用户名: 密码: 验证码:
秸秆和秸秆木质素在土壤中的降解及其对土壤性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制浆造纸是国民经济中的重要产业之一,我国制浆造纸业受木材资源限制,非木纤维造纸占重要地位,但非木质纤维制浆受制浆黑液有机负荷高、污染重、处理难的限制。黑液中含有的大量木质素如能有效利用,既能减轻污染,又利于秸秆造纸的健康可持续发展,因此制浆木质素资源化利用是目前备受关注的重要课题。本文利用两种草浆工艺生产的木质素-铵法木质素(ALS)和碱法木质素(KL),以小麦秸秆(WS)为对照,通过土培、盆栽和田间试验对施用秸秆木质素对红壤和潮土的土壤碳结构、土壤性质以及木质素农用效果进行研究,以期为麦秸造纸废弃物资源化利用提供基础资料。主要结论如下:
     1、红壤中,施秸秆的土壤中脂族碳比例增加,分子结构趋于简单;施KL土壤中脂族性减弱,芳香性增加;潮土中,施WS土壤中脂族C/芳香C比值随培养时间逐渐降低;施KL与施WS趋势相近;施ALS土壤中脂族C/芳香C比值先增后降。
     2、土培试验发现,在红壤和潮土中,施用有机物料显著增加土壤腐殖酸含量,施木质素的效果比WS显著。红壤中ALS的效果比KL显著,潮土中KL的效果比ALS明显。土培期间,红壤和潮土中各处理的土壤活性有机碳(LOC)含量随培养时间延长先升后降,峰值出现在180 d左右。
     3、土培条件下,施ALS和KL均使红壤的土壤pH升高,施KL使潮土的土壤pH显著提高。盆栽和田间试验发现,施KL能显著提高土壤pH。
     4、在土壤培养高水分条件下,红壤各处理土壤多酚氧化酶(PPO)活性先升后降,潮土趋势相似,最高值出现在180 d。红壤过氧化物酶(POD)活性在培养120 d后,施KL的土壤POD活性显著高于其他处理;而潮土中,施ALS的土壤POD活性在整个培养期均高于其他处理。盆栽第一茬收获后,红壤施ALS土壤PPO活性显著降低,施WS和KL土壤POD活性显著高于其他处理。潮土施ALS土壤POD活性显著提高。两茬玉米收获后,红壤施有机物料的两种酶活性均显著提高;潮土中,施WS的土壤PPO活性显著高于其他处理,施有机物料的土壤POD活性显著提高。
     5、田间试验中,2009年小麦、玉米产量均以施ALS最高,施KL和单施化肥最低;施WS的小麦产量居中,与其他处理差异显著,而玉米产量与施KL的无显著差异。2010年施ALS与WS的小麦产量相近,显著高于其他处理。
     综合以上结论,造纸木质素作为潜在的土壤有机改良剂应用,会对土壤化学、生物学性状,以及农作物生长产生明显的影响。造纸木质素对土壤性质的影响程度与方向,与造纸工艺过程及其废弃物成分及土壤种类等密切相关。本研究结果表明,铵法木质素具有潜在的农用价值。
Pulp and paper-making industry is one of the most important industries in national economy. Non-wood fiber resources such as crop residues play an increasing role in pulp and papermaking industry. The black liquor from pulping is difficult to dispose because of its high organic matter contents and potential pollution to the environment, which is the main obstacle for the non-wood utilization in pulp and paper industry. The major organic compounds in black liquor are lignins, and treatment and utilization of black liquor for pollution control and organic material utilization is mainly depended on the lignin. Thus, the recovery of the lignin in black liquor and development use of lignin is getting an increasing attention nowadays. Agricultural use of residues from straw pulping after proper treatment is one of the utilization alternatives. The soil organic carbon, soil properties, and crop response after application of two kinds of straw-lignin produced from the pulping with wheat straw as control were studied in this experiment. With a series of soil incubation, pot cultivation and field experiments, the main results follow:
     1. In the red soil, the structure of organic carbon seemed to be simplified with application of WS, and the ratio of aliphatic-C/Aromatic-C decreased with application of KL. In the fluvo-aquic soil, the ratio of aliphatic-C/ Aromatic-C for applying WS decreased during incubation, and with applying KL obtained a similar trend with WS; the ratio of aliphatic-C/ Aromatic-C with ALS increased at beginning stage and decreased at ending of incubation.
     2. Under two different soil water contents, soil humic acids (HAs)content were significantly increased by applying ammonium lignosulfonate(ALS), Kraft lignin (KL) and wheat straw(WS)on the two tested soils (red soil and fluvo-aquic soil) in the soil incubation experiment. Application of lignins had significantly more effect in increasing soil HAs content than with wheat straw. On red soil, Applying ALS had a more significant effect in increasing soil HAs content than with KL, while applying KL had more marked effect than ALS on fluvo-aquic soil. During the incubation, soil liable organic carbons(LOC)contents were increased at the first half of sampling times and decreased at the remaining sampling times on the two soils, and reached the content peak at about 180 days’after incubation(DAIs).
     3. Applying ALS, KL and WS had influenced soil pH during incubation. Soil pH increased after application of ALS and KL on red soil during soil incubation while soil pH was significantly enhanced by application of KL and no obvious soil pH changes were found after applying WS and ALS on fluvo-aquic soil. The pot cultivation and field experiment proved that soil pH was increased by application of KL and no significant soil pH changes were found between other treatments. 4. At high water content, soil Polyphenol Oxidase (PPO) activity showed an increase-decrease pattern with applying KL on red soil, while the soil PPO activity peak occurred at 180 DAIs with applying ALS. Soil POD activities with applying KL was significantly higher than other treatments at 120 DAIs on fluvo-aquic soil. Soil POD activities with applying ALS was significantly higher than other treatments.
     In the pot experiment, soil PPO activities with ALS were significantly lower than other treatments and soil POD activities with WS and KL were significantly higher than other treatments on red soil. No significant differences for the soil PPO activities were found, and soil POD activities with ALS were significantly higher than other treatments on fluvo-aquic soil. Soil PPO activities and soil POD activities were significantly higher than other treatments on red soil; Soil PPO activities with WS were significantly higher than other treatments, soil PPO activities with organic materials significantly higher than applying NPK only on fluvo-aquic soil.
     5. The field experiment showed that the wheat yield and the corn yield were the highest by applying ALS while applying KL and applying NPK only got the lowest in 2009. No significant wheat yield difference was found between applying KL and applying NPK only. There was no significantly different corn yield with appling KL and WS. The wheat yield was close by applying ALS and WS, and significantly higher than other treatments in 2010.
     In conclusion, as potential organic soil amendments, lignin had a significant impact on soil chemistry, biological properties as well as crop growth. The effects of lignin on soil properties are highly related to pulping process, soil type and possible crops etc. The results from this study proved that the ammonium lignosulfonate from ammonium sulfite pulping process has potential value for land use in agricultural system.
引文
[1]毕于运,高春雨,王亚静,等,中国秸秆资源数量估算[J].农业工程学报,2009,25(12):211-217.
    [2]毕于运,秸秆资源评价与利用研究[博士学位论文].中国农业科学院,2010.
    [3]毕于运,王亚静,高春雨,我国秸秆焚烧的现状危害与禁烧管理对策[J].安徽农业科学,2009,37(27):13181-13184.
    [4]蔡晓布,钱成,张元,西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J].应用生态学报,2004,15(3):463-468.
    [5]曹玲,全金英,木质素在肥料中的应用[J].中华纸业,1998,(02):68-70.
    [6]岑沛霖,蔡谨,工业微生物学[M].北京:化学工业出版社,2000.
    [7]陈立祥,章怀云,木质素生物降解及其应用研究进展[J].中南林学院学报,2003,23(1):79-85.
    [8]陈倩穆环珍,黄衍初,等,施用木质素对春玉米生长发育及产量的影响研究[J].中国生态农业学报,2004,12(4):92-94.
    [9]陈强龙,谷洁,高华,等,秸秆还田对土壤脱氢酶和多酚氧化酶活性动态变化的影响[J].干旱地区农业研究,2009,27(4):146-151.
    [10]陈文新,土壤和环境微生物学[M].北京:北京农业大学出版社,1990,91-94.
    [11]陈芝兰,张涪平,蔡晓布,秸秆还田对西藏中部退化农田土壤微生物的影响[J].土壤学报,2005,42(4):697-699.
    [12]陈子爱,邓小晨,微生物处理利用秸秆的研究进展[J].中国沼气,2006,24(3):31-35.
    [13]池玉杰,木材腐朽与木材腐朽菌[M].北京:科学出版社,2003.
    [14]池玉杰,伊洪伟,刘智会,红平菇菌株H1的培养特性与营养成分分析[J].东北林业大学学报,2007,35(1):53-57.
    [15]丁昆仑,M.J.Hann,耕作措施对土壤特性及作物产量的影响[J].农业工程学报,2000,16(3):49-52.
    [16]段英华,张亚丽,沈其荣,等,增硝营养对不同基因型水稻苗期氮素吸收同化的影响[J].植物营养与肥料学报,2005,1(2):160-165.
    [17]樊修武,盐碱地秸秆覆盖改土增产措施的研究[J].干旱地区农业研究,1993(4):13-15.
    [18]冯科平,段桂荣.不同覆盖处理对早作玉米生育与产量效应的研究[J].干早地区农业研究.1995,13(l):50-54.
    [19]付荣恕,解爱华,王德印,玉米秸秆分解过程中土壤动物群落结构的动态[J].山东农业科学2007,20(3):72-74.
    [20]高卫东,赵林萍,等,中国种植业大观·肥料卷[M].北京:中国农业科技出版社,2001.
    [21]高祥照,等,肥料实用手册[M].中国农业出版社,2002.
    [22]关松荫,土壤酶学研究方法[M].北京:农业出版社,1986.
    [23]韩战省,山西省不同区域保护性耕作技术的研究,2007年亚太地区保护性耕作发展国际研讨会,2007.
    [24]洪春来,魏幼璋,黄锦法,等,秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].浙江大学学报(自然科学版),2003,29(6):627-633.
    [25]洪卫,刘勃,季华东,碱法木浆制浆造纸综合废水深度处理试验,中国造纸,2007,26(7):31-32.
    [26]黄红丽,木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究[PhD].湖南大学,2009.
    [27]冷东梅,造纸黑液木质素资源化处理[J].化学工程与装备,2009(12):164-167.
    [28]李建法,宋湛谦,木质素磺酸盐及其接枝产物做沙土稳定剂的研究[J].林产化学与工业, 2002,22(1):17-20.
    [29]李淑芬,俞元春,何晟,南方植被土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123.
    [30]李小刚,崔志军,王玲英,施用秸秆对土壤有机碳组成和结构定性的影响[J].土壤学报,2002,3(39):421-428.
    [31]李小建,王德汉,张玉帅,等,多介质环境下木质素对化肥中N素迁移转化积累的影响[J].农业环境科学学报,2006,25(2):458-463.
    [32]李孝勇,武际,朱宏斌,等,秸秆还田对作物产量及土壤养分的影响[J].安徽农业科学,2003,31(5):870-871.
    [33]李彦斌,刘建国,程相儒,等,秸秆还田对棉花生长的化感效应[J].生态学报,2009,29(9):4942-4948.
    [34]李玉武,次生植被下土壤活性有机碳组分季节动态研究[MsD],中国科学院,2006
    [35]林荣新,有机肥防治油菜缺硼效果的研究[J].浙江农业科学,1985,(2):88-91.
    [36]林云琴,周少奇,白腐菌降解纤维素和木质素的研究进展[J].环境技术,2003,(4):29-31.
    [37]刘更另,中国有机肥[M].北京:农业出版社,1991.
    [38]刘秋娟,张学恭,利用稻草碱木素生产肥料的研究[J].中国造纸,2002,21(4): 29-32.
    [39]刘尚旭,董佳里,张义正,糙皮侧耳Ax3产漆酶条件及部分酶学性质研究[J].四川大学学报,2004,41(1):160-163.
    [40]刘世平,聂新涛,张洪程,等,稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析[J].农业工程学报,2006,22(7):48-51.
    [41]刘天学,纪秀娥,焚烧秸杆对土壤有机质和微生物的影响研究[J].土壤,2003,35(4):347-348.
    [42]刘天学,牛丙呤,常加忠,等,焚烧秸秆对大豆幼苗生长的影响[J].作物杂志,2004(1):23-24.
    [43]鲁如坤,土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [44]马永良,师宏奎,张书奎,等,玉米秸秆整株全量还田土壤理化性状的变化及其对后茬小麦生长的影响[J].中国农业大学学报,2003,8(增刊):42-46.
    [45]马宗国,卢绪奎,万丽,等,小麦秸秆还田对水稻生长及土壤肥力的影响[J].作物杂志,2003(5):37-38.
    [46]穆环珍,杨问波,陈倩,等,造纸黑液木质素在肥料中的应用[J].环境保护,2003(06):51-54.
    [47]穆环珍,杨问波,黄衍初,造纸黑液木质素利用研究进展[J].环境污染治理技术与设备,2001,(3):26-30.
    [48]钱宏兵,韩春贵,钱存进,等,稻麦秸秆直接还田技术的研究[J].土壤肥料,1998,(2):26-29.
    [49]沈宏,曹志洪,胡正义,土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    [50]史清亮,旱地玉米免耕整秸秆覆盖栽培的根际固氮生态效应[J].生态学杂志,1993,12(3):72-73.
    [51]史央,蒋爱芹,戴传超,等,秸秆降解的微生物学机理研究及应用进展[J].微生物学杂志,2002,22(1):47-50.
    [52]史玉英,沈其荣,纤维素分解菌群的分离和筛选[J].南京农业大学学报.1996,19(3):59-62.
    [53]田仲和,高善民,朱恩,等,麦秸还田不均匀对直播水稻的影响及对策[J].土壤肥料.2002,(1):26-29.
    [54]王德汉,彭俊杰,肖雄师,等,利用麦草造纸碱木素生产螯合锌肥及其对玉米生长的影响[J].植物营养与肥料学报,2004,10(1):78-81.
    [55]王德汉,朱兆华,彭俊杰,等,含氮木质素作为尿素控释材料提高水稻、玉米氮肥利用率研究[J].农业环境科学学报,2003,22(5):574-577.
    [56]王国忠,杨佩珍,麦秸还田及水稻氮肥配施技术研究[J].土壤肥料,2001,(6):34-37.
    [57]王海磊,李宗义,三种重要木质素降解酶研究进展[J].生物学杂志,2003,20(5):9-12.
    [58]王克如,李少昆,汤永禄,等,成都平原免耕及不同麦秸还田量种植水稻的研究[J].水土保持学报,2006,20(5):171-174.
    [59]王增春,刘胜怀,黄少华,小麦秸秆全量还田稻作氮肥运筹研究[J].江苏农业科学,2007,(6):44-47.
    [60]文孝启,土壤有机质研究法[M].北京:农业出版社,1984.
    [61]吴建峰,林先贵,土壤微生物在促进植物生长方面的作用[J].土壤,2003,(1):18-21.
    [62]武志杰,玉米秸秆还田培肥土壤的效果[J].应用生态学报,2002,13( 5):539- 542.
    [63]席北斗,刘鸿亮,孟伟,等,垃圾堆肥高效复合微生物菌剂的制备[J].环境科学研究,2003,16(2):58-64.
    [64]夏炳乐,彭敦耕,牛海霞,等,叠氮化钠对辣根过氧化物酶的荧光猝灭机制的研究[J].光谱学与光谱分析,2005,25(3):412-415.
    [65]肖传绪,杜晓燕,莫海涛,等,木质素作为包膜材料包裹尿素的缓释效果研究[J].干旱地区农业研究,2007,25(6):167-170,176.
    [66]徐国伟,吴长付,刘辉,等,麦秸还田及氮肥管理技术对水稻产量的影响[J].作物学报,2007,33(2):284-291.
    [67]徐海娟,梁文芷,白腐菌降解木素酶系及其作用机理[J].环境污染治理技术与设备,2000,1(3):51-54.
    [68]徐孝华,普通微生物学[M].北京:中国农业大学出版社,1992 .
    [69]杨丽霞,潘剑君,土壤活性有机碳库测定方法研究进展[J].土壤通报,2004,35(4):502-506.
    [70]杨玉爱,薛建明,微量元素肥料研究与应用[M].湖北:湖北科技出版社,1986,297-306.
    [71]喻云梅,刘赘,翁恩琪,黄民生白腐真菌木质素降解酶的产生及其调控机制研究进展[J].安全与环境学报,2005,5(2):82-86.
    [72]袁家富,麦田秸秆覆盖效应及增产作用,生态农业研究[J].1996,4(3):61-65.
    [73]詹其厚,段建南,贾宁凤,等,长期施肥对黄土丘陵区土壤理化性质的影响[J].水土保持学报,2006,20(4):82-89.
    [74]张甲耀,龚利萍,罗宇炷,等,嗜碱细茼复合碳潭条件下对麦草木质素的降解[J].环境科学.2002,23(1):70-73.
    [75]张杰,木质素对土壤中氮素转化及其有效性的影响[MsD],中国农业科学院,2010.
    [76]张晋京;窦森;朱平,等,长期施用有机肥对黑土胡敏素结构特征的影响-固态13C核磁共振研究[J].中国农业科学,2009,42(6):2223-2228.
    [77]张晶,黄民生,徐亚同,白腐真菌木质素降解酶的研究及应用进展[J].净水技术,2004,23(1):19-21.
    [78]张晶,秸秆还田土壤中与纤维素降解相关的微生物的分子生态学研究MsD],上海:上海交通大学2007.
    [79]张文举,王加启,龚月生,等,秸秆饲料资源开发利用的研究进展[J].国外畜牧科技,2001,28(3):15-18.
    [80]张也庸,尹春建,喻旋,等,浅析机械化水稻秸秆还田技术及应用[J].现代农业装备,2009,(7):59-60.
    [81]张志国,徐琪,长期秸秆覆盖免耕对土壤某些理论性质及玉米产量的影响[J].土壤学报,1998,35(3):384-391.
    [82]赵小蓉,林启美,孙炎鑫,等,纤维素分解菌对不同纤维素类物质的分解作用[J].微生物学杂志,2000,20(3):12-14.
    [83]中野隼三,木质素的化学[M].高洁,译,北京:中国轻工业出版社,1988.
    [84]钟杭,张勇勇,林潮澜,等,麦稻秸秆全量整草免耕还田方法和效果[J].土壤肥料,2003(3):34-37.
    [85]周凌云,周刘宗,徐梦雄,农田秸秆覆盖节水效应研究[J].生态农业研究,1996,4(3):49-52.
    [86]朱泽亮,陶胜,钾肥和稻草对水稻生长及产量的影响[J].土壤,1992,24(6):310-311.
    [87] Akin D.E., Morrison W.H., Rigsby L.L., Gamble G.R., Sethuraman A. and Eriksson K.E.L., Biological delignification of plant components by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus [J].Anim. Feed Sci. Technol. 1996, 63: 305-321.
    [88] Ali M., Sreekrishnan T.R., Aquatic toxicity from pulp and paper mill effluents: A review [J].Adv. Environ. Res. 2001, 5: 175-196.
    [89] Arora D.S., Chander M. and Gill P.K., Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw [J].Int. Biodeterior. Biodegrad, 2002, 50:115-120.
    [90] Barr D.P., Aust S.D., Mechanisms White Rot Fungi Use to Degrade Pollutants [J]. Environ. Sci.Technol., 1994, 28(2): 78-87.
    [91] Barton H. R. and Schnitzer M., A new experimental approach to the humic acid problem [J]. Nature,Land,1963,198:217-218.
    [92] Baucher M., Monties B., Van Montagu M., Boerjan W., Biosynthesis and genetic engineering of lignin [J]. Crit. Rev. Plant Sci. 1998, 17:125-197.
    [93] Beeker M., Ladha J., K., ottow J. C., Nitrogen losses and lowland rice yield as affected by residue nitrogen released [J].Soil science of Soeiety of Ameriean Journal,1994,58:1660-1665.
    [94] Biederbeek V.O, Janzen H.H., CamPbell C.A.and Zentner R.P, Liable soil organic matter as influeneed by cropping Practices in an arid environment.Soil Biol.Biochem.1994, 26:1647-1656.
    [95] Blanco M.J. and Almendros G., Evaluation of parameters related to chemical and agrobiological qualities of wheat-straw composts including different additives [J].Bioresource Technology, 1995, 51(2-3):125-134.
    [96] Bomernan W.S., Hartley R.D., Morrison W.H., et a1, Feruloyl and P-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation [J], Appl.Microbiol.Biotechnol., 1990,33(3):345-351.
    [97] Bonomo R.P.,Boudet A.M.,Cozzolino R.,Rizzarelli E.,Santoro A.M.,Sterjiades R.and Zappala R, A comparative study of two isoforms of laccase secreted by the“white-rot”fungus Rigidoorus lignosus, exhibiting significant structural and functional differences [J].Inorg.Biochem. 1998,71:205-211.
    [98] Bossio D.A., Horwath W. R., Kessel V., Methane Pool and flux dynamies in riee field following straw incorporation[J].Soil Biology and Biochemistry, 1999,31:1313-1322.
    [99] Bumpus J.A., Tien M., Wright D., et al. Oxidation of Persistent Environmental Pollutants by a White Rot Fungus [J]. Science, 1985, 228: 1434-1436.
    [100] Burlat V., Ruel K., Martínez A. T., et al., The mature of lignin and its distribution in wheat straw affect the patterns of degradation by filamentous fungin, In:Proc.of the 7th international conference on Biotechnology in Pulp and paper industry [J].Vancouver:CPPA,1998, A75-A78;
    [101] Butchaiah G., Sébastien B., Christoph M., Savitri G., Air pollutant emissions from rice straw open field burning in India,Thailand and the Philippines [J].Environmental Pollution, 2009, 157(5):1554-1558.
    [102] Buzzini A.P., Pires E.C., Cellulose pulp mill effluent treatment in an upflow anaerobic sludge blanket reactor [J]. Process Biochem, 2002, 38:707-713.
    [103] Camberato J.J., Gagnon B.D., Angers A., Pulp and paper mill by-products as soil amendments and plant nutrient sources [J]. Canadian Journal of Soil Science, 2006, 641-650.
    [104] Carol A.C., Bacterial associations with decaying wood: a Review [J].International Biodetertoration&Biodegradation, 1996, 37(1): 101-107.
    [105] Chantigny M.H., Angers D.A., Beauchamp C.J., Aggregation and organic matter decomposition in soils amended with de-inking paper sludge [J]. Soil Sci. Soc. Am. J., 1999, 63, 1214-1221.
    [106] Chefetz B., Chen Y. and Hadar Y., Purification and characterization of laccase from Chaetomiumthermophilium and its role in humification [J].Appl. Environ. Microbiol. 1998, 64: 3175-3179.
    [107] Chen C R., Xu Z H., Mathers N J., Soil carbon pools in adjacent natural and plantation forests of subtropical Australia [J].Soil Science Society of America Journal, 2004, 68: 282-291.
    [108] Conte P., Piccolo A., van Lagen B., Buurman P., dejager P.A., Quantitative differences in evaluating soil humic substances by liquidand solid-state 13C-NMR spectroscopy [J].Geoderma, 1997, 80: 339-352.
    [109] Cornelis A.M., Gestel, Maaike K., Matty P., et al., Suitability of wheat straw decomposition, cotton strip degradation and bait-lamina feeding tests to determine soil invertebrate activity [J].Biol Fertil Soils, 2003, 37:115-123.
    [110] Datte A., Bettermann A., Kirk T K., Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by phanerochaete chrysosporium during wood decay[J]. Applied and Environment Microbiology, 1991,57(5): 1453-1460.
    [111] Dedeyan B.,Klonowska A., Tagger S., Tron T., Iacazio G.., Gil G., LePetit J. , Biochemical and molecular characterization of a laccase from Marasmius quercophilus[J].Appl. Environ. Microbiol. 2000, 66: 925-929.
    [112] Dinis M. J., Bezerra R.M.F., Nunes F., Dias A.A., Guedes C.V., Ferreira L.M.M.,Cone J.W., Marques G..S.M., Barros A.R.N., Rodrigues M.A.M, Modification of wheat straw lignin by solid state fermentation with white-rot fungi [J].Bioresource Technol, 2009: 4829-4835.
    [113] Domzal H., Slowinska J. A., Effects of tillage and weather condltions on structure and Physical Properties of soil and yield of winter wheat[J].Soil&Tillage Research,1987,(10):225-241.
    [114] Doran J. W., Jones A. J., Arshad M. A.,et al., Determinants of soil quality and health[M].In R.Lal(ed.).Soil quality and soil erosion.Lewis Publ,Boca Raton,FL,1999,17-36.
    [115] Dou S., Zhang J J., Li K., Effect of organic matter applications on 13C-NMR spectra of humic acids of soil [J].European Journal of Soil Science, 2008, 59: 532-539.
    [116] Falcn M.A., Rodfiguez A., Camicero A., et a1, Isolation of microorganisms with lignin transformation potential from soil of tenerife island [J]. Soil Biology&Biochemistry, 1995, 27(2):121-126.
    [117] Febrianto J., Kosasih A.N., Sunarso J., et al., Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies [J].Journal of Hazardous Materials, 2009, 162:616-645.
    [118] Ferrier D.E.K., Dewar K., Cook A., Chang J.L., Hill-Force A., Amemiya C., The chordate ParaHox cluster [J]. Curr Biol, 2005, 15:R820-R882.
    [119] Ficnar S.,RostlinnáV., Inhibition of nitrification and nitrogen uptake by peas(Pisum sativum) from urea [J] .1990, 36(3):303-308.
    [120] Gagnon B., Lalande R., Fahmy S.H., Organic matter and aggregation in a degraded potato soil as affected by raw and composted pulp residue [J].Biol. Fert. Soils 2001, 34: 441-447.
    [121] Gajda A. M.,Doran J.W.,Kettler T.A.,Wienhold B. J.,Pikul J.L. J.,Cambardella C. A..Soil quality evaluation of alternative and conventional management systems in the great plains,In:LalR,Kimble JM,Follett RF&Stewart BA,(eds),Assessment methodsfor soil carbon.Boca Raton,Florida:Lewis Publisshers, 2001, 381-400.
    [122] Ghosh P.K., Devi D.,Bandyopadhyay K.K, Mohanty M., Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut[J].Field Crops Research,2006, 99(2-3):76-86.
    [123] Gregorich E.G., Beare M.H., Stoklas U., et al.Biodegradability of soluble organic matter in maize-cropped soils [J].Geoderma, 2003, 113:237-252.
    [124] Guo P.,Wang X F.,Zhu W B.,et a1,Degradation of corn stalk by the composite microbial system of MC1[J].Journal of Environmental Sciences,2008,20: 109-114.
    [125] Guo X., Zhang S., Adsorption of metal ions on lignin [J].Journal of hazardous materials, 2008.
    [126] Hassink J., Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization [J]. Soil Biology&Biochemistry, 1994, 26:1221-1231.
    [127] Hatakeyama H., Hatakeyama T., Lignin Structure, Propertiesand Applications [J].Advances in Polymer Science, 2010, 232: 1-63.
    [128] Hatakka A., Mett?l? A., Rouhiainen L., Viikari L., The effect of quinone-reducing and phenol-methylating enzymes on the yellowing of mechanical pulp[J]. Holzforschung, 1994, 48:82-88.
    [129] Haynes R.J., Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J].Soil Biology&Biochemistry,2000,32:211-219.
    [130] Hofrichter M., Review: lignin conversion by manganese peroxidase (MnP) [J]. Enzyme and Microbial Technology, 2002, 30:454-466.
    [131] Horiuchi J., Shimizu T., Kobayashi M., Selective production of organic acids in anaerobic acid reator by pH control [J]. Bioresource Technology, 2002, 82:209-213.
    [132] Inbar Y., Chen Y., Hadar Y.and Verdonck O., Composting of agricultural wastes for their use as container media: simulation of the composting process [J]. Biological Wastes, 1988, 26:247-259.
    [133] Jeffrey K.G., Michae H.G., Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete [J]. Archives of Biochemistry and Biophysics, 1985, 242(2): 329-341.
    [134] Jun M., Yuri M., Masahiko K., Atsuko S., Makoto K., Incorporation of 13C-labeled rice-straw-derived carbon into microbial communities in submerged rice field soil and percolating water[J].Soil Biology and Biochemistry,2006,38(12):3483-3491.
    [135] Kannan K., Oblisami G., Effect of pulp and paper mill effluent irrigation on carbon dioxide evolution in soils [J]. J. Agron. Crop Sci. 1990, 164:116-119.
    [136] Karlen D.L, Gardner J.C.and Rosek M. J., A soil quality framework for evaluating the impact of CRP [J].J Prod Agric, 1998, 11:56-60.
    [137] Kawakami H., Degradation of lignin-related aromatics and lignins by several pseudomonads.In: Kirk KT, Takayoshi H, Hou-min C (eds), Lignin biodegradation: microbiology, chemistry and potential applications.volⅡ, CRC, Boca Raton, 1980, p103.
    [138] Kenneth E., Hammel A., Extracellular free radical biochemistry of ligninolytic fungi.New Journal of Chemistry [J]. 1996, 20(2):195-198.
    [139] Kirk T.K., Studies of the physiology of lignin metabolism by white-rot fungi [M]. In: Kirk KT,T akayoshi H.,Hou-min C(eds), Lignin biodegradation:microbiology, chemistry and potential applications.volⅡ,CRC,Boca Raton, 1980, p51.
    [140] Kludze H.K., Delaune R.D., Straw application effeets on methane and oxygen exchange and growth in rice.soil [J]. Science of society of American Journal, 1995, 59:824-830.
    [141] Lefroy R.D.B, Blair G.J. and Strong W.M., Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance [J]. Plant and Soil, 1993, 155/156:399-402.
    [142] Lokesh K.V., 13C-lignin-lignocellulose biodegradation by bacteria isolated from polluted soil [J].Indian Journal of Experimental Biology, 2001, 39(6):584-589.
    [143] Ludwig H., Wolfgang Z., Black carbon--possible source of highly aromatic components of soil humic acids [J].Organic Geochemistry, 1995 23 (3): 191-196.
    [144] Lundell T., Hatakka A., Participation of Mn (II) in the catalysis of laccase, manganese peroxidase and lignin peroxidase from Phelbia radiate [J]. FEBS Letters, 1994, 348:291-296.
    [145] LY/T1238-1999.Determination of the composition of forest soil humus, 1999.
    [146] Magdi T.A., Takatsugu H., Shinya O., Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties [J]. Bioresource Technology, 2004, 93(2):183-189.
    [147] Malcolm R., Malcolm L., Application of solid-state 13C NMR spectroscopy to geochemical studies of humic substances. In: MHB Hayes, P. McCarthy, RL Malcolm and RS Swift, Editors, Humic Substances II, In Search of Structure, Wiley, Chichester ,1989, 339-372.
    [148] Marche T., Schnitzer M., Dinel H., ParéT., Champagne P., Schulten H.R. and Facey G., Chemical changes during composting of a paper mill sludge-hardwood sawdust mixture [J]. Geoderma,2003, 116:345-356.
    [149] Mcgill W.B., Phoenix-A model of the dynamics of carbon and nutrogeb ub grassland soils [J].EcolBull,1981,33:237-249
    [150] Meier D.and Radlein D., An overview of fast pyrolysis of biomass [J]. Organic Geochemistry .1999, (30):1479-1493
    [151] Meyer J. L., Edwards R.T., Risley R., Bacterial growth on dissolved organic carbon from blackwater river [J], Microb.Ecol, 1987, 13:13-29.
    [152] Ming T., T Kent K.. Lignin Peroxidase of Phanerochaete chrysosporium [J]. Methods in Enzymology, 1988, 161: 238-249.
    [153] MiuraY. Kanna T., Emissions of trace gases (CO2, CO, CH4 and N2O) resulting from rice straw burning [J].soil Sci.Plant Nutrition, 1997, 43:849-854.
    [154] Nardi S., Muscolo A., Vaccaro S., Baiano S.,Spaccini R.,Piccolo A., Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maizeseedlings [J]. Soil Biology & Biochemistry, 2007, 39: 3138-3146.
    [155] Nemati M.R., Caron J., Gallichand J., Using paper de-inking sludge to maintain soil structural form: field measurements [J]. Soil Sci.Soc. Am. J. 2000, 64: 275-285.
    [156] Ocio J.A.,Brookes P.C., Jenkinson D.S., Field incorporation of straw and its effects on soil microbialbiomass and soil inorganic N[J]. Soil Biology and Biochemistry, 1991, 23:171-176.
    [157] Prez J., Mufioz-Dorado T., dela R.J., et a1, Biodegradation and biological treatments of cellulose,hemicellulose and lignin:an overview [J]. Int. Microbiol., 2002, 5(2):53-63.
    [158] Parnaudeau V., Nicolardot B. and Pagés J., Relevance of organic matter fractions as predictors of wastewater sludge mineralization in soil [J]. J. Environ. Qual,2004, 33,1885-1894
    [159] Paul E.A.,Paustian K., Elliott E.T., et al. (Eds), Soil Organic Matter in Temperate Agroecosystoms, Long-Term Experiments in North America [M]. Boca Raton, Floridaorida: CRC Press, Inc, 2001, 51-72.
    [160] Pérez. J., Muńoz-Dorado J., dela Rubia T., Martínez J., Biodegradation and biological treatments of cellulose,hemicellulose and lignin:an overview[J].Int Microbiol,2002,5:53-63
    [161] Petric A., and ?estan I., Influence of wheat straw addition on composting of poultry manure [J]. Process Saf. Environ. Prot, 2009, 87: 206-212.
    [162] Piccolo A., Mbagwu J.S.C., Role of hydrophobic components of soil organic matter in soil aggregate stability [J].Soil Science Society of America Journal, 1999, 63: 1801-1810.
    [163] Pocknee S. and Sumner M.E., Cation and nitrogen contents of organic matter determine its liming potential [J]. Soil Sci. Soc. Am.J. , 1997, 61, 86–92.
    [164] Potthoff M., Joergense R.G., Wolters V.,Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought[J].Soil Biology and Biochemistry,2001,33(4-5):583-591.
    [165] Powlason D.S., Recent advances in the use of isotopes in organic matter studies [M]. 1990, 92-97.
    [166] Powlson D.S., Brookes P.C., Christensen B.T., Measurement of soil microbial biomass provides an early indication of change in total soil organic matter due to straw incorporation [J]. Soil Biol.Biochem, 1987, 19:159-164.
    [167] Qualls R.G., Haines B.L., Swank W.T., Fluxes of dissolved organic nutrients and humic substances in a deciduous forest [J]. Ecology, 1991, 72:254-266.
    [168] Reddy G.V., Babu P.R., Komaraiah P.,et al.Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species(P.ostreatus and P.sajorcaju) [J]. Process Biochemistry, 2003, 38(10):1457-1462.
    [169] Reinhammar B., Laccase in Copper enzymes [M]. Edited by R. Lontie. CRC Press, Boca Raton, Fla. 1984:1-35.
    [170] Robertson W.K., Lutrick M.C. and Yuan T.L., Heavy applications of liquid-digested sludge on three Ultisols: I. Effects on soil chemistry [J]. J. Environ. Qual. 1982, 11:278-282.
    [171] Roca-Pérez L., Martínez C., Marcilla P. and Boluda R, Composting rice straw with sewagesludge and compost effects on the soil-plant system [J].,Chemosphere, 2009, 75:781-787.
    [172] Rodrigues M.A.M., Pinto P., Bezerra R.M.F., Dias A.A., Guedes C.V.M., Cardoso V.M.G., Cone J.W., Ferreira L.M.M., Cola?o J. and Sequeira C.A., Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw, Anim. Feed Sci. Technol. 2008, 141:326-338.
    [173] Shingo K., Ma sanori A., Noriko O.,et al., Degradation of a non-phenolic L-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole[J].FEMS Microbiology Letters,1999,170(1):51-57 .
    [174] Sjostrom E., Wood Chemistry: Fundamentals and Applications [M]. 2nd ed., NewYork/London: Academic Press, 1993.
    [175] Spaccini R., Mbagwu J.S.C., Conte P., Piccolo A., Changes of humic substances characteristics from forested to cultivated soils in Ethiopia [J].Geoderma, 2006, 132: 9-19.
    [176] Stevenson F.J., Humus Chemistry. Genesis: Composition, Reactions [M]. 1994.
    [177] Sun R.C., Tomkinson J., Fractional separation and physicochemical analysis of lignins from the black liquor of oil palm trunk fiber pulping [J]. Sep. Purif. Technol. 2001, 24, 529-539.
    [178] Tekere M., Zvauya R.and Read J.S., Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions [J]. J. Basic Microbiol. 2001,41:115-129
    [179] Thomsen I.K., Kjellerup V., Jensen B., Crop uptake and leaching of 15N applied in ruminant slurry with selectively labelled faeces and urine fractions [J].Plant Soil, 1997, 197:233-239.
    [180] Thurston C.F., The structure and function of fungal laccases. Microbiology, 1994, 140:19-26.
    [181] Tuomela M., Oivanen1 P., Hatakka A., Degradation of synthetic 14C-lignin by various white-rot fungi in soi[J].Soil Biology&Biochemistry,2002,34(11):1613-1620.
    [182] Tuomela M., Vikman M., Hatakka A., et al., Biodegradation of lignin in a compost environment:a review [J]. Bioresource Technology, 2000, 72:169-183.
    [183] Ussiri D.A.N., Johnson C.E., Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods [J]. Geoderma, 2003, 111: 123-149.
    [184] Valá?kováV. and Baldrian P., Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus [J]. Res. Microbiol, 2006,157 :119-124.
    [185] Vyas B.R.M., Volc J. and Sasek V., Ligninolytic enzymes of selected white rot fungi cultivated on wheat straw [J]. Folia Microbiol ,1994,39 :235-240.
    [186] Waksman S.A., Humus: Origin, Chemical composition and importance in nature [J]. Soil Science. 1939,47:255.
    [187] Weil R.R., Islam K.R. and Stine M.A., et al. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use [J].Am.J.Alternative Agric, 2003, 18:3-17.
    [188] Wershaw R.L., Application of nuclear magnetic resonance spectroscopy for determining functionality in humic substances, humic substances in soil, Sediment and Water [J]. John Wiley and Sons, New York NY. 1985. 561-582.
    [189] Whitehead D.L., Dibb H., Hartley R.D., Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter[J].Soil Biology&Biochemistry,1981,13:343-348.
    [190] Williams C.H. and Donald C.M. Changes in organic matter and pH in a podzolic soil as influenced by subterranean clover and superphosphate [J]. Aust. J. Agric. Res., 1957, 8:179-189.;
    [191] Willian M., Catherine T., Microbial enzyme and biotechnology [M]. NorthemIreland: The Universities Press, 1990.7-8:13-14.
    [192] Xiao C. Black liquor from crop straw pulping as a potassium source and soil amendment [PhD]. Washington: Washington state university, 2005.
    [193] Xiao C., Bolton R., Pan W.L., .Lignin from rice straw Kraft pulping: Effects on soil aggregation and chemical properties [J].Bioresource Technology, 2007, 98:1482-1488.
    [194] Xiao C., Fauci M., Bezdicek D.F., Pan W.L., Soil microbial responses to potassium-based black liquor [J]. Soil Sci. Soc. 2006, 70:72-77.
    [195] Xie R.J., MacKenzie A.F., O’Halloran, L.P., Fyles, J.W., Concurrent transformation of lignosulfonate carbon and urea nitrogen in clay soil [J]. Soil Sci. Soc. Am. J. 1994, 58:824-828.
    [196] Xie R.J., Meier J., Fyles J.W., Mackenzie A.F., O’Halloran L.P.,Russell E., Effects of calcium lignosulphonates on urea hydrolysis and nitrification in soil [J]. Soil Sci. 1993, 156(4), 278-285.
    [197] Zacchi L., Burla G., Zuolong D., et al., Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase [J].Journal of Biotechnology, 2000, 78(2):185-192.
    [198] Zayed G. and Abdel-Motaal H., Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea [J]. Bioresource Technol, 2005, 96(8):929-935.
    [199] Zhang L., Li D., Wang L., Wang T., Zhang L., Chen X.D. and Mao Z., Effect of steam explosion on biodegradation of lignin in wheat straw [J]. Biores. Technol. 2008, 99: 8512-8515.
    [200] Zhang S., Wang S., Shan X., et al., Influences of lignin from paper mill sludge on soil properties and metal accumulation in wheat [J]. Biology and Fertility of Soils, 2004, 40(4): 237-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700