] Zaluska A, Zaluski L, Str m-Olsen J O. Structure, catalysis and atomic reactions on thenano-scale: a systematic approach to metal hydrides for hydrogen storage [J]. AppliedPhysics A: Materials Science and Processing,2001,72:157-165.
    [45] Zaluska A, Zaluski L, Str m-Olsen J O, Nanocrystalline metal hydrides [J]. Journal ofAlloys and Compounds,1997,253-254:70-79.
    [46] Orimo S, Fujii H. Materials science of Mg-Ni-based new hydrides [J]. Applied Physics A:Materials Science and Processing,2001,72(2):167-186.
    [47] Vegge T, Hedegaard-Jensen L S, Bonde J, et al. Trends in hydride formation energies formagnesium-3d transition metal alloys [J]. Journal of Alloys and Compounds,2005,386(1-2):107.
    [48] Reiser A, Bogdanovic B, Schlichte K. The application of Mg-based metal hydrides asheat energy storage systems [J]. International Journal of Hydrogen Energy,2000,25(5):425-430.
    [49] Orimoa S, Züttel A, Ikeda K, et al. Hydriding properties of the MgNi-based systems [J].Journal of Alloys and Compounds,1999,293-295:437-442.
    [50] Aguey-Zinsou K F, Nicolaisen T, Ares Fernandez J R, et al. Effect of nanosized oxideson MgH2(de)hydriding kinetics [J]. Journal of Alloys and Compounds,2007,434-435:738-742.
    [51] Reilly J J, Wiswall R H, The reaction of hydrogen with alloys of magnesium and copper[J]. Russian Journal of Inorganic Chemistry,1967,6(12):2220-2223.
    [52] Daisuke K, Tetsuo S, Naoyuki K, et al. Synthesis of FCC Mg-Zr and Mg-Hf hydridesusing GPa hydrogen pressure method and their hydrogen-desorption properties [J].Journal of Alloys and Compounds,2008,463(1-2):311-316.
    [53] Takasaki T, Kyoi D, Kitamura N, et al. Reversible hydrogen storage property andstructural analysis for face-centered cubic hydride Mg0.82Zr0.18H2prepared bygigapascal hydrogen pressure method [J]. Journal of Physical Chemistry B,2007,111(51):14102-14106.
    [54] Kelly S T, Van-Atta S L, Vajo J J, et al., Kinetic limitations of the Mg(2)Si system forreversible hydrogen storage [J]. Nanotechnology,2009,20(20):204017.
    [55] Vajo J J, Mertens F, Ahn C C, et al. Altering hydrogen storage properties by hydridedestabilization through alloy formation: LiH and MgH2destabilized with Si [J]. PhysicalChemistry B,2004,108(37):13977-13983.
    [56] Fan M Q, Sun L X, Zhang Y, et al. The catalytic effect of additive Nb2O5on thereversible hydrogen storage performances of LiBH4-MgH2composite [J] InternationalJournal of Hydrogen Energy,2008;33(1):74-80.
    [57] Pinkerton F E, Meyer M S, Meisner G P. Phase Boundaries and Reversibility ofLiBH4/MgH2Hydrogen Storage Materia [J]. Journal of Physical Chemistry C,2007,111(35):12881-12885.
    [58] Durojaiye T, Hayes J, Goudy A. Rubidium Hydride: An Exceptional Dehydrogenation:Catalyst for the Lithium Amide/Magnesium Hydride System [J]. The Journal of PhysicalChemistry C,2013,117(13):6554-6560.
    [59] Lu J, Fang Z Z, Choi Y J, et al. Potential of Binary Lithium Magnesium Nitride forHydrogen Storage Applications [J]. The Journal of Physical Chemistry C,2007,111(32):12129-12134.
    [60] Sheppard D A, Paskevicius M, Buckley C E. Hydrogen Desorption from the NaNH2MgH2System [J]. The Journal of Physical Chemistry C,2011,115(16):8407-8413.
    [61] Liang G. Synthesis and hydrogen storage properties of Mg-based alloys [J]. Journal ofAlloys and Compounds,2004,370(1-2):123-128.
    [62] Niessen R A H, Notten P H L. H drogen storage in thin flm magnesium–scandiumalloys [J]. Journal of Alloys and Compounds,2005,404-406:457-460.
    [63] Chacon C, Johansson E, Hj rvarsson B, et al., Growth and hydrogen uptake of Mg-Ythin films [J]. Journal of Applied Physics,2005,97(10):104903.
    [64] Zhong H C, Wang H, Liu J W, et al. Altered desorption enthalpy of MgH2by thereversible formation of Mg(In) solid solution [J]. Scripta Materialia,65(4):285-287.
    [65] Wagemans R W P, van Lenthe J H, De Jongh P E, et al. Hydrogen storage in magnesiumclusters: Quantum chemical study [J]. Journal of the American Chemical society,2005(127):16675-16680.
    [66] Vajo J J, Salguero T T, Gross A F, et a. Thermodynamic destabilization and reactionkinetics in light metal hydride systems [J]. Journal of the American Chemical Society,2007,446:409-414.
    [67] Cheung S, Deng W Q, Duin A C, et al. ReaxFF(MgH) reactive force field for magnesiumhydride systems [J]. The Journal of Physical Chemistry A,2005,109(5):851-860.
    [68] Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydridingreaction of Mg–Ni thin films [J]. Applied Physics Letters,2007,90:021917.
    [69] Bérubé V, Radtke G, Dresselhaus M S, et al. Size effects on the hydrogen storageproperties of nanostructured metal hydrides: A review [J]. International Journal of EnergyResearch,2007,31(6-7):637-663.
    [70] Bérubé V, Chen G, Dresselhaus M S. Impact of nanostructuring on the enthalpy offormation of metal hydrides [J]. International Journal of Energy Research,2008,33:4122-4131.
    [71] Li W Y, Li C S, Ma H, et al. Magnesium nanowires: enhanced kinetics for hydrogenabsorption and desorption [J]. Journal of the American Chemical society,2007.129(21):6710-6711.
    [72] Peng B, Li L L, Ji W Q, et al. A quantum chemical study on magnesium (Mg)/magnesium-hydrogen (Mg-H) nanowires [J]. Journal of Alloys and Compounds,2009,484(1-2):308-313.
    [73] Baldi A, Gonzalez-Silveira M, Palmisano V, er al. Destabilization of the Mg-H Systemthrough Elastic Constraints [J]. Physical Review Letters,2009,102:226102.
    [74] Baldi A, Pálsson G K, Gonzalez-Silveira M, et al. Mg/Ti multilayers: Structural andhydrogen absorption properties [J]. Physical Review B,2010,81:224203.
    [75] Paskevicius M, Sheppard D A, Buckley C E. Thermodynamic Changes in Mechano-chemically Synthesized Magnesium Hydride Nanoparticles [J]. Journal of the AmericanChemical Society,2010,132(14):5077-5083.
    [76] Zhao-Karger Z, Hu J, Roth A, et al. Altered thermodynamic and kinetic properties ofMgH2infiltrated in microporous scaffold [J]. Chemical Communications,2010,46:8353-8355.
    [77] Fichtner M. Properties of nanoscale metal hydrides [J]. Nanotechnology,2009,20(20):204009.
    [78] Schulz R, Huot J, Liang G, et al. Recent developments in the applications ofnanocrystalline materials to hydrogen technologies [J]. Materials Science and Engineering:A,1999,267(2):240-245.
    [79] Zaluska A, Zaluski L, Str m-Olsen J O. Nanocrystalline magnesium for hydrogenstorage [J]. Journal of Alloys and Compounds,1999,288(1-2):217-225.
    [80] Varin R A, Czujko T, Chiu C, et al. Particle size effects on the desorption properties ofnanostructured magnesium dihydride (MgH2) synthesized by controlled reactivemechanical milling (CRMM)[J]. Journal of Alloys and Compounds,2006,424(1-2):356-364.
    [81] Schulz R, Huot J, Liang G, et al.Structure and Hydrogen Sorption Properties of BallMilled Mg Dihydride [J]. Materials Science Forum,1999,312-314:615-622.
    [82] Hanada N, Ichikawa T, Orimo S I, et al. Correlation between hydrogen storage propertiesand structural characteristics in mechanically milled magnesium hydride MgH2[J].Journal of Alloys and Compounds,2004,366(1-2):269-273.
    [83] Friedrichs O, Aguey-Zinsou F, Fernandez J R A, et al. MgH2with Nb2O5as additive, forhydrogen storage: Chemical, structural and kinetic behavior with heating [J]. ActaMaterialia,2006,54(1):105-110.
    [84] Schimmel H G, Johnson M R, Kearley G J, et al. The vibrational spectrum of magnesiumhydride from inelastic neutron scattering and density functional theory [J]. MaterialsScience and Engineering B,2004,108:38-41.
    [85] Schimmel H G, Johnson M R, Kearley G J, et al. Structural information on ball milledmagnesium hydride from vibrational spectroscopy and ab-initio calculations [J]. JournalAlloys and Compounds,2005,393(1-2):1-4.
    [86] Jeon K J, Moon H R, Ruminski A M, et al. Air-stable magnesium nanocompositesprovide rapid and high-capacity hydrogen storage without using heavy-metal catalysts [J].Nature Materials,2011,10(4):286-290.
    [87] Norberg N S, Arthur T S, Fredrick S J, et al. Size-Dependent Hydrogen StorageProperties of Mg Nanocrystals Prepared from Solution [J]. Journal of the AmericanChemical Society,2011,133(28):10679-10681.
    [88] Zhang S, Gross A F, Van Atta S L, et al. The synthesis and hydrogen storage properties ofMgH2incorporated carbon aerogel scaffold [J] Nanotechnology,2009,20:204027-204033.
    [89] Friedrichs O, Sánchez-López J C, López-Cartes C, et al. Nb2O5“Pathwa Effect” onhydrogen sorption in Mg [J]. The Journal of Physicial Chemistry B,2006,110(15):7845-7850.
    [90] Shirinyan A S, Wautelet M. Phase separation in nanoparticles [J]. Nanotechnology,2004,15:1720-1731.
    [91] Pundt A. Hydrogen in Nano-sized Metals [J]. Advance Engineering Materials,2004,6(1-2):11-21.
    [92] Gross K J, Chartouni D, Leroy E, et al. Mechanically milled Mg composites forhydrogen storage: the relationship between morphology and kinetics [J]. Journal of Alloysand Compounds,1998,269(1-2):259-270.
    [93] Gao Y, Zeng M Q, Li B L, et al. Solid state reaction and formation of nano-phasecomposite hydrogen storage alloy by mechanical alloying of MmNi3.5(CoMnAl)1.5andMg [J]. Journal of Materials Science,2003,38:2499-2504.
    [94] Zaluska A, Zakuski L, Str m-Olsen J O. Synergy of hydrogen sorption in ball-milledhydrides of Mg and Mg2Ni [J]. Journal of Alloys and Compounds,1999,289(1-2):197-206.
    [95] Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorptionin nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni)[J]. Journal of Alloysand Compounds,1999,292(1-2):247-252.
    [96] Liang G, Huot J, Boily S, et al. Hydrogen storage properties of the mechanically milledMgH2-V nanocomposite [J]. Journal of Alloys and Compounds,1999,291(1-2):295-299.
    [97] Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogensorption in nanocrystalline Mg-based materials [J]. Journal of Alloys and Compounds,2001,315(1-2):237-242.
    [98] Barkhordarian G, Klassen T, Bormann R. Fast hydrogen sorption kinetics of nano-crystalline Mg using Nb2O5catalyst [J]. Scripta Materialia,2003,49(3):213-217.
    [99] Pozzo M, Dario M. Hydrogen Dissociation and Diffusion on Transition Metal (=Ti, Zr, V,Fe,Ru,Co,Rh,Ni,Pd,Cu,Ag)-doped Mg(0001) Surfaces [J]. International Journal ofHydrogen Energy,2009,34(4):1922-1930.
    [100] Bhat V V, Rougier A, Aymard L, et al. High surface area niobium oxides as catalysts forimproved hydrogen sorption properties of ball milled MgH2[J]. Journal of Alloys andCompounds,2008,460:507-12.
    [101] Hout J, Pelletier J F, Liang G, et al. Structure of nanocomposite metal hydrides [J].Journal of Alloys and Compounds,2002,330-332:727-731.
    [102] Pelletier J F, Huot J, Sutton M, et al. Hydrogen desorption mechanism in MgH2-Nbnanocomposites [J]. Physical Review B,2001,63:052103.
    [103] Gautam Y K, Chawla A K, Walia R, et al. Hydrogenation of Pd-capped Mg thin filmsprepared by DC magnetron sputtering [J]. Applied Surface Science,2011,257(14):6291-6295.
    [104] Higuchi K, Yamamoto K, Kajioka H, et al. Remarkable hydrogen storage properties inthree-layered Pd/Mg/Pd thin films [J]. Journal of Alloys and Compounds,2002,330-332:526-530.
    [105] Lu J, Choi Y J, Fang Z Z, Sohn H Y, et al. Hydrogen storage properties of nanosizedMgH2-0.1TiH2prepared by ultrahigh-energy-high-pressure milling [J]. Journal of theAmerican Chemical Society,2009,131:15843-15852.
    [106] Orimo S, Fujii H, Ikeda K. Notable hydriding properties of a nanostructured compositematerial of the Mg2Ni-H system synthesized by reactive mechanical grinding[J]. ActaMaterialia,1997,45:331-341.
    [107] Zhu M, Zhu W H, Gao Y, et al. The effect of Mg content on microstructure andhydrogen absorption properties of mechanical alloyed MmNi3.5(CoAlMn)1.5-Mg [J].Materials Science and Engineering: A,2000,286:130-134.
    [108] Uchida H H, Wulz H G, Fromm E. Catalytic effect of nickel, iron and palladium onhydriding titanium and storage materials[J]. Journal of the Less Common Metals,1991,172-174:1076-1083.
    [109] Zakuski L, Zaluska A, Tessier P, et al. Catalytic effect of Pd on hydrogen absorption inmechanically alloyed Mg2Ni, LaNi5and FeTi [J]. Journal of Alloys and Compounds,1995,217(2):295-300.
    [110] Lin H J, Ouyang L Z, Wang H, et al. Phase transition and hydrogen storage properties ofmelt-spun Mg3LaNi0.1alloy [J]. International Journal of Hydrogen Energy,2012,37:1145-1150.
    [111] Konarova M, Tanksale A, Norberto J, et al. Effects of nano-confinement on thehydrogen desorption properties of MgH2[J]. Nano Energy,2013,2:98-104.
    [112] Gross A F, Ahn C C, Van Atta S L, et al. Fabrication and hydrogen sorption behaviour ofnanoparticulate MgH2incorporated in a porous carbon host [J]. Nanotechnology,2009,20(20):204005-204011
    [113] Billur S, Farida L D, Michael H. Metal hydride materials for solid hydrogen storage: Areview Review Article [J]. International Journal of Hydrogen Energy,2007,32(9):1121-1140.
    [114] Xin G B, Yang J Z, Zhang G Q, et al. Promising hydrogen storage properties andpotential applications of Mg-Al-Pd trilayer films under mild conditions [J]. Dalton Trans,2012,41(38):11555-11558.
    [115] Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydridingreaction of Mg-Ni thin films [J]. Applied Physics Letters,2007,90:021917-021920.
    [116] Bazzanella N, Checchetto R, Miotello A, et al. Hydrogen kinetics in magnesiumhydride: On different catalytic effects of niobium [J]. Applied Physics Letters,2006,89(1):014101-014113.
    [117] Lu J, Choi Y J, Fang Z Z, et al. Hydrogenation of Nanocrystalline Mg at RoomTemperature in the Presence of TiH2[J]. Journal of the American Chemical Society,2010,132:6616-6617.
    [118] Gautam Y K, Chawla A K, Walia R, et al. Hydrogenation of Pd-capped Mg thin filmsprepared by DC magnetron sputtering [J]. Applied Surface Science,2011,257:6291-6295.
    [119] Barkhordarian G., Klassen T., Bormann R. Kinetic investigation of the effect of millingtime on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5contents Original Research Article [J]. Journal of Alloys and Compounds,2006,407(1-2):249-255.
    [120] Bazzanella N, Checchetto R, Miotello A. Catalytic effect on hydrogen desorption inNb-doped microcrystalline MgH2[J]. Applied Physics Letters,2004,85;5212-5214.
    [121] Croston D L, Grant D M, Walker G S. The catalytic effect of titanium oxide basedadditives on the dehydrogenation and hydrogenation of milled MgH2[J]. Journal ofAlloys and Compounds,2010,492(1-2):251-258.
    [122] Barkhordarian G, Klassen T, Bormann R. Fast hydrogen sorption kinetics ofnanocrystalline Mg using catalyst [J]. Scripta Materialia,2003,49:213-217.
    [123] Jia Y H, Han S M, Zhang W, et al. Hydrogen absorption and desorption kinetics ofMgH2catalyzed by MoS2and MoO2[J]. International Journal of Hydrogen Energy,2013,38(5):2352-2356.
    [124] Verón M G, Troiani H, Gennari FC. Synergetic effect of Co and carbon nanotubes onMgH2sorption properties [J]. Carbon,2011,49(7):2413-2423.
    [125] Song Y, Guo Z X, Yang R. Infuence of selected allo ing elements on the stability ofmagnesium dehydride for h drogen storage applications: A frst-principle investigation [J].Physical Review B,2004,69(9):094205-094215.
    [126] Shang C X, Bououdina M, Song Y, et al. Mechanical alloying and electronicsimulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage[J]. International Journal of Hydrogen Energy,2004,29(1):73-80.
    [127] Cui J, Wang H, Liu J W, et al. Remarkable enhancement in dehydrogenation of MgH2by a nano-coating of multi-valence Ti-based catalysts [J]. Journal of Materials ChemistryA,2013,1:5603-5611
    [128] Morinaga M, Yukawa H. Nature of chemical bond and phase stability of hydrogenstorage compounds [J]. Materials Science and Engineering,2002,329-331:268–275.
    [129] Bhat V V, Rougier A, Aymard L, et al. Catalytic activity of oxides and halides onhydrogen storage of MgH2[J]. Journal of Power Sources,2006,159(1):107-110.
    [130] Dehouche Z, Goyette J, Bose T K, et al. Sensitivity of nanocrystalline MgH2V hydridecomposite to the carbon monoxide during a long-term cycling [J]. Nano Letters,2001,1(4):175-178.
    [131] Lee D S, Kwon I, Bobet J L, et al. Effects on the H2-sorption properties of Mg of Co(with various sizes) and CoO addition by reactive grinding [J]. Journal of Alloys andCompounds,2004,366(1-2):279-288.
    [132] Grosvenor A P, Biesinger M C, Smart R S, et al. New interpretations of XPS spectra ofnickel metal and oxides [J]. Surface Science.2006,600:1771-1779.
    [133] Suzuki K. Structure and properties of amorphous metal hydrides [J]. Journal of the LessCommon Metals,1983,89:183-195.
    [134] Friedrichs O, Sánchez-López J C, López-Cartes C, et al. Nb2O5“Pathwa Effect” onhydrogen sorption in Mg [J]. Journal of Physical Chemistry B,2006,110:7845-7850.
    [135] Rieke R D, Bales S E, Hudnall P M, et al. Highly reactive Magnesium for th preparationof grignard reagents:1-Norbornanecarboxylic Acid [J]. Organic Syntheses,1988,6:845-952.
    [136]Shao H Y, Wang Y T, Xu H R, et al. Hydrogen storage properties of magnesium ultrafineparticles prepared by hydrogen plasma-metal reaction [J]. Materials Science andEngineering: B,2004,110(2):221-226.
    [137] ermák J, rál L. Hydrogen diffusion in Mg-H and Mg-Ni-H alloys [J]. Acta Materialia,2008,56(12):2677-2686.
    [138]范康年著.物理化学[M].吴永宽,苗艳秋译.北京:高等教育出版社,2005.
    [139]徐祖耀,李麟著.材料热力学[M].北京:科学出版社,2005.
    [140]天津大学物理化学教研室著.物理化学[M].北京:高等教育出版社,1993.
    [141]颜肖慈,罗明道,周晓海著.物理化学[M].武汉:武汉大学出版社,2004.
    [142]肖衍繁,李文斌著.物理化学[M].天津:天津大学出版社,2004.
    [143]王淑兰著.物理化学[M].北京:冶金工业出版社,2009.
    [144] Xu W W, Song X Y, Lu N D,et al. Nanoscale thermodynamic study on phasetransformation in the nanocrystalline Sm2Co17alloy [J]. Nanoscale,2009,1:238-244.
    [145]卢柯.金属纳米晶体的界面热力学特性[J].物理学报,1995,44(9):1454-1461.
    [146] Song X Y, Zhang J X, Li L M, et al. Correlation of thermodynamics and grain growthkinetics in nanocrystalline metals [J]. Acta Materialia,2006,54:5541-5550.
    [147] Gleiter H. Nanostructured materials: basic concept and microstructure[J]. ActaMaterialia,2000,48:1-29
    [148] Meng Q P, Zhou N, Rong Y, et al. Size effect on the Fe nanocrystalline phasetransformation [J]. Acta Materialia,2002,50:4563-4570.
    [149] Lu K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization,structure, and properties [J]. Materials Science and Engineering: R: Reports,1996,16(4):161-221.
    [150] Sprunger P T, Plummer R W. An experimental study of the interaction of hydrogen withthe Mg(0001) surface [J]. Chemical Physics Letters,1991,187(6):559-564.
    [151] Du A J, Smith S C, Yao X D, et al. First-principle study of adsorption of hydrogen on Tidoped Mg(0001) surface [J]. Journal of Physical Chemistry B,2006,110(43):21747-21750.
    [152] Arboleda N B, Kasai H, Nobuhara K, et al. Dissociation and sticking of H2onMg(0001), Ti(0001) and La(0001) surfaces [J]. Journal of the Physical Society of Japan,2004,73(3):745-748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700