用户名: 密码: 验证码:
稻麦联合收获开沟埋草多功能一体机的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前我国抢收抢种季节因农村劳动力结构性不足而出现的许多地方焚烧秸秆造成资源浪费、环境污染等,以及我国稻麦两熟地区墒沟埋草法存在机器两次作业和人工埋草的缺点,本研究本着农机与农艺相结合的原则,以稻麦联合收割机及开沟机为研究对象,以开发一次作业即可完成稻麦收获、墒沟开挖、秸秆入沟还田等工序的新型多功能一体机(稻麦联合收获开沟埋草多功能一体机,简称多功能一体机)为目的,在以下几个方面进行了研究:
     1.墒沟埋草式秸秆还田法成功实施的前提是开挖出适合埋(集)草的墒沟,而开沟质量、侧向抛土均匀性(田间平整度)等与开沟装置结构参数、作业参数密切相关;在开沟装置刀盘提升高度(刀盘及其支架等结构参数)满足多功能一体机安全下地作业的前提下,材料最省、成本最低是现代设计方法追求的目标。因此,本文以刀盘提升高度最大、刀盘升降装置结构尺寸最小及油缸行程最短为目标函数建立开沟装置参数优化设计数学模型,并运用Matlab优化工具箱对其进行计算,经圆整优化结果后,得刀盘升降装置最小结构尺寸、油缸最大行程及刀盘最大提升高度分别为885mm、182mm和850mm。
     2.为充分发挥开沟装置各级链传动的传动能力,减小传动链轮组的体积、重量,并使传动平稳、轻便、灵活,以实际工作条件下各级链条所能传递的功率[P]与计算功率Pj充分接近为目标函数建立优化设计数学模型,对链轮减速系传动比进行优化分配,得第一、二级链传动的传动比分别为1.78和1.42。
     3.多功能一体机的作业效率、作业质量很大程度上取决于整机动力是否配套、收获与开沟部件是否速度同步。针对上述问题,对收获、开沟及行走等装置功率消耗进行了研究,并在部件试验的基础上,建立了整机功率配套数学模型,为同类型机具开发奠定了功率配套基础。
     4.为了减少传统设计方法中样机多次加工成本、试验费用及缩短样机开发周期,并增加零部件的直观性,运用Pro/E软件对开沟装置及其传动部件建立了三维参数化模型,并进行了虚拟装配,同时运用仿真软件ADAMS对反转开沟作业进行了运动仿真,仿真结果验证了开沟部件的运动分析的正确性。
     5.根据各设计结果,加工了开沟装置及其传动系统零部件,并完成了整机装配。田间试验表明,在成熟稻麦联合收割机上加装开沟装置,并采用反转方式作业,沟内回土较少,开沟装置工作可靠、开沟质量稳定,梯形沟不仅利于秸秆入沟,墒沟边坡也不易塌陷,满足农艺上埋草、排水要求。机器各装置因获得合适的动力而保持速度同步,其作业效率、沟形参数(可调)等指标满足设计要求;当配套动力不变时(46kW)时,与原联合收割机相比,样机收获效率有所降低,但由于该机一次作业即可完成作物收获、墒沟开挖及秸秆入沟处理,因此其综合效率较高。
In solving the problem of straw burning practices, a consequence from labor shortage during the harvesting and sowing season in rural regions, and which results into the waste of energy resources and a potential pollution to the environment, a combined harvester was designed by combining the functions of the cereal crop combine harvester and the ditches. The main purpose of the machine was to facilitate ditching and stalk-disposing while performing harvesting, so that the two-pass field operation of harvesting and ditching and stalk-disposing was avoided. The main achievements include:
     The prerequisite for ditching and stalk-disposing was the proper ditching. While the quality and the uniformity of the ditching operation was related to the structure and operational parameters of the ditcher. If the disc adjustment height satisfies the operational demand of the multi-function harvester, the objective of the machine design turns out to be the minimum material used and the lowest cost of the production. Therefore the objective function of this work was designed as the maximum adjustment height of the disc, the minimum disc size and the least displacement of the hydraulic cylinder. These resulted into a optimization function for the ditcher, which, was further calculated in Matlab to yield the sizes for the minimum disc size, the maximum displacement of the hydraulic cylinder and the maximum adjustment height of the disc to be885mm,182mm and850mm, respectively.
     To fully exploit the power transmission of each level and to reduce the size and the mass of the chain system for a stable, simple and flexible working condition, a optimization model was proposed by extensively approximating the transmitted power [P] by each level to the calculated power Pj. This optimization determined the power transmission ratioes for the first and the second level to be1.78and1.42.
     The operational efficiency and the quality of the multi-function harvester was mainly influenced by the condition of whether the power system was compatible and if the harvesting and the ditching assembles were synchronous. Thus the power consumption of the harvesting and the ditching parts were studied and based on which a mathematical model of the overall power demand by the machine was provided, which could be applied on all similar models.
     With an aim of reducing the cost of machine production and experiment and to reduce the development cycle of the model machine, as well as the improvement of the visibility, the Pro/E development software was used to generated the3-D models of the ditching and power transmission mechanisms. The developed model was further simulated in the ADAMS to test the correctness of the movement of the ditching parts.
     On the basis of the design, the parts of the ditching and its power transmission assemblies were produced and assembled. Field test on the machine revealed that, by attaching the ditching parts on the harvester and moving in a reversible direction, very little soil was observed falling back into the trapezoid ditch. The generated ditch allowed the stalk to be collected in and the field well drained. As each part of the machine were well synchronized, the overall working efficiency and the ditching parameters were proved to be satisfactory. If no modification was made on the power (46kW) the revised harvester gave a lower harvesting efficiency, but a higher composite working efficiency when the once-over field operation was considered as compared with the stepped field work of harvesting and the ditching for stalk-disposing.
引文
[1]http:www.china5e.com/show.hph?contentid=55479
    [2]任仲杰,顾孟迪.我国农作物秸秆综合利用与循环经济[J].安徽农业科学,2005,33(11):2105-2106
    [3]黄娅琳.稻草还田对水稻的增产效益及对土壤肥力的影响[J].土壤肥料,1997,(2):18-22
    [4]Z.K.Pi, Y.M.Wu,J.X.Liu.Effect of pretreatment and pelletization on nutritive value of rice straw-based total mixed ration, and growth performance and meat quality of growing Boer goats fed on TMR [J]. Small Ruminant Research 2005,56:81-88
    [5]Spliethoff H, Hein K R G.Effect of co-combustion of biomass on emissions in Pulverized fuel furnaces [J]. Fuel Processing Technology 1998,54:189-205
    [6]Nilsson D, Hansson P A. Influence of various machinery combinations, and storage capacities on costs for co-handling of straw and reed canary grass to district heating plants [J]. Biomass and Bioenergy 2001,20:247-260
    [7]Isola O.Fasidi.Studies on Volvariella esculenta (Mass) Singer:cultivation on agricultural wastes and proximate composition of stored mushrooms [J]. Food Chemistry,1996,55 (2): 161-163
    [8]朱永.农作物秸秆机械化综合利用[J].湖南农机,2005,(6):16-17
    [9]李宝筏,邱立春,吴仕宏,等.面向东北地区进行保护性耕作研究与建议[J].农业机械文摘,2002,(6):201-204
    [10]马成林,王化民,吕俊伟.吉林省农业机械化可持续发展战略研究[J].农业工程学报,1997,13(S):216-219
    [11]毛罕平,陈翠英.秸秆粉碎掩埋复式作业机的试验研究[J].农业工程学报,1996,27(3):42-45
    [12]叶晓楠.水土流失知多少:全国646个县水土流失严重人民日报海外版.2009 3 23
    [13]王军.东北黑土地退化严重[J].新文化报,2005,3:27
    [14]高焕文.北方地区机械化可持续旱作农业研究.中国机械化旱作节水农业国际研讨会论文集[C].北京:中国农业大学出版社,2000.7:21-25
    [15]翟通毅.山西省发展机械化保护性耕作农业的报告.中国机械化旱作节水农业国际研讨会论文集[C].北京:中国农业大学出版社,2000:86-90
    [16]贾洪雷.东北垄作蓄水保墒耕作技术及其配套的联合少耕机具研究[D].吉林:吉林大学,2005
    [17]臧英.保护性耕作防治土壤风蚀的试验研究[D].北京:中国农业大学,2003
    [18]董光荣,李长治,高尚玉,等.关于土壤风蚀风洞模拟实验的某些结果[J].科学通报,1987,(4):297-301
    [19]朱朝云,丁国栋,杨明远.风沙物理学[M].北京:中国林业出版社,1992
    [20]毛罕平,陈翠英.秸秆还田机工作机理与参数分析[J].农业工程学报,1995,11(4):62-66
    [21]http://www. szkj110.net/ArticleShow. asp?ArticleID=2330
    [22]高焕文,李问盈.保护性耕作技术与机具[M].北京:化学工业出版,2004
    [23]高焕文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,2003,19(3):1-4
    [24]高焕文.机械化保护性耕作技术[J].现代化农业,2002,273(4):31-33
    [25]高焕文.北方旱地机械化耕作模式探讨[J].中国农业大学学报,1996,1(S):7-12
    [26]高焕文,李洪文,陈君达.可持续机械化旱作农业研究[J].干旱地区农业研究,1999,17(1):57-62
    [27]Morrison J E, Gerik T J. Planter depth-conrtol:Ⅰ. predictions and projected effects on crop emergence [J]. Transactions of the ASAE,1985,28 (5):1415-1418
    [28]Morrison J E, Gerik T J. Planter depth-conrtol:Ⅱ. Empirical testing and plant response [J]. Transactions of the ASAE,1985,28 (6):1774-1748
    [29]Morrison J E, Allen R R, Wilkins D E, et.al. Conservation planter, drill and air-seeder selection guideline [J]. Applied Engineering in Agriculture,1988,4 (4):300-309
    [30]Schaaf D E, Hann S, Rogers B. The development of performance data on seed drill furrow openers ASAE Paper.1979, No.79-116
    [31]Choudhary M A, Baker C J. Physical effects of direct drilling equipment on undisturbed soils I wheat seedling emergence under controlled climates [J]. N.Z. Journal of Agri.Res,1980,23: 489-496
    [32]陈君达,王兴文,李洪文.旱地农业保护性耕作体系与免耕播种技术[J].北京农业工程大 学学报,1993,13(1):27-33
    [33]高焕文,李洪文,王晓燕,等.10年保护性耕作试验初步总结.机械化保护性耕作技术(C)2003.8-17
    [34]赵永满,王维新.国外农业机械化的现状及发展态势[J].农机化研究,2005,7(4):11-12
    [35]Anne Williams. A Farmer's Experience of No-till Farming in Northern NSW Australia. Conservation Tillage & Sustainable Farming [M]. Beijing:China Agricultural Science And Technology Press,2004:40-45
    [36]赵满全,赵士杰,窦卫国,等.2BM-9型免耕播种机的研究与试验[J].农村牧区机械化,2002,52(4):45-46
    [37]潘涛.小麦免耕播种机防堵装置的设计研究[D].甘肃农业大学,2005
    [38]姚宗璐.小麦对行免耕播种机的改进研究[D].中国农业大学,2005
    [39]蒋金琳.北方夏玉米免耕覆盖播种技术及配套机具的研究.干旱地区农业研究,1997,15(3):104-106
    [40]蒋金琳.玉米免耕播种机切茬挖茬装置研究[D].中国农业大学,2004
    [41]郭云岭,齐新.新型玉米免耕播种机的试验研究[J].农业工程学报,1999,15(1):73-75
    [42]郭云岭,丁士斌,段汝浩,等.2BY-3型玉米免耕播种机[J].粮油加工与食品机械,1995,(1):13-14
    [43]王庆杰,李洪文,徐迪娟,等.新型玉米垄作免耕播种机的研究与试验[J].干旱地区农业研究,2008,26(6):250-252
    [44]姚宗璐,高焕文,王晓燕,等.2BMX-5型小麦-玉米免耕播种机设计[J].农业机械学报,2008,39(12):65-68
    [45]刘桂兰,周风林,初尔庄,等.2BYM-2型玉米免耕播种机的研究[J].农牧区机械化,2002,25(4):49-50
    [46]徐波,汤楚宙,官春云,等.2BYF-6型油菜免耕直播联合播种机的改进及试验[J].湖南农业大学(自然科学版),2008,34(1):109-111
    [47]吴明亮,官春云,汤楚宙,等.2BF-6型稻茬田油菜免耕联合播种机的研究[J].农业工程学报,2005,21(3):103-106
    [48]周良墉.2BFQ-3型秸秆锯切式玉米播种机[J].农村百事通,2005,(6):27
    [49]叶恩.应大力推广秸秆还田机械化作业[J].江苏农机化,1999,(6):18
    [50]张进新.推广机械化秸秆还田促进团场农业持续发展[J].新疆农机化,2006,(2):17-18
    [51]帕合尔鼎阿布来提,吐尔逊娜依热依木江.几种秸秆切碎还田机的特点及使用要求[J].新疆农机化,2005,(3):56-57
    [52]吴子岳,高焕文,张晋国.玉米秸秆切断速度和切断功耗的试验研究[J].农业机械学报,2001,(2):38-41
    [53]徐彩霞,李凤.农作物秸秆,根茬粉碎还田技术[J].农机使用与维修,2006,(3):32
    [54]马士杰.根茬粉碎还田技术[J].农机世界,2005,(8):32-33
    [55]贺文胜,仇志强,孟秀兰.机械化秸秆整体翻埋还田的试验研究[J].农业机械学报,2003,(5):179-180
    [56]薛建华.秸秆机械化整秆还田翻埋技术的试验分析[J].科技情报开发与经济,2004,(5):150-151
    [57]张培增.整秆直接还田技术的试验与研究应用[J].农村机械化,1995(4):10
    [58]李旭川.高秆还田优点多[J].山西农机,1999,(1):29
    [59]慕永红,刘颖,刘胜国.水稻机械化秸秆直接还田及机具发展趋势[J].垦殖与稻作,2000,(S):46-47
    [60]马跃进,郝建军,申玉增,等.根茬粉碎还田机灭茬甩刀喷NiWC工艺优化[J].农业工程学报,2005,21(2):92-94
    [61]http://www.sd-hongsheng.com
    [62]王世学,高焕文,李洪文.1JGHY-140型玉米秸秆带状切碎灭茬机的试验研究[J],农机化研究,2003,(4):175-177
    [63]张银霞,曾宪阳,杨星钊,等.秸秆粉碎灭茬还田机的试验研究[J],河南农业大学学报,2002,36(2):179-182
    [64]赵铁军.水稻整株秸秆还田机工作参数优化设计研究[D].东北农业大学,2007
    [65]王学农,冯斌,陈发,等.4JSM-1800棉秸秆还田及残膜回收联合作业机研制[J].新疆农机化,2004,3:53-54
    [66]马波.1GJQN-165型秸秆粉碎旋耕机[J].农家致富,2007(3):23
    [67]张勇.1GM-175A型稻麦秸秆还田旋耕机特点及操作事项[J].江苏农机化,2005,4:42
    [68]李艳.多功能米秸秆还田机的研制[D].山东农业大学,2007
    [69]刘小伟.双辊秸秆还田旋耕机的研制开发[D].中国农业大学,2000
    [70]张在平.旋耕埋秆技术研究与试验[D].华中农业大学,2005
    [71]邓宏海.现代农业机械化的发展趋势[J],农业工程学报,1986,1:82-87
    [72]孔令德.斜置旋耕过程研究[D].江苏理工大学,1998,4
    [73]刘江.论中国种子工程[M].北京:中国农业科技出版社,1996
    [74]蒋植保.秸秆还田利用方法:中国,ZL200410041004.0[P].2007-1-3
    [75]邱宣怀,等.机械设计[M].北京:高等教育出版社,1997
    [76]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2001
    [77]孙靖民.机械优化设计[M].北京:机械工业出版社,1999
    [78]陈秀宁.机械优化设计[M].杭州:浙江大学出版社,1991
    [79]Basem Alzahabi, Non-uniqueness in cylindrical shells optimization [J]. Advances in Engineering Software,2005,36 (9):584-590
    [80]Simites G.J, Answani M. Minimum-weight design of stiffened cylinders under hydrostatic pressure [J]. Ship Res 1977,21 (4):217-224
    [81]Alzahabi B. Optimum design of submarine hulls. Proceedings of the international conference on high performance structures and composites [C]. Seville, Spain,2002,3,11-13:463-470
    [82]宋兆基,徐流美MATLAB在科学计算中的应用[M].北京:清华大学出版社,2005
    [83]赵又红,等.二级圆柱齿轮减速器的多目标优化设计[J].湘潭大学自然科学学报,2003,25(2):81-84
    [84]谭壮士.装载机双油缸转向机构参数优化[J].建筑机械化,2004,11:59-61
    [85]来彬,刘晋峰,等.基于Matlab的键联接优化设计[J].机械工程与自动化,2006,5(5):49-50
    [86]郑建荣ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2002.
    [87]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002
    [88]刘贤喜.机械系统虚拟样机仿真软件的实用化研究[D].北京:中国农业大学,2001
    [89]Hong J Z, Pan Z K. Dynamics of flexible multibody system with tree topologies [J].Acta Mechanica Sinica,1992,8(3):271-278
    [90]Liu Y Z, Hong J Z, H X Yang. Dynamics of multi-rigid-body systems [M]. Beijing:Higher Educational Press,1989
    [91]Yuan S J, Lu Z Q. Dynamics of multibody systems [M]. Beijing:Beijing Technology University Publishing House,1992
    [92]Hong Jiazhen Computational. Dynamics of multibody system [M]. Beijing:Higher Education Press,1999
    [93]Hooker W W, Margulies G The Dynamical Attitude Equations for an n-Body Satellite [J].Astron.Sci.1965, (12):123-128
    [94]Schwerlassek R, Roberson R E. A State-space Dynamical Representation for Multibody Mechanical.Systems [J], Acta Mechanica,1983,50:141-161, Acta Mechanica,1984,51, 15-29
    [95]Hargreaves B. GMR DYANA:The Computing System and Its Applications [J]. General Motors Engineering, Journal, vol.8, No.l,1961
    [96]Lews C R, GMR DYANA:Extending the Computing System to Solve More Complex Problems. General Motors Engineering, Journal, vol.8, No.1,1961
    [97]李金铭,刘金海等.高等数学(线性代数与矢量分析)[M].成都:西南交通人学出版 社,2000
    [98]王琪,陆启韶多体系统Lagrange方程数值算法的研究进展[J].力学进展,2001,31(1):9-17
    [99]Rathod H T, Sridevi K. General complete Lagrange interpolations with applications to three-dimensional finite element analysis [J]. Computer Methods in Applied Mechanics and Engineering,2001,190:26-27
    [100]J A.邦迪,RSR默蒂著,吴望名等译.图论及其应用[M].北京:科学出版社,1984
    [101]徐俊明.图论及其应用[M].合肥:中国科学技术大学出版社,2000
    [102]Huston R L, Liu Y f. Dynamics of multibody systems [M]. Tianjin:Tianjin University Publishing House,1991
    [103](美)T,凯恩,D.A列文松.动力学理论与应用[M].北京:清华人学出版社,1988
    [104]Schiehlen W, Seifried R. Multiscale methods for multibody systems. Proceedings of the Eccomas Multibody Dynamics, Lisbon, Portugal,2003, July 1-4:MB2003-094
    [105]Schiehlen W. Power aspects of inverse dynamics control systems.Institut B for Mechanic, Institutsbericht IB-35, Stuttgart,2000
    [106]Schiehlen W. Multibody system dynamics:roots and perspectives [C]. MultibodySystems Dynamics.1997,1,2,149-188
    [107]Eiber A, Kauf A, Schiehlen W. Biomechanics of the Middle Ear, in:Proc.Sth Int.Conf. Biomechanics of Man 1994 (Institute of Theoretical and Applied Mechanics, Benesov CZ, 1994
    [108]Bayo E, Garcia de Jalon J, Avello A, Cuadrado J. An efficient computational method for real time multibody dynamic simulation in fully Cartesian coordinates [J].Computer Methods in Applied Mechanics and Engineering,1991,92:377-395
    [109]宋正河,毛恩荣,周一鸣.机械系统人机界面优化设计模型的的研究[J].机械设计与制造,1999,2(2):35-37
    [110]刘延柱,洪燕振,杨海兴.多刚体系统动力学[M].北京:高等教育出版社,1989
    [111]梁崇高.平面连杆机构运动分析通用程序SKAL[C]全国第一届机构学学术讨论会论文,1983
    [112]张纪元.沈守范.计算机构学[M].北京:国防工业出版社,1996
    [113]郑凯,胡仁喜,陈鹿民ADAMS2005机械设计高级应用实例[M],机械工业出版社,2006
    [114]王行仁.面向二十一世纪,发展系统仿真技术[J].系统仿真学报,1999,11(2):18-23
    [115]李勇,曾志新等.虚拟样机技术在小型农用装载机设计中的应用[J].农业工程学报,2004,20(5):134-137
    [116]周克栋.复杂机械的虚拟样机技术[D].南京理工大学.2002
    [117]谭立东.牧草高密度压捆过程的计算机分析与仿真[D].内蒙农业大学,2003
    [118]王志华,陈翠英.基于ADAMS的联合收割机振动筛虚拟设计[J].农业机械学报,2003,34(4):53-56
    [119]赵建平,尹文庆,黄爱勇.联合收割机清粮筛的运动仿真与优化[J].计算机仿真,2007,24(11):185-188
    [1]吴志敏.农用运输车发动机与传动系的匹配[J].拖拉机与农用运输车,1995,(3):25-31
    [2]周纬.客车发动机与整车匹配技术分析[J].机电工程技术,2002,(7):41-43
    [3]李高友,雷雨成.发动机和传动系的优化匹配研究[J].设计与计算,2002,(6):23-26
    [4]蒋植保.秸秆还田利用方法:中国,ZL 200410041004.0[P].2007-1-3
    [5]孙靖民.机械优化设计[M].北京:机械工业出版社,1999
    [6]陈秀宁.机械优化设计[M].杭州:浙江大学出版社,1991
    [7]苏厚合,黄俊贤,黄圣杰编著.Pro/Engineer 2000i2快速入门指导[M].北京:中国铁道出版社,2001
    [8]胡仁喜,等Pro/ENGINEER Wildfire3.0中文版机械设计高级应用实例[M].机械工业出版社,2007
    [9]李军,邢俊文,覃文洁,等编ADAMS实例教程[M].北京:北京理土大学出版社,2002
    [10]郑建荣ADAMS虚拟样机技术入门与提高[M].北京:机械土业出版社,2002
    [1]Siqueira R, Boller W, Gamero. CA Cutting efficiency and energy consumption of a straw chopper in different cover crops. [J]. Engenharia-Agricola,1997,17(2):79-86
    [2]Tiwari P S, Gite L P. Evaluation of work rest schedules during operation of a rotary power tiller [J].International Journal of Industrial Ergonomics,2006,36 (3):203-210
    [3]Destain M F, Houmy K. Effects of design and kinematic parameters of rotary cultivators on soil structure [J].Soil and Tillage Research,1990,17 (3-4):291-301
    [4]Tiwari P S, Mehta C R, Varshney A C. Metabolic cost and subjective assessment during operation of a rotary tiller with and without an operator's seat [J].International Journal of Industrial Ergonomics,2005,35 (4):361-369
    [5]Mehta C R., Tiwari P S, Varshney A C. Ride Vihrations on a 7.5 kW Rotary Power Tiller [J].Journal of Agricultural Engineering Research,1997,66 (3):169-176
    [6]Maciej Miszczak. A torque evaluation for a rotary subsoiler [J].Soil and Tillage Research, 2005,84 (12):175-183
    [7]Shibusawa S. Fractals in clods formed with rotary tillage [J].Journal of Terramechanics,1992, 29(1):107-115
    [8]Juzwik J, Stenlund D L, Allmaras R R, et al. Incorporation of tracers and dazomet by rotary tillers and a spading machine [J].Soil andTillage Research,1997,41 (3-4):237-248
    [9]Shibusawa S. Reverse rotational rotary tiller for reduced power requirement in deep tillage [J].Journal of Terramechanics,1993,30 (3):205-217
    [10]Saimbhi V S, Wadhwa D S, Grewal P S. Development of a Rotary Tiller Blade using Three dimensional Computer Graphics [J].Biosystems Engineering,2004,89 (1):47-58
    [11]Tiwari P S, Gite L P. Physiological Responses during Operation of a Rotary Power Tiller [J].Biosystems Engineering,2002,82 (2):161-168
    [12]Salokhe V M, Ramalingam N. Effects of direction of rotation of a rotary tiller on properties of Bangkok clay soil [J].Soil and Tillage Research,2001,63 (1-2):65-74
    [13]Takashi Kataoka, Sakae Shibusawa. Soil blade dynamics in reverse-rotational rotary tillage[J].Journal of Terramechanics,2002,39 (2):95-113
    [14]Salokhe V M, Ramalingam N. Effect of rotation direction of a rotary tiller on draft and power requirements in a Bangkok clay soil[J].Journal of Terramechanics,2002,39 (4):195-205
    [15]Lee K S, Park S H., Park W Y, et al. Strip tillage characteristics of rotary tiller blades for use in a dryland direct rice seeder [J].Soil and Tillage Research,2003,71(1):25-32
    [16]北京农业工程大学.农业机械学(下)[M].北京:中国农业出版社,1989
    [17]中国农业机械化科学研究院.农业机械设计手册(上)[M].北京,机械工业出版社,1990
    [18]A B卢里耶,AA格罗姆勃切夫斯基.农业机械的设计和计算[M].袁佳平等译.北京:中国农业机械出版社,1983
    [19]Cz卡那沃斯基,收获机械[M].曹崇文,吴春江,柯保康,译.北京:中国农业机械出版社,1982
    [20]张雅,张际先,李耀明,等.割前脱联合收割机割台功耗分析[J].江苏理工大学学报(自然科学版),1999,20(4):13-17
    [21]陈德峻,魏灿苗,徐建恒,等.履带自走式全喂入联合收割机结构设计的改进[J].农业 机械学报,2002,33(1):115-118
    [22]熊永森,龚永坚.全喂入联合收割机双动刀切割器设计[J].农机化研究,2007,(10):92-94
    [23]王岳.轴流脱粒原理和立置轴流脱粒分离清选合为一体应用的研究[D].北京:中国农业机械化科学研究院,1986
    [24]陈霓,张建荣.联合收割机圆锥形离心式清选风扇设计研究[J].金华职业技术学院学报,2007,7(2):24-26
    [25]李金琦.旋转开沟机[M].北京:中国农业出版社,1984
    [26]华玉方,张同孝.圆盘窄幅开沟机直刀片横向抛土距离的计算[J].粮油加工与食品机械,1984,(3):6-13
    [27]吴志敏.农用运输车发动机与传动系的匹配[J].拖拉机与农用运输车,1995(3):25-31
    [28]周汉林,黄雄辉,邹诗洋,等.履带式联合收割机行走装置的研究[J].现代农业装备,2006,(5):47-49
    [29]余志生.汽车理论[M].北京:机械工业出版社,2002
    [30]周纬.客车发动机与整车匹配技术分析[J].机电工程技术,2002,(7):41-43
    [31]杨祖元,秦大同,孙冬野.电动汽车动力传动系统参数设计及动力性仿真[J].重庆大学学报(自然科学版),2002,(6):19-22
    [32]李高友,雷雨成.发动机和传动系的优化匹配研究[J].设计与计算,2002,(6):23-26
    [33]庄继德.地面车辆系统分析与设计[M].北京:机械工业出版社,1989
    [1]丁为民,王耀华,彭嵩植.正、反转旋耕刀性能分析及切土扭距比较试验[J].南京农业大学学报,2001,24(1):113-117
    [2]南京农业大学.农业机械学(上册)[M].北京:中国农业出版社,1996
    [3]薛定宇,陈阳泉著.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002
    [4]宋兆基,徐流美MATLAB在科学计算中的应用[M].北京:清华大学出版社,2005
    [5]Salokhe V M, Ramalingam N. Effects of direction of rotation of a rotary tiller on properties of Bangkok clay soil [J]. Soil and Tillage Research,2001,63 (12):65-74.
    [6]宋建农,李自华.反转旋耕理论分析[J].北京农业工程大学学报,1990,10(3):15-22
    [7]Shibusawa S. Reverse-rotational rotary tiller for reduced power requirement in deep tillage [J].Journal of Terramechanics,1993,30 (3):205-217
    [8]桑正中,王长兵.潜土逆转耕耘研究展望[J].农业工程学报,1994,10(3):88-92
    [9]孙一源,高行方,等.农业土壤力学[M].北京:农业出版社,1985
    [10]镇江农业机械学院.农业机械学(上册)[M].北京:中国农业出版社,1981
    [11]西涅阿科夫Г H,潘诺夫иM著.土壤耕作机械的理论和计算[M].李清桂,高尔光等译.北京:中国农业机械出版社,1981
    [12]罗海峰.稻板田免耕油菜播种机开沟部件的试验研究[D].湖南农业大学,2006
    [13]吴建东.1KS-100型双圆盘开沟机的设计研究和试验[J].渔业机械仪器,1993,20(6):9-12
    [14]庞伟.一种新型前置式开沟机刀盘的研究设计[J].农机化研究,2002,11(4):107-10
    [15]李金琦.旋转开沟机[M].北京:中国农业出版社.1984
    [16]江苏淮阴地区开沟机课题组.圆盘式开沟机工作部件的试验研究[J].粮油加工与食品机械,1980,10:16-22
    [17]华玉芳,张同孝,吴世宁.圆盘窄幅开沟机直刀片横向抛土距离的计算[J].粮油加工与食品机械,1984,3:6-13
    [18]田恒增.旋转开沟机部件试验研究[J].粮油加工与食品机械,1987,(S1):50-55
    [19]中华人民共和国国家标准GB5669-85.旋耕弯刀和刀座.1985.
    [20]李守仁,林金天.驱动型土壤耕作机械的理论与计算[M].西安:西安电子科技大学出版社,2004
    [21]中国农业机械化科学研究院.农业机械设计手册(上)[M].北京:机械工业出版社,1990
    [1]李金琦.旋转开沟机[M].北京:中国农业出版社.1984
    [2]孙靖民.机械优化设计[M].北京:机械工业出版社,1999
    [3]陈秀宁.机械优化设计[M].杭州:浙江大学出版社,1991
    [4]赵又红,等.二级圆柱齿轮减速器的多目标优化设计[J].湘潭大学自然科学学报,2003,25(2):81-84
    [5]谭壮士.装载机双油缸转向机构参数优化[J].建筑机械化,2004,11:59-61
    [6]Alzahabi B. Optimum design of submarine hulls[C]. Proceedings of the international conference on high performance structures and composites, Seville, Spain,2002,3:463-470
    [7]Basem Alzahabi, Non-uniqueness in cylindrical shells optimization [J]. Advances in Engineering Software 2005,36 (9):584-590
    [8]Simites G J, Answani M. Minimum-weight design of stiffened cylinders under hydrostatic pressure [J]. Ship Res 1977,21 (4):217-224
    [9]宋兆基,徐流美MATLAB在科学计算中的应用[M].北京:清华大学出版社,2005
    [10]来彬,刘晋峰,等.基于Matlab的键联接优化设计[J].机械工程与自动化,2006,5(5):49-50
    [11]王文娟.基于MATLAB优化工具箱的平面连杆机构设计[J].轻工机械,2006,24(4):76-78
    [12]郑志峰,王义行,柴邦衡.链传动[M].机械工业出版社,1984
    [13]邱宣怀,郭可谦,吴宗泽,等.机械设计[M].北京:高等教育出版社,1997
    [14]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2001
    [15]郑文伟,吴克坚.机械原理[M].北京:高等教育出版社,1997
    [16]毛谦德,李振清.袖珍机械设计师手册[M].北京:机械工业出版社,2006
    [17]刘鸿文.材料力学[M].北京:高等教育出版社,1991
    [1]李安虎,李红,刘炜巍.泵CAD发展及展望[J].水泵技术,1989,3:1-7
    [2]陈丽华.CAD三维造型技术的发展与应用[J].沈阳电力高等专科学校学报,2000.1(2):40-41
    [3]Willem F B, Frederik W J. Feature Modeling and Conversion-key Concepts to Concurrent Engineer [J]. Computers In Industry,1993 (21):61-86
    [4]Shah J I. Assessment of Features Technology[J].Computer-Aided Design,1991,23 (5): 331-334
    [5]王军辉.产品的虚拟装配过程在Pro/Engineer下的实现[D].南京理工大学,2001
    [6]苏厚合,黄俊贤,黄圣杰编著Pro/Engineer 2000i2快速入门指导[M].北京:中国铁道出版社,2001
    [7]林清安编著Pro/ENGINEER Wildfire零件设计——基础篇[上][M].北京:中国铁道出版,2003
    [8]林清安编著Pro/ENGINEER Wildfire零件设计——基础篇[下]M].北京:中国铁道出版,2003
    [9]胡仁喜,等Pro/ENGINEER Wildfire3.0中文版机械设计高级应用实例[M].机械工业出版社,2007
    [10]罗昕,胡斌,孙华丽.基于Pro/E的三维参数化标准件库的研究与开发[J].计算机应用技术,2008,35(2):22-27
    [11]李世国Pro/TOOLKIT程序设计[M].北京:机械工业出版社,2004
    [12]张宏文,吴杰,郑霞.基于Pro/Engineer的齿轮参数化设计的建模技术[J].石河子大学学报(自然科学版),2006,24(5):633-635
    [13]刘晓娟.基于Pro/TOOLKIT参数化零件的二次开发研究与实现[J].机械研究与应用,2007,20(6):119-120
    [14]Hoffmann C M, Joan Arinyo R. On user-defined features [J].Computer-Aided Design,1998, 30 (5):321-332
    [15]沈萌红,关金生.基于Pro/E的三维参数化零件库的开发[J].中国制造业信息化,2003,32(7):115-118
    [16]李燕.基于Pro/E的齿轮三维参数化特征造型设计[J].制造技术与机床,2003(7):30-32
    [17]钟日铭Pro/ENGINEER Wildfire3.0中文版机械设计实例教程[M].北京:清华大学出版社,2007
    [18]张洪冰,于春喜.齿轮三维自动化设计[J].机械传动,2003,27(3):35-39
    [19]彭其圣,余五新.基于Pro/E的标准渐开线直齿圆柱齿轮程序化设计[J].机械工程师,2004(4):38-40
    [20]何茂先,殷晨波,肖乐.基于Pro/E的渐开线齿轮的参数化建模研究[J].机械与电子,2006(3):72-74
    [21]陈营.基于Pro/Engineer的机械零件参数化特征库的研究[D].山东大学,2007
    [22]何有钧.基于图形分解思想的复杂零件的参数化设计[J].机械科学与技术,2000(2):201-202
    [23]韩彬,房海蓉,王硕.基于Pro/E族表技术的工程图二次开发[J].机械设计与制造,2007(6):90-92
    [24]李军,邢俊文,覃文洁,等编ADAMS实例教程[M].北京:北京理土大学出版社,2002
    [25]郑建荣ADAMS虚拟样机技术入门与提高[M].北京:机械土业出版社,2002
    [26]边宇虹,编.分析力学与多刚体动力学基础[M].北京:机械土业出版社,1998.
    [1]南京农业大学.田间试验和统计方法[M].北京:农业出版社,1988
    [2]何月娥等编.农机试验设计[M].北京:机械工业出版社,1986
    [3]GB/T5262-2008农业机械试验条件测定方法的一般规定
    [4]GB/T5667-2008农业机械生产试验方法
    [5]GB/T8097-2008收获机械联合收割机试验方法
    [6]NYT 740-2003田间开沟机械作业质量
    [7]黄明斌,土壤水分运动特征参数空间异质性理论分析、取样与影响因素[J].中国水土保持科学,2000,16(3):4-8
    [8]黄瑞农.环境土壤学[M].北京:高等教育出版社,2001
    [9]王全九.非饱和土壤水分运动参数的分析[J].新疆大学学报(自然科学版),1998,6(5):6-8
    [10]黄昌勇.土壤学[M].北京:中国农业出版社,1982
    [11]席承藩.土壤分类学[M].北京:中国农业出版社,1990
    [12]李春鸣.土壤样品的采集和处理[J].西北民族大学学报(自然科学版)1999,24(3):24-27
    [13]奚旦立.环境监测[M].北京:高等教育出版社,1987
    [14]刘凤枝.农业环境监测实用手册[M].北京:中国标准出版社,2001
    [15]JB/T9798.1-1999.手扶拖拉机配套旋耕机[S].中国标准出版社
    [16]JB/T5668.3-1995.旋耕机试验方法[S].中国标准出版社
    [17]NY/T498-2002.旋耕机作业质量[S].中国标准出版
    [18]罗海峰,官春云,汤楚宙,等.稻茬田油菜免耕播种机开沟部件的研究[J].农业工程学 报,2007,23(11):153-157
    [19]华玉方,张同孝.圆盘窄幅开沟机直刀片横向抛土距离的计算[J].粮油加工与食品机械,1984,(3):6-13
    [20]毛谦德,李振清.袖珍机械设计师手册[M].北京:机械工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700