用户名: 密码: 验证码:
主动转向控制机理及其干预时EPS系统转向路感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转向系统作为人-车交互界面,是汽车的关键子系统之一,直接影响汽车的操纵稳定性、舒适性和行驶主动安全性。在现有电动助力转向(Electric Power Steering,EPS)系统的基础上,研究主动转向的实现机构、控制机理和路感,既可以充分发挥电动助力转向的助力性能,又可以通过主动转向控制,改善EPS系统在稳定性控制方面的不足,提高汽车行驶的主动安全性,获得良好的转向特性,具有重要的理论意义和工程应用价值。具体研究内容如下:
     (1)综述了不同动力转向系统实现主动转向功能的研究现状,然后对主动转向控制关键技术、汽车横摆角速度和质心侧偏角估计,以及EPS系统转向路感的研究现状进行了阐述,提出了现有国内外研究存在的问题及解决思路。
     (2)提出了一种融合主动转向功能的EPS系统的机电结构,建立了转向系统与整车机电耦合的数学模型。通过双排行星轮系动力学分析,以及转向系统的转向路感、转向灵敏度和稳定性分析,从理论上解决了是否需要改变扭矩传感器的安装位置或增加额外扭矩传感器的问题。并从路面信息反馈的角度,分析了主动转向执行机构的机电参数以及主动转向干预对转向路感的影响,为研究主动转向干预时EPS系统的转向路感问题打下了基础。
     (3)建立了无主动转向干预时EPS系统的动力学模型,推导出了转向阻力矩到扭矩传感器输出的传递函数,定性分析了助力比对转向路感的影响。根据EPS系统的频率分布,选取了两个加权函数,并针对两种加权函数作用的情况,基于H∞控制算法和线性矩阵不等式(LinearMatrix Inequality,LMI)方法设计了不同的反馈控制器,分析了不同加权策略对转向路感的影响。仿真结果表明,两个加权函数共同作用可以保证驾驶员获得满意的转向路感。
     (4)采用固定转向增益策略,并鉴于特征车速对汽车行驶稳定性的影响,以及转向盘转角对操纵性的要求,提出了变传动比控制规律的两种控制方案。为验证所提出的变传动比控制规律的控制方案,建立了人-车-路闭环系统,并基于线性矩阵不等式方法,设计了无刷直流电机(Brushless DC Motor,BLDCM)的角位移跟踪鲁棒PID控制器。进行了单移线道路仿真,并从转向盘转角和路径跟踪两方面性能,对增强稳定性变传动比控制规律方案一和方案二进行了对比分析,结果表明变传动比控制规律方案二的整体性能优于方案一。
     (5)提出了主动转向变传动比控制和横摆角速度控制的协调策略,并在变传动比控制的基础上进行了横摆角速度控制的研究。基于线性二次型调节器(Linear Quadratic Regulator,LQR)最优控制理论,进行了横摆角速度控制器的设计。极限工况下的仿真验证了所提出的主动转向变传动比控制和横摆角速度控制的协调策略,以及横摆角速度控制器的有效性。
     (6)针对主动转向改变了转向系统角位移传递特性的同时也改变了转向盘转角与汽车行驶状态之间的内在对应关系这一问题,提出了将横摆角速度和质心侧偏角看作是转向小齿轮转角和侧向加速度非线性映射的研究方案。基于自适应模糊神经推理系统(Adaptive Neuro-FuzzyInference System,ANFIS),研究了横摆角速度和质心侧偏角的估计算法。为验证基于ANFIS算法进行横摆角速度和质心侧偏角估计的精度和泛化能力,进行了仿真数据验证和实车试验数据验证,并与基于径向基函数(Radial Basis Function,RBF)神经网络的横摆角速度和质心侧偏角的估计结果进行了对比分析。研究结果表明,所提出的研究方案是有效的,且基于ANFIS算法进行横摆角速度和质心侧偏角的估计具有更好的泛化能力。
     (7)针对主动转向干预时转向盘力矩发生突变的问题,提出了两种不再受传统EPS系统助力车速范围外常规助力增益取值为零的限制,且能够在主动转向施加附加转角干预时,实现全车速范围内EPS系统助力电机的前馈助力修正控制方案。同时,借鉴阶跃响应瞬态特性的评价方法,提出了助力修正方案的两个评价指标,并对两种前馈助力修正方案进行了量化对比分析。结果表明,基于扭矩传感器输出修正方案的修正控制效果优于基于整车模型修正方案,具有更好的车速适应性。
     (8)基于虚拟试验技术,利用UG软件的CAD模块,构建了融合主动转向功能的EPS系统的三维模型;利用UG软件的CAE模块进行了转向系统的运动学和动力学分析,验证了所提出的EPS系统的力矩和角位移传递特性,以及助力修正控制方案的有效性;利用CarSim软件进行了极限工况虚拟道路试验,验证了变传动比控制和横摆角速度控制的协调策略,以及所设计的横摆角速度控制器的有效性。
As a driver-vehicle interface, steering system is a key subsystem of vehicle, which directlyinfluences vehicle handing stability, comfort and driving active stability. On the base of existingElectric Power Steering (EPS) system, researches on the realization, control mechanism, and steeringfeeling of active steering not only can give full play to assist performance of EPS, but also canimprove the deficiency of stability control of EPS system by active steering control. Then, goodsteering characteristics can be obtained and driving active stability can be improved. Thus, thesestudies have important theoretical significance and engineering value. The detail research works arelisted as follows:
     (1) At the beginning of the dissertation, a review of different power steering systems integratedwith active steering was presented. Recent developments of key technologies for active steeringcontrol, estimation algorithms of vehicle yaw rate and side slip angle, as well as steering feeling ofEPS system were described. Problems of existing research at home and abroad were found out, andsolutions were put forward to solve these problems.
     (2) An electro-mechanical structure of EPS system integrated with active steering was proposed,and mathematical model of electro-mechanical coupling for steering system and vehicle was built.According to the dynamic analysis of double planetary gear train, as well as performance analysis ofthe steering system such as steering feeling, steering sensitivity, and stability, the problem whetherneed to change installation position of torque sensor or add an additional torque sensor was solved intheory. From the view of the road information feedback, steering feeling affected by theelectro-mechanical parameters of active steering actuator, and the interference conducted by activesteering were analyzed. A basis for the study of steering feeling for the EPS system with theinterference of active steering was provided.
     (3) Dynamic model for EPS system with no interference of active steering was built, and transferfunction from steering resistant torque to the output of torque sensor was derived. Furthermore, theeffect of assist ratio on steering feeling was qualitatively analyzed. According to the frequencycharacteristic of EPS system, two weighting functions were chosen. Based on H∞control arithmeticand Linear Matrix Inequality (LMI) approach, different feedback controllers were designed with theeffect of two types of combination for weighting functions, and the effects of different weightingstrategies on steering feeling were analyzed. Simuliation results indicate that perfect steering feelling can be obtained by interaction of the two weighting functions.
     (4) In view of the effects of character speed on vehicle stability, and demand of steering wheelangle for maneuverability, two control programs of varied steering ratio were proposed to keepsteering gain constant. To investigate the different control programs of varied steering ratio,driver-vehicle-road closed-loop system was built. Based on Linear Matrix Inequality approach, arobust PID controller of angular position tracking was designed for Brushless DC Motor (BLDCM).Then, simulation testes of single lane change maneuver were carried out, comparative analyses of thetwo control programs of varied steering ratio were conducted in two aspects, steering wheel angle andpath tracking. Simulation results show that the second control program has better integralperformance than the first one.
     (5) Coordination strategy for varied steering ratio control and yaw rate control was presented,and yaw rate control was investigated with the reactive of varied steering ratio control. Based onLinear Quadratic Regulator (LQR) optimal control theory, yaw rate controller was designed.Simulation testes in limiting conditions were conducted to verify the effectiveness of the proposedcoordination strategy and the yaw rate controller.
     (6) Transfer characteristics of angular displacement transmission is changed with the interferenceof active steering, which gives rise to the problem that internal corresponding relations betweenvehicle state and steering wheel angle are also affected. Then, a research scheme that vehicle yaw rateand side slip angle are considered as nonlinear mapping of time series of pinion angle and lateralacceleration was put forward. An estimation algorithm based on Adaptive Neuro-Fuzzy InferenceSystem (ANFIS) was proposed to estimate vehicle yaw rate and side slip angle. To verify theestimation accuracy and generalization of the proposed estimation algorithm based on ANFIS,simulation and actual vehicle test data were used, as well as comparative analyses were conductedbetween the performance of the estimation algorithms based on ANFIS and Radial Basis Function(RBF) neural network respectively. Results indicate that the proposed research scheme is effective,and the generalization of the estimation algorithm based on ANFIS is better than that based on RBFneural network.
     (7) To solve mutations of steering wheel torque with the interference of active steering, twofeed-forward assistant torque correction strategies for assist motor were presented, which can be usedto carry out feed-forward assistant torque correction control for assist motor of EPS system in thewhole speed range, and not limited to the assist ratio takes value in zero when vehicle speed exceedsthe assist speed region. Meanwhile, in view of the evaluation methods of transient characteristics for step response, two evaluation indexes were put forward to make quantitative comparison of the twofeed-forward assistant torque correction strategies. Results indicate that the correction controlprogram based on the output of torque sensor can achieve better control performance than that basedon vehicle model, and has better adaptability of vehicle speed.
     (8) Based on virtual experiment technology, three-dimensional model of the EPS systemintegrated with active steering was built by the CAD module of UG software. To verify the transfercharacteristics of torque and angular displacement for the proposed EPS system, as well as theeffectiveness of the assistant torque correction strategies, analyses on kinematics and dynamics of thesteering system were conducted by using CAE module of UG software. To validate the effectivenessof the proposed coordination strategy and the yaw rate controller, virtual testes in limiting conditionswere conducted based on CarSim software.
引文
[1] Nakayama T and Suda E.The Present and Future of Electric Power Steering.InternationalJournal of Vehicle Design,1994,15(3/4/5):243-254.
    [2]王常友,董爱杰.汽车转向系统的现状及发展趋势.北京汽车,2007,(3):7-10.
    [3]余志生.汽车理论(第四版).北京:机械工业出版社,2008:130-161.
    [4]杜峰.基于线控技术的四轮主动转向汽车控制策略仿真研究,[博士学位论文].西安:长安大学,2009.
    [5] Ackermann J and Bünte T.Automatic Car Steering Control Bridges over the Driver ReactionTime.Kybernetika,1997,33(1):61-74.
    [6]赵伟.汽车动力学稳定性横摆力矩和主动转向联合控制策略的仿真研究,[博士学位论文].西安:长安大学,2008.
    [7]杨祀梁,钟东阶.风对高速汽车行驶稳定性影响的仿真分析.汽车科技,2005,(4):18-20.
    [8]韩建保.车辆主动转向系统的功能与电控原理.世界汽车,2003,(7):61.
    [9] Koehn P and Eckrich M.Active Steering-the BMW Approach Towards Modern SteeringTechnology.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1105.
    [10] Oraby W A H.Improvement of Vehicle Lateral Stability During Overtaking Process by ActiveFront Steering System.SAE Technical Paper Series.USA:SAE Publication Group,PaperNumber:2007-01-0810.
    [11] Klier W,Reimann G and Reinelt W.Concept and Functionality of the Active Front SteeringSystem.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-21-0073.
    [12]张民.Audi A4’08车的动态转向系统(自学手册)[M].一汽-大众汽车有限公司,2008:4-10.
    [13]黄炳华,陈祯福.汽车主动转向系统的特性研究.武汉理工大学学报(信息与管理工程版),2008,30(3):420-423.
    [14] Oh S W,Yun S C,Chae H C,et al.The Development of an Advanced Control Method for theSteer-by-Wire System to Improve the Vehicle Maneuverability and Stability.SAE TechnicalPaper Series.USA:SAE Publication Group,Paper Number:2003-01-0578.
    [15] Shimizu Y,Kawai Y,Yuzurha J.Improvement in Driver-Vehicle System Performance byVarying Steering Gain with Vehicle Speed and Steering Angle:VGS (Variable Gear-RatioSteering System).SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:1999-01-0395.
    [16] Noh T,Kim J,Choi J,et al.A Control Strategy to Compensate the Reaction Torque of ActiveFront Steering System.SAE Technical Paper Series.USA:SAE Publication Group,PaperNumber:2007-01-3659.
    [17] Chen Deling,Yin Chengling,Zhang Jianwu.Controller Design of a New Active Front SteeringSystem.Wseas Transactions on Systems,2008,11(7):1258-1268.
    [18] Kasselmann T,Keranen T.Adaptive Steering.Bendix Technical Journal,1969,2:26-35.
    [19]蒋励,余卓平,高晓杰.宝马主动转向技术概述.汽车技术,2006,(4):1-4.
    [20] Reinelt W,Klier W,Reimann G,et al.Active Front Steering (Part2),Safety andFunctionality.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1101.
    [21]于蕾艳,林逸,施国标.线控转向系统的角传动比研究.农业机械学报,2007,38(8):190-192.
    [22]于蕾艳,林逸,施国标.遗传算法优化线控转向系统角传动比的研究.计算机仿真,2008,25(8):268-270.
    [23]于蕾艳,林逸,施国标.线控转向系统的主动转向控制策略.农业机械学报,2008,39(1):4-6.
    [24]施国标,赵万忠,王成玲,等.线控转向变传动比控制对车辆操纵稳定性的影响.北京理工大学学报,2008,28(3):207-210.
    [25]郑宏宇,宗长富,田承伟,等.基于理想转向传动比的汽车线控转向控制算法.吉林大学学报(工学版),2007,37(6):1229-1235.
    [26]商高高,洪泽,张红党,等.基于稳态增益的主动转向系统可变传动比模型.江苏大学学报(自然科学版),2010,31(3):278-282.
    [27] Ackermann J. Robust Decoupling of Car Steering Dynamics with Arbitrary MassDistribution.Proceedings of the American Control Conference (ACC),USA:IEEE,1994,(2):1964-1968.
    [28] Ackermann J.Robust Car Steering by Yaw Rate Control.Proceedings of the29th IEEEConferernce on Decision and Control,USA:IEEE,1990,4:2033-2034.
    [29] Ackermann J.and Sienel W.Robust Yaw Damping of Cars with Front and Rear WheelSteering.IEEE Transactions on Control Systems Technology,1993,1(1):15-20.
    [30] Ackermann J.Active Steering for Better Safety,Handing and Comfort.Proceedings of theIEEE-INRIA Conference on Advances in Vehicle Control and Safety,USA:IEEE,1998:1-10.
    [31] Minaki R,Hori Y.Two Degree of Freedom Control of Active Front Steering System UsingPlanetary Gear.Proceedings of the10th International Symposium on Advanced VehicleControl (AVEC2010),UK:FISITA,2010,FISITA2010-SC-P-31.
    [32] Scalzi S,Benine-Neto A,Netto M,et al.Active Steering Control Based on Piecewise AffineRegions.Proceeding of the American Control Conference (ACC),USA:IEEE,2010:5362-5367.
    [33] Benine-Neto A,Scalzi S,Netto M,et al.Vehicle Yaw Rate Control Based on Piecewise AffineRegions.Proceedings of the IEEE Intelligent Vehicles Symposium,USA:IEEE,2010:20-25.
    [34] Li Qiang,Shi Guobiao,Wei Jie,et al.Yaw Stability Control of Active Front Steering withFractional-Order PID Controller.Proceedings of the International Conference on InformationEngineering and Computer Science (ICIECS2009),USA:IEEE,2009:1-4.
    [35] Zhang J Y,Kim J W,Lee K B,et al.Development of an Active Front Steering (AFS) Systemwith QFT Control.International Journal of Automotive Technology,2008,9(6):695-702.
    [36]徐延海.主动转向技术在汽车侧向稳定性控制中的应用.西华大学学报(自然科学版),2010,29(2):127-130.
    [37] Hac A,Simpson M D.Estimation of Vehicle Side Slip Angle and Yaw Rate.SAE TechnicalPaper Series.USA:SAE Publication Group,Paper Number:2000-01-0696.
    [38] Bevly D M,Gerdes J C,Wilson C.The Use of GPS Based Velocity Measurements forMeasurement of Sideslip and Wheel Slip.Vehicle System Dynamics,2002,38(2):127-147.
    [39] Bevly D M,Sheridan R,Gerdes J C.Integrating INS Sensors with GPS Velocity Measurementsfor Continuous Estimation of Vehicle Sideslip and Tire Cornering Stiffness.Proceedings of theAmerican Control Conference (ACC),USA:IEEE,2001:25-30.
    [40]富立,范耀祖.车辆定位导航系统.北京:中国铁道出版社,2004:8-14.
    [41]高振海,郑南宁,程洪.基于车辆动力学和Kalman滤波的汽车状态软测量.系统仿真学报,2004,16(1):22-24.
    [42] Ray L.Nonlinear Tire Force Estimation and Road Friction Identification:Simulation andExperiments.Automatica,1997,33(10):1819-1833.
    [43]宗长富,胡丹,杨肖,等.基于扩展Kalman滤波的汽车行驶状态估计.吉林大学学报(工学版),2009,39(1):7-11.
    [44]高越,高振海,李向瑜.基于自适应Kalman滤波的汽车横摆角速度软测量算法.江苏大学学报(自然科学版),2005,26(1):24-27.
    [45] Kato M,Isoda K,Yuasa H.Estimation of Vehicle Side Slip Angle with Artificial NeuralNetwork.JSAE Review,1994,15(1):79-82.
    [46] Lin Fen,Zhao Youqun.A Comparison of Two Soft-Sensing Methods for Estimating VehicleSide Slip Angle.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2007-01-3587.
    [47]施树明,Lupker H,Bremmer P,等.基于模糊逻辑的车辆侧偏角估计方法.汽车工程,2005,27(4):426-430.
    [48]李普,陈南,孙庆鸿.基于状态观测器的4WS车辆最优随动操纵研究.机械工程学报,2004,40(l):50-55.
    [49] Imsland L,Johansen T A,Fossen T I,et al.Vehicle Velocity Estimation using ModularNonlinear Observers.Proceedings of the44th IEEE Conference on Decision and Control,andthe European Control Conference,USA:IEEE,2005:6728-6733.
    [50] Zhao Haiyan,Chen Hong.Estimation of Vehicle Yaw Rate and Side Slip Angle Using MovingHorizon Strategy. Proceedings of the6th World Congress on Intelligent Control andAutomation,USA:IEEE,2006,(1):1828-1832.
    [51]宋贵勇,张洪欣.常规转向系统的路感特性及其改善途径.上海汽车,2000,(5):17-23.
    [52]王启瑞,黄森仁,陈无畏,等.基于模糊自调整PD控制的EPS助力特性.农业机械学报,2004,35(4):1-4.
    [53]陈无畏,王妍,王启瑞,等.汽车电动助力转向系统的自适应LQG控制.机械工程学报,2005,41(12):67-72.
    [54] Zaremba A T,Liubakka M K,Stuntz R M.Control and Steering Feel Issues in the Design ofan Electric Power Steering System.Proceedings of the American Control Conference (ACC),USA:IEEE,1998:36-40.
    [55] Sugitani N,Fujuwara Y,Uchida K,et al.Electric Power Steering with H-Infinity ControlDesigned to Obtain Road Information.Proceedings of the American Control Conference(ACC),USA:IEEE,1997:2935-2939.
    [56] Chabaan R C.H-Infinity Control Design and Gain Scheduling of Electrical Power AssistSteering System to Improve System Robustness and Stability,[Doctor Dissertation].Detroit:Wayne State University,2000.
    [57] Chabaan R C,Wang L Y.Control of Electrical Power Assist Systems:H∞Design,TorqueEstimation and Structural Stability.JSAE Review,2001,22(4):435-444.
    [58]赵万忠,施国标,林逸,等.基于混合H2/H∞控制的电动助力系统转向路感.机械工程学报,2009,45(4):142-147.
    [59]王启瑞,陈无畏,黄森仁,等.汽车电动助力转向系统的H∞控制研究.汽车工程,2004,26(5):609-612.
    [60]赵治国,余卓平,孙泽昌,等.电动助力转向系统H∞鲁棒控制研究.汽车工程,2005,27(6):730-735.
    [61] Sugiyama A,Kurishige M,Hamada H,et al.An EPS Control Strategy to Reduce SteeringVibration Associated with Disturbance from Road Wheels.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2006-01-1178.
    [62] Li Lianbing,He Lin,Du Jiang,et al.An Electric Power Steering System Controller Based onDisturbance Observer.Proceedings of the IEEE International Conference on IntegrationTechnology,USA:IEEE,2007:446-449.
    [63]施国标,赵万忠,李强,等.力与位移耦合控制的电动助力转向机构.中国,发明专利,CN201347125Y,2009-11-18.
    [64] Minaki R,Hori Y.Experimental Verification of Driver-Friendly Reactive Torque ControlBased on Driver Sensitivity to Active Front Steering.Proceedings of the35th AnnualConference of the IEEE Industrial Electronics Society (IECON2009),USA:IEEE,2009:3077-3082.
    [65] Minaki R,Hoshino H,Hori Y.Ergonomic Verification of Reactive Torque Control Based onDriver's Sensitivity Characteristics for Active Front Steering.Proceedings of the Vehicle Powerand Propulsion Conference (VPPC '09),USA:IEEE,2009:160-164.
    [66] Hac A,Bodie M.Improvements in Vehicle Handling Through Integrated Control of ChassisSystems.International Journal of Vehicle Design,2002,29(2):23-49.
    [67] Manning W J,Crolla D A.A Review of Yaw Rate and Sideslip Controllers for PassengerVehicles.Transactions of the Institute of Measurement and Control,2007,29(2):117-135.
    [68]余卓平,高晓杰.车辆行驶过程中的状态估计问题综述.机械工程学报,2009,45(5):20-33.
    [69]董惠敏.基于柔轮变形函数的谐波齿轮传动运动几何学及其啮合性能研究,[博士学位论文].大连:大连理工大学,2008.
    [70]管洪杰,张念淮,刘保国.三级行星减速器优化设计.机械传动,2008,32(3):38-40.
    [71] Kojo T,Suzumura M,Tsuchiya Y,et al.Development of Active Front Steering ControlSystem.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2005-01-0404.
    [72] Kim S J,Kwak B H,Chung S J,et al.Development of an Active Front SteeringSystem.International Journal of Automotive Technology,2006,7(3):315-320.
    [73]纪志成,沈艳霞,姜建国.基于Matlab无刷直流电机系统仿真建模的新方法.系统仿真学报,2003,15(12):1745-1758.
    [74] Al-Mashakbeh A S O. Proportional Integral and Derivative Control of Brushless DCMotor.European Journal of Scientific Research,2009,35(2):198-203.
    [75]吴文江.基于H∞控制理论的汽车电动助力转向控制系统研究,[博士学位论文].北京:北京交通大学,2004.
    [76] Morita Y,Torii K,Tsuchida N,et al.Decoupling Control of Electric Power Steering Systemwith Variable Gear Transmission System.Proceedings of the32nd Annual Conference of theIEEE Industrial Electronics Society,USA:IEEE,2006:5364-5269.
    [77] Adams F J.Power Steering Road Feel.SAE Technical Paper Series.USA:SAE PublicationGroup,Paper Number:830998.
    [78] Baxter J.Analysis of Stiffness and Feel for a Power-Assisted Rack and Pinion SteeringGear.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:880706.
    [79] D'Azzo J J,Houpis C H and Sheldon S N.Linear Control System Analysis and Design withMatlab (Fifth Edition,Revised and Expanded).New York:Marcel Dekker Inc.,2003:208-214.
    [80]吴文江,杜彦良,季学武,等.调整电动转向系统路感的H∞控制算法.中国工程机械学报,2004,2(2):145-148.
    [81]李练兵,何林.基于路面反力响应设计的电动助力转向鲁棒控制器.2006中国控制与决策学术年会论文集,沈阳:东北大学出版社,2006:177-180.
    [82]吴文江,季学武,杜彦良.电动转向控制系统跟踪性能研究.机械工程学报,2004,40(4):77-80.
    [83]王德进.H2和H∞优化控制理论.哈尔滨:哈尔滨工业大学出版社,2001:86-88.
    [84]俞立.鲁棒控制——线性矩阵不等式处理方法.北京:清华大学出版社,2002:44-59.
    [85] Momiyama F,Kitagishi E,Tokuda N.Electro-Hydraulic Feedforward Control Power SteeringSystem for Trucks and Buses.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:892519.
    [86] Yih P. Steer-by-Wire: Implications for Vehicle Handling and Safety,[DoctorDissertation].Stanford:Stanford University,2005.
    [87]陈平.基于线控技术的主动转向与差动制动集成控制研究,[硕士学位论文].长春:吉林大学,2007.
    [88] Millsap S A,Law E H.Handling Enhancement Due to an Automotive Variable Ratio ElectricPower Steering System Using Model Reference Robust Tracking Control.SAE Technical PaperSeries.USA:SAE Publication Group,Paper Number:960931.
    [89] Ackermann J and Bünte T.Robust Prevention of Limit Cycles for Robustly Decoupled CarSteering Dynamics.Kybernetika,1999,35(1):105-116.
    [90] Huang P S,Guldner J,Smakman H.Control Concepts for Lateral Vehicle Guidance IncludingHMI Properties.Proceedings of the IEEE International Conference on Systems,Man andCybernetics,USA:IEEE,2004,1:1-6.
    [91] Legouis T,Laneville A,Bourassa P,et al.Characterization of Dynamic Vehicle Stability UsingTwo Models of the Human Pilot Behaviour.Vehicle System Dynamics,1986,15(1):1-18.
    [92] Yu G R,Hwang R C.Optimal PID Speed Control of Brushless DC Motors Using LQRApproach. Proceedings of the IEEE International Conference on Systems, Man andCybernetics,USA:IEEE,2004:473-478.
    [93]李会军,陈明军.基于LMI的H∞鲁棒PID控制器设计.控制工程,2007,14(3):294-296.
    [94] Xie L,Fu M,de Souza C E.H∞Control and Quadratic Stabilization of Systems withParameter Uncertainty via Output Feedback.IEEE Transactions on Automatic Control,1992,37(8):1253-1256.
    [95] Güven B A,Güven L,Odenthal D,et al.Robust Two Degree of Freedom Vehicle SteeringControl Satisfying Mixed Sensitivity Constraint. Proceedings of the European ControlConference,2001:1198-1203.
    [96] Mammar S,Baghdassarian, V B.Two-Degree-of-Freedom Formulation of Vehicle HandlingImprovement by Active Steering.Proceedings of American Control Conference (ACC).USA:IEEE,2000,1(6):105-109.
    [97] Nagai M,Yamanaka S,Hirano Y.Integrated Control of Active Rear Wheel Steering and YawMoment Control Using Braking Forces.JSME International Journal,Series C,1999,42(2):301-308.
    [98] Li Qiang,Shi Guobiao,Lin Yi,et al.Yaw Rate Control of Active Front Steering Based onFuzzy-Logic Controller.Proceedings of the Second International Workshop on EducationTechnology and Computer Science,USA:IEEE Computer Society,2010,1:125-128.
    [99]胡寿松,王执铨,胡维礼.最优控制理论与系统(第二版).北京:科学出版社,2005:212-222.
    [100]杜峰,李伦,魏朗,等.模型跟踪主动四轮转向汽车最优控制研究.拖拉机与农用运输车,2009,36(1):16-18.
    [101]毕春光.极限工况下汽车质心侧偏角的估计方法研究,[硕士学位论文].长春:吉林大学,2007.
    [102] Salaani M K,Heydinger G J,Grygier P A.Vehicle On-Center Directional and SteeringSensitivity.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2005-01-0395.
    [103] Gawronski W,Mellstrom J A.Field Verification of the Wind Tunnel Coefficients.TheTelecommunications and Data Acquisition Progress Report42-119,1994:210-220.
    [104]葛小铭.宝马E60主动转向系统结构与检修.汽车维修技师,2006,(7):20-21.
    [105] Klier W,Reinelt W.Active Front Steering (Part1):Mathematical Modeling and ParameterEstimation.SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1102.
    [106] Yang Xiujian,Wang Zengcai,Peng Weili.Coordinated Control of AFS and DYC for VehicleHandling and Stability Based on Optimal Guaranteed Cost Theory.Vehicle System Dynamics,2009,47(1):57-79.
    [107] Nagai M,Shino M,Gao F.Study on Integrated Control of Active Front Steer Angle and DirectYaw Moment.JSAE Review,2002,23:309-315.
    [108] Pacejka H B.Tyre and Vehicle Dynamics.Oxford:Butterworth-Heinemann,2002:157-197.
    [109] Mammar S,Koenig D.Vehicle Handling Improvement by Active Steering.Vehicle SystemDynamics,2002,38(3):211-242.
    [110]宗长富,郭孔辉,李铂.汽车操纵稳定性的理论预测与综合评价.汽车理论,2001,23(1):5-8.
    [111] Zong Changfu,Guo Konghui and Guan Hsin.Research on Closed-Loop ComprehensiveEvaluation Method of Vehicle Handling and Stability.SAE Technical Paper Series.USA:SAEPublication Group,Paper Number:2000-01-0694.
    [112] Mar J,Lin F.An ANFIS Controller for the Car-Following Collision Prevention System.IEEETransactions on Vehicular Technology,2001,50(4):1106-1113.
    [113] Jang J S R.ANFIS:Adaptive-Network-Based Fuzzy Inference System.IEEE Transactions onSystems,Man and Cybernetics,1993,23(3):665-685.
    [114] Leonard J A,Kramer M A.Radial Basis Function Networks for Classifying ProcessFaults.IEEE Control Systems,USA:IEEE,1991,11(3):31-38.
    [115] Vidnerova P,Slusny S,Neruda R.Evolutionary Trained Radial Basis Function Networks forRobot Control.Proceedings of the10th International Conference on Control,Automation,Robotics and Vision,USA:IEEE,2008,11(3):833-838.
    [116]胡寿松.自动控制原理(第四版).北京:科学出版社,2001:77-79.
    [117]王国权.虚拟试验技术.北京:电子工业出版社,2004:1-8.
    [118]付百学.汽车试验技术.北京:北京理工大学出版社,2007:1-4.
    [119]关强,杜丹丰.汽车试验学.北京:人民交通出版社,2009:1-3.
    [120]尹念东.虚拟试验技术及其在车辆工程中的应用.上海汽车,2003,(3):32-35.
    [121]陈家瑞.汽车构造(第二版).北京:机械工业出版社,2008:252-254.
    [122]曹岩.UG NX7.0装配与运动仿真实例教程.西安:西北工业大学出版社,2010:34-40.
    [123]张晋西,张甲瑞,郭学琴.UG NX/Motion机构运动仿真基础及实例.北京:清华大学出版社,2009:136-215.
    [124] Mechanical Simulation.Model Screens.Mechanical Simulation Corporation,2009:1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700