用户名: 密码: 验证码:
八仙花和艳果金丝桃再生与遗传转化体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
八仙花[Hydrangea macrophylla (Thunb) Ser.]和艳果金丝桃(Hypericum androsaemum L.)分别为绣球科和金丝桃科的木本观赏植物。八仙花以花大色艳,花期长,成为庭园花境、林缘、基础种植、大型花卉装饰和盆花的极好材料;艳果金丝桃以果实美丽、果枝长、冬季枝条常绿、挂果期长成为冬季庭园花灌木的新型花灌木,也是最近几年来国内外新型的插花配材。它们在栽培管理中都容易出现病害问题,如八仙花的叶斑病和金丝桃的根结线虫病。基因工程是提高它们抗病性的有效途径之一。本文通过对外植体、培养条件、接种方式、激素种类、不同基因型等条件的比较试验,建立了八仙花和金丝桃稳定高效的再生体系,并对以根癌农杆菌介导的遗传转化体系进行了研究。另外,对八仙花叶斑病进行了分离和分子鉴定。其主要研究结果如下:
     1.建立并完善了高效稳定的八仙花快繁与再生体系
     获得了完全脱毒的八仙花Hydl、Hyd4和Hyd5三个基因型的无菌苗。以这三个基因型带芽茎段为外植体,对其组培快繁技术进行了研究,结果表明:三个基因型茎段均在B5+0.5 mg/L BA+0.1 mg/L NAA培养基上增殖效果最好,平均增殖芽数均达到了3个以上。其中以基因型Hydl为例,获得的最佳生根培养基为60 mL珍珠岩+30 mL液体培养基(1/2 B5+0.5 mg/L IBA),30d后生根率和移栽成活率达到100%。
     以八仙花七个基因型Hydl、Hyd4、Hyd5、Hyd6、Hyd7、Hyd8和Hyd10的叶片和叶柄为外植体,通过培养基、激素和暗培养等因子比较试验得出,以叶片为外植体获得的最佳再生培养基为B5+2.25 mg/L BA+0.1 mg/L IBA+100 mg/L头孢霉素(Cef),暗培养20d后转入光照下培养,再生频率和平均再生芽数分别为100%和2.7个。不同基因型的再生能力差异较大,除基因型Hydl外,其他六个基因型叶片的再生频率均低于30%。
     通过ISSR分子标记对直接再生苗进行的体细胞变异检测中,共得到1857个条带,相似度在0.980-0.983之间。表明直接再生苗不存在明显的体细胞变异。
     2.初步建立了八仙花基因型Hydl的遗传转化体系
     以再生率高的基因型Hydl叶片为试验材料,通过抗生素、预培养、侵染、共培养时间、农杆菌菌株等因素对比试验,探讨了相关因子对八仙花遗传转化的影响。研究表明:叶片不定芽再生的筛选浓度为20 mg/L卡那霉素(Km),再生苗生根的筛选浓度为200mg/LKm,200 mg/L Cef作为抑菌剂。叶片在预培养0d,侵染35 min和共培养3d条件下,GUS瞬间表达率最高可达100%。该转化条件结合延迟筛选7d可获得100%抗性愈伤率和12个抗性芽。抗性愈伤组织在后期分化抗性芽较为困难,需要进一步研究其分化条件。
     3.建立了高效稳定的艳果金丝桃快繁与再生体系
     以MS基本培养基和BA/NAA配比对比试验表明,以基因型Hyp3带腋芽茎段为外植体在MS+BA1.0mg/L+NAA0.1mg/L的培养基上获得了最优的腋芽诱导及增殖效果,丛生芽诱导率和平均增殖芽数分别为100%和3.7个。
     以艳果金丝桃四个基因型Hyp1、Hyp3、Hyp4和Hyp7叶片为外植体对其再生体系进行的研究表明,MS+TDZ0.1mg/L+AgNO31.0 mg/L+蔗糖30mg/L为最优的再生培养基,在暗培养20d后转入光周期下培养,再生率达83.3%。不同基因型叶片再生效果差异较大,其中,以基因型Hyp3的再生能力最强。
     4.初步建立了艳果金丝桃遗传转化体系
     对影响艳果金丝桃基因型Hyp3遗传转化预培养时间、侵染时间等的几个因子进行了研究,结果表明:Hyp3叶片为外植体以EHA105为侵染菌株,预培养0d,侵染5min,在MS+TDZ 0.1 mg/L+NAA 0.01 mg/L+AS 40 mg/L+MES 2.0g/L培养基上共培养3d,然后转移到选择培养基(MS+TDZ 0.1 mg/L+NAA 0.01 mg/L+ AgN031.0 mg/L+cef200 mg/L)上培养。在该条件下能够得到79.2%的GUS瞬时表达率,并且能够得到少量抗性愈伤组织。
     5.八仙花叶斑病病原菌的研究
     通过对盆栽八仙花叶片感病症状的观察、并对导致叶斑病的病原菌进行分离、形态学鉴定和rDNA-ITS分析,确定该病原菌为八仙花尾孢菌(Cercospora hydrangeae)。所得ITS序列经测序后已上载到Genbank,序列号:JF495458.1。
Hydrangea macrophylla (Thunb.) and Hypericum androsaemum L. are woody ornamental plants belonging to the Hydrangeaceae and Hypericaceae families respectively. Hydrangea macrophylla (Thunb) is used for planting courtyard flower borders, forest fringes, and ornamental garden, and is used in large scale flower decorations and sold as potted flower due to its colorful and large flower and long-lasting florescence. Hypericum androsaemum L. is a relatively new winter courtyard shrub and is used as new cut flower material because of its attractive looking fruits, long evergreen shoots and long lasting fruiting stage. However, both crops are vulnerable to plant diseases during the growing season, namely Hydrangea leaf spot and Hypericum root-knot nematode. Genetic engineering is potentially an efficient way of improving their disease resistance. By investigating the factors such as choice of genotype and explants, incubation conditions, inoculation methods, and different plant growth regulators, we established a highly efficient regeneration system and studied. An agrobacterium tumefaciens-mediated genetic transformation of Hydrangea macrophylla was developed as well. In addition, the pathogen causing leaf spot was isolated and identified as Cercospora hydrangeae. The major results were as follows:
     1. The establishment of a rapid propagation and regeneration system for Hydrangea
     Sterile shoots of Hydrangea macrophylla were obtained for genotypes Hydl, Hyd4 and Hyd5. The stems with axillary buds of these three genotypes were used as explants for the establishment of a micropropagation system. The optimum medium for proliferation of the three genotypes was B5+0.5 mg/L BA+0.1 mg/L NAA with a resulting multiplication coefficient of 3.0. Hydl terminal buds were used as explants for rooting. The rooting medium with 60 mL perlite plus 30 mL liquid medium of 1/2 B5+ 0.5 mg/L IBA gave the best results for the rooting rate (100%). Rooted shoots transplanted to mixed substrates of peat soil:perlite (1:1) had a survival rate as high as 100% after 30 days.
     Leaves and petioles of seven genotypes Hyd1, Hyd4, Hyd5, Hyd6, Hyd7, Hyd8 and Hyd10 were used as explants for experiments involving direct and indirect regeneration. The results showed that for leaf explants of Hydl on the B5 medium supplemented with 2.25mg/L BA,0.1 mg/L IBA and 100 mg/L cefotaxime, the regeneration rate was 100% and average number of shoots per explant was 2.7. There were large differences in regeneration capacity among different genotypes. On the same medium, the regeneration rate in leaf explants of Hyd4 and Hyd8 were lower than 30%.
     Somaclonal variation of Hydrangea macrophylla regenerants were tested by ISSR markers. There were in total 1857 scorable bands. The observed similarity was between 0.980-0.983. No significant somaclonal variation was abserved.
     2. Study on development of a genetic transformation system of Hydrangea macrophylla
     Agrobacterium tumefaciens-mediated genetic transformation was studied by using leaf explants of Hydl. The concentration of Kanamycin selection pressures was determined as 20 mg/L for shoot regeneration of leaves and 200 mg/L for rooting. A. tumefaciens could be inhibited with 200 mg/L cefotaxime. GUS transient expression analysis revealed that the leaf explants with 0 d pre-culture, infected for 35min and co-cultured for 3 day could reach the highest transient GUS expression rate of 100%. Delayed kanamycin selection for seven days benefited the formation of resistant callus and shoots. Resistant callus (100%) and 12 regenerated plants were obtained under the optimal transformation conditions。Resistant callus was difficult to induce for regeneration on kanamycin medium. Further research should focus on callus differentiation.
     3. Establishment of a rapid micro-propagation and regeneration system of Hypericum androsaemum
     Basal medium and BA/NAA were tested in order to establish a rapid micro-propagation sytem of genotype Hyp3. The highest shoot induction percentage (100%) and mean number of shoot per explant (3.7) were found on 1/2MS plus BA1.0mg/L.
     A regeneration system for Hypericum androsaemum was studied using explants of four genotypes Hypl, Hyp3, Hyp4 and Hyp7. A stable and highly efficient regeneration system of Hyp3 leaf explants was established, viz., media:MS+TDZ0.1 mg/L+AgNO3 1.0 mg/L+sucrose 30 mg/L, initial 20d dark culture followed by photoperiod culture. The highest regeneration rate was 83.3%. Genotype was a significant factor in Hypericum androsaemum regeneration. Medium with AgNO3 supplied a highly efficient and stable regeneration system.
     4. Study on genetic transformation of Hypericum androsaemum
     The factors of genetic transformation were tested in Hypericum androsaemum genotype Hyp3. The optimal protocol was as follows. Genotype Hyp3 leaf explants without pre-culture was immerged into EHA105 for 5 min, co-cultured on MS+ TDZ 0.1 mg/L+NAA 0.01 mg/L+AS 40 mg/L+MES 2.0g/L medium for 3d, selected on MS+ TDZ 0.1 mg/L+NAA 0.01 mg/L+AgNO3 1.0 mg/L+cef200 mg/L medium. High transient GUS expression rated (79.2%) was gained.
     5. Study on hydrangea leaf spot
     Pathogen was isolated from diseased potted hydrangea leaves and was identified as Cercospora hydrangeae by morphological and rDNA-ITS way. The ITS sequence was deposited to Genbank, accessing No. JF495458.1.
引文
1.曹慧敏.金丝慈竹AtCRN1同源基因BeCRN1的分离及遗传转化研究.[硕士论文].南京林业大学图书馆,2009
    2.陈喜文,范晖,裘立群.AgNO3对苹果叶片培养的影响及乙烯产生的关系.核农学报,1997,1:39-44
    3.储博彦,赵玉芬,牛三义等.八仙花花期调控影响因素研究.林业科学,2006,20(4):25-30
    4.迟吉娜,马峙英,张桂寅.中国棉花体细胞植株再生的基因型分析.分子植物育种,2005,3(1):75-82
    5. 丁云峰,马艳丽.不同基质对八仙花扦插生根的影响,林业科技,2005,30(6):26-27
    6.戴英样,黄晓玲.绣球花栽培及花期调控研究综述.广东园林,1996,4:5456
    7.段新玲,任东岁,曹新川等.大花圆锥八仙花组织培养及快速繁殖技术.塔里木农垦大学学报,1999,11(3):14-16
    8.范小峰,杨建霞,杨颖丽.八仙花愈伤组织诱导与快速繁殖.经济林研究,2009,27(1): 41-44
    9. 龚伟,王米力,石大兴.八仙花离体培养和植株再生.植物生理学通讯,2003,39(6):624-625
    10. 高莉萍,包满珠.月季萨曼莎不定芽的直接诱导和植株再生研究.中国农业科学,2005,38(4):784-788
    11.何玉会.山碴再生体系建立与农杆菌介导Bt基因转化的研究.[硕士学位论文].吉林:吉林农业大学图书馆,2007
    12.黄丽莉,刘峰,Poula R,等.八仙花周年供应与繁育技术研究.中国观赏园艺研究进展,中国林业出版社.2008:322-325
    13.黄萍,颜谦,童安毕等.GA3、NAA、BA对马铃薯试管苗气生根形成的影响.种子,2003,5:105-107
    14.黄文川,杨其光.烟草体细胞无性系变异及突变体抗病性筛选,湖北农业科学.1999,6(6):1999
    15.侯喜林,史永红.不结球白菜苏州青子叶离体分化.南京农业大学学报,2002,23(3):113-115
    16.江奕凤.绣球花的组织培养.亚热带植物通讯,1998,27(1):53
    17.姜巍,张巍巍,潭幸等.变异绣球无性系建立的研究.内蒙古农业科技,2007,(5): 39-41
    18.雷亚灵.八仙花组织培养技术研究.[硕士毕业论文].西安:西北农林科技大学图书馆,2008
    19.李浚明.植物组织培养教程.北京:中国农业大学出版社,2004
    20.李际红,孟凡志,张有朋.绣球组织培养技术的研究.山东林业科技,2002,2:20-28
    21.李向林,袁启凤,彭玉基等.八仙花的栽培技术试验总结.西南园艺,2004,32(6): 19-23
    22.刘锦霞,杨兰廷,沈思远等.多效唑对八仙花组培苗营养生长及成花的影响.北方园艺,2007,(6):205-207
    23.刘国锋,包满珠.悬铃木下胚轴及叶片再生不定芽的影响因素分析.园艺学报,2009,36(3):399-404
    24.刘冉冉.枫香遗传转化体系的优化及转化PaFT基因的研究.[硕士论文].华中农业大学图书馆,2010
    25.林晓民,李振岐,王少先。真菌rDNA的特点及在外生菌根菌鉴定中的应用。西北农业学报,2005,14(2):120-125
    26.林竹隐.植物生长延缓剂对雁来红、八仙花和菊花的作用及影响.[硕士学位论文].重庆:西南大学图书馆,2007
    27.陆万香,李名扬,裴炎。玉米几丁质酶基因导入甘蓝型油菜的研究。西南农业大学学报,2001,13(2):130-133
    28.刘稚.土壤根癌农杆菌体外转化胡萝卜悬浮培养细胞.中国科学:B辑,1987,(5):144-149
    29.庞惠仙,张光飞,苏文华.秃杉的组织培养及植株再生.植物生理学通讯,2005, 41(2):187
    30.齐迎春,宁国贵,包满珠。应用ISSR分子标记和表型性状评价孔雀草自交系的遗传关系。中国农业科学,2007,40(6):1236-1241
    31.邱运亮.PP333对八仙花试管快繁的影响研究.中国农业通报,2005,21(4):56-58
    32.尚爱芹,孙振元,赵梁军.爬行卫矛下胚轴高频离体再生体系的建立.林业科学,2009,45(2):136-142
    33.施雪萍.樟树体细胞胚再生体系的优化和转化Barnase、PaFT基因的研究.[博士论文].华中农业大学图书馆,2009
    34.孙源蔚.中国李'Nubiana'愈伤组织诱导、保存及植株再生研究.[硕士论文].华中农业大学图书馆,2010
    35.任叔辉.八仙花的组织培养与快繁技术.防护林科技,2006,70(1):10-11
    36.汪波.苎麻遗传转化受体系统建立及根癌农杆菌介导法遗传转化研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    37.王汝艳.一品红遗传转化体系建立的初步研究.[硕士论文].扬州大学图书馆,2010
    38.王关林,方宏筠.植物基因工程(第二版).北京:科学社会出版社,2002,344-347
    39.王树和,许晓利,郭岩.4种杀菌剂对八仙花叶点霉菌的毒力测定,河南农业科学,2006,9:91-91
    40.王纪方,金波,高秀云等。蔬菜组织培养。上海:上海科学技术出版社,1981:25-67
    41.王安亭,杨晓娟,翟晓巧,马新业,黎明,范国强.毛泡桐体细胞胚胎发生及植株再生研究,河南农业大学学报,2005,39(1):46-50
    42.卫兆芬.中国绣球属植物的修订.广西植物,1994,14(2):101-121
    43.卫兆芬.绣球属.陆玲娣,黄淑美.中国植物志.北京:科学出版社,1995,35(1):201-258.
    44.谢从华,柳俊.植物细胞工程.北京:高等教育出版社,2004
    45.徐玲,文凤竹,曹明星,陈蕾伊,连芳青.赤霉素(GA3)对八仙花花期及开花品质的影响.江西林业科技,2007,2:22-23
    46.许耀,贾敬酚,郑国.酚类化合物促进根癌农杆菌vir区基因表达的研究.科学通报,1988,3:1745-1748
    47.赵玉芬,储博彦,曾春凤等.GA3对盆栽八仙花促成栽培生长的影响研究.北方园艺,2007,(1):109-110
    48.张继栋,杨雪清,乔爱民等.木本曼陀罗毛状根植株再生体系的建立.热带亚热带植物学报,2008,16(5):480-485
    49.谭巍.八仙花栽培技术.北方园艺,2006,(1):96-97
    50.谢从华,柳俊.植物细胞工程.北京:高等教育出版社,2004
    51.姚甲宝.杉木遗传转化体系的研究.[硕士论文],南京林业大学图书馆,2010
    524.曾兵,张新全等。鸭茅种质资源遗传多样性的ISSR研究。遗传,2006,28(9):1093-1100
    53.曾晓芳.花椒再生体系的建立及ipt基因遗传转化研究。 [硕士研究生论文],贵州农业大学图书馆,2008
    54.张鹏,傅爱根,王爱国.AgNO3在植物离体培养中的作用及可能的机制.植物生理学通讯,1997,33(5):376-379
    55.周俊辉,周厚高,刘花全.植物组织培养中的内生细菌污染问题.广西植物,2003,23(1):41-47
    56.张志宏.苹果叶片再生不定芽及遗传转化的研究.[硕士学位论文].沈阳农业大学图书馆,1996
    57.孙国利等.樱桃不同基因型再生植株的比较.果树学报,2009,第五期
    58.苏晓华,张冰玉,黄秦军,等.转基因林木研究进展.林业科学研究,2003,16(1):95-103
    59.朱春艳,李志炎,鲍淳松等.云锦杜鹃组培快繁技术研究.中国农学通报,2006,22(5):335-337
    60. Al-Zahim M A, Ford Lloyd B V, Newbury V J. Detection of somaclonal variation in garlic using RAPD and cytological analysis. Plant Cell Rep,1999,18:473-477
    61. Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res,1997,25:4692-4693
    62. Atkinson R G, Richard C G, Regeneration of transgenic tamarillo plants. Plant Cell Rep,1993,12:347-351
    63. Arinaitwe G, Remy S, Strosse H et al. Agrobacterium-and particle bombardment-mediated transformation of a wide range of banana cultivars. In:Mohan Jain S, Swennen R (eds) Banana improvement:cellular, molecular biology and induced mutations. Science Publishers, Inc, Enfield,2004:351-357
    64. Akcay U C, Mahmoudian M, Kamci H, Yucel M, Oktem H A. Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik). Plant Cell Rep,2009,28:407-417
    65. Ayabe M, Sumi S. A novel and efficient tissue culture method-'stem-disc dome culture'-for producing virus-free garlic (Allium sativum L.). Plant Cell Rep,2001, 20:503-507
    52. Agarwal S, Kmwar K, Saini N, Jain R K. Agrobacterium tumefaciens mediated genetic transformation and regeneration of Morus alba L. Scientia Hort,2004,100: 183-191
    66. Bailey D A. Hydrangeas. In:Larson R A ed. Introduction to Floriculture,2th ed. California:San Diego, Academic Press,1992.365-383
    67. Blanc G, Baptiste C, Oliver G, Martin F, Montoro P. Effieient Agrobacterium tumefaeiens-mediated transformation embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. Plants. Plant Cell Rep,2005,24:724-733.
    68. Baccon-Gibod J, Billard C, Malete S. In vitro regeneration of system of Hydrangea macrophylla plantles from leaves and internodes. Acta Horiculturae,2008:508
    69. Bechtold N, Ellis J, Pelletier G In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Life Sciences,1993,316:1194-1199
    70. Berlyn G P, Anoruo A O, Beck R C, et al. DNA content polymorphism and tissue culture regeneration in caribbean pine. Can J Bot,1986,65:954-961
    71. Blackman S A, Brown K L, Manalo J R, Roos E E. Embryo culture as a means to rescue deteriorated maize seeds. Science,1996,36(6):1693-1698
    72. Bhatnagar S, Khurana P. Agrobacterium tumefaciens-mediated transformation of India mulberry, Morus indica cv. K2:a time-phased screening strategy. Plant Cell Rep,2003,21:669-675
    73. Birch R G. Plant transformation:Problems and strategies for praetieal application. Annu Rev Plant Physio Plant Mol Biol,1997,48:297-326
    74. Barik D P, Mohapatra U, Chand P K. Transgenic grasspea (Lathyrus sativus L.): Factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep,2005,24:523-531
    75. Cheng M, Lowe B A, Spencer M T, Ye X, Armstrong C L. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro cell dev Biol-Plant,2004,40:31-45
    76. Chan M T, Chang H H, Ho S L, Tong W F, Yu S M. Agrobacterium-mediated prduction of transgenic rice plants expressing a chimeric a-amylase promoter/ P-glucuronidase gene. Plant Mol Bio,1993,22:491-560
    77. Christopher T, Rajam M V. Effect of genotype, explant and medium on in vitro regeneration of red pepper. Plant Cell Tiss Org Cult,1996,46:245-250
    78. De Verno L L, Park Y S, Bonga J M. Somaclonal variation in cryopreserved embryogenic clones of white spruce. Plant Cell Rep,1999,18:948-953
    79. De la Riva G A, Gonzalez-Cabrera J, Vazquez-Padron R, Ayra-PardoC. Agrobacterium tumefaciens:a tool for plant transformation. Electronic J Biotech, 1998,1:118-133
    80. Doil A, Zhang R, Schum A, Serek M, Winkelmamm T. In vitro regeneration and propagation of Hydrangea macrophylla Thunb.'Nachtigall'. Propagation of ornamental plants,2008,8(3):151-153
    81. Dong J Z, McHughen A, Patterns of transformation intensity on flax hypocotyls inoculated with Agrobacterium tumefaciens. Plant Cell Rep,1991,10:555-560
    82. Donna IL, John E. Preece. Thidiazuron stimulates adventitious shoot production from Hydrangea quercifoliaBartr. leaf explants. Scientia Hort 101 (2004) 121-126
    83. Dutt M, Madhavaraj J, Grosser J W. Agrobacterium tumefaciens-mediated genetic transformation and plant regeneration from a complex tetraploid hybrid citrus rootstock. Scientia Hort,2010,123:454-458
    84. Dutta I, Saha P, Das S. Efficient Agrobacterium-mediated genetic transformation of oilseed mustard [Brassica juncea (L.) Czern.] using leaf piece explants. In Vitro Cell Dev Biol Plant,2008,44:401-411
    85. Gao N, Shen W S, Cao Y, Su Y H, Shi W M. Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell Tiss Org Cult,2009,98:321-330
    86. Garibaldi F G. First report of leaf spot caused by Alternaria compacta on Hydrangea. macrophylla in Italy. Plant dis,2007,91 (6):767-767
    87. Gardes M, Bruns T D. ITS primer with enhanced specificity for basidiomycetes: Application to the identification of mycorrhizae and rusts. Mcd Ecd,1993(2): 113-118
    88. Gordon-Kamm W, Dilkes B P, Lowe K, et al. Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc nat Acad Sci USA,2002,99:11975-11980
    89. Gu X F, Zhang J R. An efficient adventitious shoot regeneration system for Zhanhua winter jujube (Zizyphus jujuba Mill.) using leaf explants. Plant Cell Rep,2005, 23:775-779
    90. Guo Q S, Kenneth C S. Optimizing shoot regeneration and transient expression factors for Agrobacterium tumefaciens transformation of sour cherry (Prunus cerasus L.) cultivar Montmorency. Scientia Hort,2005,106:60-69
    91. Han J L, Wang H, Ye H C, Liu Y, Li Z Q, Zhang Y, Zhang Y S, Yan F, Li G F. High efficiency of genetic transformation=and_regeneration of Artemisia annua L. via Agrobacterium tumefaciens-mediated procedure. Plant Science,2005,168:73-80
    92. Henni K, Maere R, Ille H, Kai V. Effects of genotype, explant source and growth regulators on organogenesis in carnation callus. Plant Cell Tiss Org Cult,1997,51: 127-135
    93. Higgins E S. Early assessment of factors affecting the efficiency of transformation by Agrobacterium tumefaciens. Agric Biotech Newsl Inform,1992,4:314-346
    94. Horsch R et. al.. Inheritance of functional foreign genes in plants. Science,1984, 223:496-498
    95. Jansson B J, Gardner R C. Localized transient expression of GUS in leaf disd follow cocultivation with Agrobacterimu. Plant Mol,1989,14:61-72
    96. Jin S X, Zhang X L, Liang S G, Nie Y C, Guo X P, Huang C. Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tiss Org Cult,2005,81:229-237
    97. Joyce P, Kuwahata M, Turner N, Lakshmanan P. Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Rep,2010,29:173-183
    98. Karami O M, Ahiari E S, Kurdistani G K, Aghavaisi B. Agrobacterium-mediated genetic transformation of plants:the role of host, Biologia Plantarum,2009,53 (2): 201-212
    99. Kudo N, Niimi-Y. Production of interspecific hybrids between Hydrangea macrophylla f. hortensia (Lam.) Rehd. and H-arborescens L. Jap Soc Hort sci,1999, 68 (2):428-439
    100. Kumara N, Ananda K V, Pamidimarria D S, Sarkara T, Reddya M P, Radhakrishnanb T, Kaulc T, Reddyc M, Soporic S. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crops Prod,2010,10:101-109
    101. Kumar N, Panday S, Bhattacharya A, Ahuja P S. Do leaf surface characteristics affect Agrobacterium infection in tea(Camellia sinensis (L.) O. Kuntze). J Bio sci, 2004,29:309-317
    102. Kumlehn J, Serazetdinora L, Hensel G, Becker D, Loerz H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen culture with Agrobacterum tumefaciens. Plant Biotechnol J,2006,4:251-258
    103. Ledbetter D, Preece J E. Thidiazuron stimulates adventitious shoot production from Hydrangea quercifolia. Bartr leaf explants. Scientia Hort,2004,101:121-126
    104. Levin R, Stav R, Alper Y, Watad A A. In vitro multiplication in liquid culture of Syngonium contaminated with Bacillus spp. And Rathayibacter tritici. Plant Cell Tissue and Organ Culture,1996,45(3):277-280
    105. Leflond B N, Herve P, Irene M.16S to 23S internal transcribed spacer sequence analyses reveal inter and intraspecific tifidobacterium phylogeny. Int J Syst Bacterid, 1996,46:102-111
    106. Libiakova G, Gajdosova A, Vookova B, et al. Karyological study of Abies concolor Abies grandis calli and shoots regenerated in vitro. Biologia Bratislava,1995, 50(1):61-64
    107. Li M, Li H, Jiang H, Pan X, Wu G Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss Org Cult, 2008.92:173-181
    108. Li M, Li H Q, Hu X Y, Pan X P, Wu G J. An Agrobacterium tumefaciens-mediated transformation system using callus of Zoysia tenuifolia Willd. ex Trin. Plant Cell Tiss Org Cult, 2010:DOI 10.1007/s11240-010-9736-2
    109. Lievre K, Hehn A, Tran T L M, Gravot A, Thomasset B, Bourgaud F, Gontier E. Genetic transformation of the medicinal plant Ruta graveolens L. by an Agrobacterium tumefaciens-mediated method. Plant Science,2005,168:883-888
    110. Liu F, Gui D P, Huang L L, Paula R, Maarten J, Wang C Y. Propagation and shoot regeneration of Hydrangea from leaf explant. Hydrangea Breeders Association, Ghet, Belgium,2007
    111. Liu Q Q, Zhang L J, Wang Z Y. A highly efficient transformation system mediated by Agrobacterium in indica rice. Acta Phytophsio Sin,1998,24:259-271
    112. Liu X M, Pijut P M. Agrobacterium-mediated transformation of mature Prunus serotina (black cherry) and regeneration of transgenic shoots. Plant Cell Tiss Org Cult,2010,101:49-57
    113. Lu G, Zou Q C, Guo D, Zhuang X Y, Yu X L, Xiang X, Cao J S. Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis. Plant Cell Rep,2007,26:1585-1593
    114. Martinez J A, Valdes R, Vicente M J, Banon S. Phenotypical differences among B. cinerea isolates from ornamental plants. Commun Agric Appl BioL Sci,_2008,-73(2):121-9
    115. Mmbaga M T, Li Y, Sauve R J, Windham M T. Leaf spots and Leaf blight disease complex in Hydrangea macrophylla. Phytopathology.2009,99(6):87
    116. Mondal T K, Bhattaeharya A, Ahuja P S, Chand P K. Transgenic tea [Camellia sinensis(L.)O.Kumtze cv. Kmgra Jat] plants obtained by Agrobaeterium-mediated transformation of somatic embryos. Plant Cell Rep,2001,20:712-720
    117. Pandey V, Misra P, Chaturvedi P, Mishra M K, Trivedi P K, Tuli R. Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal:an important medicinal plant. Plant Cell Rep,2010,29:133-141
    118. Reed S M, Jones K D, Rinehart T A. Production and characterization of intergeneric hybrids between Dichroa febrifuga and Hydrangea macrophylla. Am Soc Hort Sci, 2008,133 (1):84-91
    119. Saieed N T, Douglas G C, Fry D J. Indcution and stability of somaclonal variation in growth, leaf phenotype and gas exchange characteristics of poplar regenerated from callus culutre. Tree Physiology.1994,14(1):1-16
    120. Sandrine Codarin, Gilles Galopin, Ge'rard Chasseriaux. Effect of air humidity on the growth and morphology of Hydrangea macrophylla L. Scientia Hort,2006,108: 303-309
    121. Sebastian T K, Heuser C W. In vitro propagation of Hydrangea quercifolia Bartr. Scientia Hort,1987,31:303-309
    122. Shrivastava D K, Sanyal I, Singh B D, Amla D V. Endogenous GUS-activities in Cajanus cajan L. and some grain legumes:selective suppression for expression of GUS reporter gene. J Plant Biol,2001,28:243-250
    123. Shrawat A K, Becker D, LOrz H. Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Science,2007,172:281-290
    124. Shama K K, Bhatnagar P. Thorpe TA. Genetic transformation technology:status and problems. In vitro Cell Dev Biol-Plant,2005,41:102-112
    125. Stachel S E, Messens E, van montaga M. Identification of single molecular produced by wounded plant cells that activated T-DNA transfer in Agrobacterium tumefaciens. Nature,1985,318:624-629
    126. Steven J C, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal,1998,16(6):735-743
    127. Son SH, Moon HK,Hall-RB.Somaclonal variationin plants regenerated from callus culture of hybrid aspen. Plant Science,1993,90(l):89-94
    128. Sonia S R, Singh R P, Jaiwal P K. Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris a-amylase inhibitor-1 gene into mungbean Vigna radiate (L.) Wilczek using bar as selectable marker. Plant Cell Rep,2007,26:187-198
    129. Song G Q, Sink K C. Agrobacterium tumefaciens-mediated transformation of blue berry (Vaccinium corymbosum L.). Plant Cell Rep,2004,23:475-484
    130. Sunikumar G, Rathore K S. Transgenic cotton:factors influencing Agrobacterium-mediated transformation and regeneration. Mol breed,2001,8:37-52
    131. Toyama-Kato Y, Kondo T, Yoshida K. Synthesis of designed acylquinic acid derivatives involved in blue color development of hydrangea and their co pigmentation effect. Hetherocycles,2007,13:239-254.
    132. Terakami, Matsuta N, Yamamoto T, Sugaya S, Gemma H, Soejima J. Agrobacterium-mediated transformation of the dwarf pomegranate (Punica granatum L. var. nana). Plant Cell Rep,2007,26:1243-1251
    133. Uemachi T, Nishio T. Inflorescence development in Hyderangea macrophylla. Am Soc Hort Sci,1998,56,410-414.
    134. Tadao K, Yuki T K. Essential structure of co-pigment for blue sepal-color. development of hydrangea Tetrahedron Letters,2005,46:6645-6649
    135. United States. Department of Agriculture. Statistics Board,2002. Floriculture crops 2001 summary.http://usda.mannlib.cornell.Edu/reports/nassr/other/zfc-bb/flor0401.txt
    136. Uranbey S, Sevimay C S, Kaya M D, Ipek A, Sancak C, Basalmad D, Er C, Ozcan S. Influence of different co-cultivation temperatures, periods and media on Agrobacterium tumefaciens-mediated gene transfer. Biologia plantarum,2005,49 (1): 53-57
    122. Urtubia C, Devia J, Castro A, Zamora P, Aguirre C, Tapia E, Barba P, Dell O P, Moynihan M R, Petri C, Scorza R, Prieto H. Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Rep,2008,27:1333-1340
    137. Veilleux R E, Johnson A A T. Somoclonal variation:molecular analysis, transformation interaction and utilization. Plant Breeding Reviews,1998, 16:1229-1269
    138. Villemont E, Dubois F, Sangwan R S, Vasseur G, Bourgeois Y, Sangwan-Norreel B S. Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia:evidence of an S-phase control mechanism for T-DNA transfer. Planta,1997, 201:160-172
    139. Wang M B, Abbott D, Upadhyaya N M, Jacobsen J V, Aterhouse P M. Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust Jour Plant Physiol,2001,28: 149-156
    140. Wang B, Liu L J, Wang X X, Yang J Y, Sun Z X, Zhang N, Gao S M, Xing X L, Peng D X. Transgenic ramie [Boehmeria nivea (L.) Gaud]:factors affecting the efficiency of Agrobacterium tumefaciens-mediated transformation and regeneration. Plant Cell Rep,2009,28:1319-1327
    141. White T J, Bruns T, Lee S. Analysis of phytogenetic relationships by amplification and direct sequecing of ribosomal RNA genes. INNS M A. PCR Protocols:A Guide to Methods and Application. New York Academic,1990,315-322
    142. Yang X H, Kyoko Shimizu. Regeneration of plants from achenes and petals of Chrysanthemum cocineum. Plant Cell Rep,1990,8:625-627
    143. Yasmin A, Debener T. Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell Tiss Org Cult, dol:10.1007/s11240-010-9728-2
    144. Yeh D M, Chiang H H. Growth and flower initiation in Hydrangea as affected by root restriction and defoliation. Horticulturae,2001,91:123-132
    145. Zhang H, Huang Q M, Su J. Development of Alfalfa (Medicago sativa L.) Regeneration system and Agrobacterium-mediated genetic transformation. Agr Sci in Chi,2010,9(2):170-178
    146. Zhang F L, Takahata Y, Xu J B. Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage(Brassica campestris L. ssp. Pekinensis). Plant Cell Rep,1998,17:780-786
    147. Liu F, Huang L L, Li Y L, Poula R, Jongsma M A and Wang C Y. Shoot organogenesis in leaf explants of Hydrangea macrophylla'Hydl'and assessing genetic stability of regenerants using ISSR markers. Plant Cell Tiss Organ Cult,2011, 104(1):111-117
    148. Zambryski P C. Ti Plasmid vector for the introduction of DNA in to plant cells without alteration of their normal regulation capacity.EMBOJ,1983,2:2143-2150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700