用户名: 密码: 验证码:
仿生物矿化模板法调控晶体生长机理与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物矿化是自然界生物体内普遍存在的一种现象,即在生物体内形成矿物质(生物矿物)的过程。在此过程中,晶体形貌、尺寸、晶体方向受到结晶时局部条件的控制,特别是在有机基质(分为不溶性有机基质和可溶性有机基质)和生物分子共同存在的情况下,可达到控制晶习和多晶类型的目的。可溶性有机基质可以吸附在特定的晶面上,从而改变不同晶面的相对生长速率,导致不同的晶体特性;不可溶性有机基质能作为生物矿化的惰性底质或矿物沉淀的局限空间,从而调控晶体的形态大小、空间排列、结晶取向和同质多晶类型。这些过程通常是在有机基质/无机界面发生的,有机基质为矿物以合适的方式成核和外延生长提供初始的结构信息。骨骼、牙齿、贝壳和珍珠等都是常见的生物矿物,它们是以生物大分子为有机基质,通过分子预组装、界面分子识别、生长调制和细胞加工等过程形成的高度有序的无机/有机复合材料。由于它们大小规整,结构、形态及结晶取向一致等特点使其具有优良的功能性,在实际应用中有广阔的应用前景,所以,模仿生物体内这些材料的矿化过程具有重要的意义。
     近几年,利用模板法诱导晶体生长的方法模拟生物矿化研究已成为一个热门课题。虽然,模板法模拟生物矿化过程制备材料取得了很大的成功,但是这项研究还存在几点不足。首先,大多数的研究工作都是通过优化模板的结构和化学性质来调控晶体的结构、形貌和取向,但是对于用模板来控制特定晶型晶体生长的研究还很少。其次,实际应用的晶体材料大多需要厘米尺寸,但是由模板法调控生成的晶体,有很大一部分是毫米尺寸的,这就限制了晶体的实用性。另外,现今社会对有机材料的需求也日益增多,而由模板法调控生成的晶体大多数是无机晶体。
     基于以上问题,本文从仿生学角度出发,将生物矿化的机理引入到材料合成领域,以不同介质为模板,去调控无机、有机晶体晶习、晶型的形成,并研究了各种模板对晶体结晶过程的调控作用及它们之间的识别和控制机制。同时通过控制晶体生长实验条件,在较短时间内生长出尺寸较大的晶体。总体上本文可以分为两部分:第一部分利用各种硬模板模拟不可溶性有机基质在生物矿化中的作用调控晶体生长;第二部分利用各种软模板模拟可溶性有机基质在生物矿化中的作用调控晶体生长。
     第一部分主要研究内容如下:
     1.以不同热力学状态的硬脂酸LB膜为模板诱导五水硫酸铜晶体生长。首先,利用变温红外光谱研究硬脂酸LB膜的热稳定性,结果显示LB膜中硬脂酸相变(固态-液态)发生在70-72℃。其次,深入探究了不同热力学状态LB膜对五水硫酸铜晶体生长、表面形貌、晶体结构和取向的影响。结果表明,即使在液态状态下,LB膜仍可调控诱导晶体生长,且不同热力学状态的LB膜由于表面结构的改变,结晶在LB膜上晶体的形貌和取向也随之发生改变。
     2.以未经修饰的基片作为模板,通过缓慢分解(NH4)CO3的方法制备了CaCO3晶体,考察了不同基片对CaCO3结晶的影响。通过SEM、XRD、FTIR、接触角测试等方法对CaCO3晶体的形貌、晶型及所用基片进行表征。结果显示,当以金片为模板诱导碳酸钙晶体生长时,能制备出结晶度好、文石相含量高的针状碳酸钙;当以硅片为模板诱导碳酸钙晶体生长时,能制备出球霰石和方解石的共晶体。结合基片结构性质和碳酸钙晶体的XRD数据,探讨了基片诱导晶体生长的机理。实验结果表明对于金片,晶格立体匹配和金片的疏水特性是控制碳酸钙晶体生长的主要原因;而对于硅基片,电负性和羟基基团是控制碳酸钙晶体生长的主要原因。
     3.以3-巯基丙基三甲氧基硅烷自组装膜作为仿生矿化模板成功制备出了大小均匀且沿(001)面单一取向,尺寸约为5mm的层状KCl晶体。通过与无模板诱导所得晶体的形貌和晶面取向进行比较,可知自组装膜头部基团与K+之间的静电作用以及自组装膜与(110)面之间较好的晶格匹配关系是KCl晶体取向生长的主要原因。同时,以改变模板放置方法的方式改变晶体生长的动力学因素即自发成核和诱导成核之间的关系,获得了不同形貌和结构特征的KCl晶体材料。
     4.以黑色素自组装膜作为仿生矿化模板成功制备出了厘米级的甘氨酸晶体。首先,在碱性溶液中成功的将黑色素溶液组装在带有负电荷的基底(硅片和玻璃片)上,得到了均匀和形貌一致的黑色素薄膜。通过红外光谱和光电子能谱可知黑色素成分是通过N-O-Si形式与基底结合,且X-ray衍射结果显示组装在硅片上的自组装薄膜在两个方向上都是有序的结构,这对理解黑色素薄膜的微观结构是非常有用的一个贡献。然后用黑色素自组装膜作为仿生矿化模板成功制备出了与无模板诱导所得晶体的形貌和晶面取向有较大差别的晶体。结果表明,自组装膜头部基团与甘氨酸之间的静电作用以及自组装膜与α-甘氨酸(010)面之间较好的晶格匹配关系是晶体晶习改变的主要原因。
     第二部分主要研究内容如下:
     1.研究了各种羧酸类(甲酸、乙酸、丙酸)、丙酮、醇类(甲醇、乙醇、丙醇、丁醇)对谷氨酸溶液结晶晶型的影响。结果表明:当70°C的谷氨酸饱和溶液快速冷却搅拌到0°C时,有羧酸类物质为添加剂时,溶液易得到β型晶体;而当有酮类、醇类为添加剂时或无添加剂时,在相同条件下易得到α型晶体。
     2.利用银溶胶为模板,在中性溶液中合成了γ-晶型的甘氨酸晶体。实验结果表明,甘氨酸结晶情况与银溶胶的浓度有关,银溶胶的加入有利于γ晶型甘氨酸的结晶。紫外光谱和拉曼光谱实验结果表明甘氨酸分子通过NH3+基团可以吸引带负电荷的银溶胶,破坏电离平衡,促进溶液中甘氨酸阴离子的产生,从而有效抑制α晶型的成核和生长,促进了γ-晶型晶核的生长。
Biological mineral is the step which minerals are becoming in organism, infact, they are very important components of organism and high-performancecomposite materials. The most immediately striking aspect of biomaterials is therange of exquisite and unique morphologies, which are frequently disparate fromtheir synthetic counterpart. Typical products of biomineralization are bones, teeth,shells, pearls, and so on. The general principles of biomineralization are introducedinto the synthesis process of inorganic materials. Simulating the biomineralizationprocess of the nucleation and growth of inorganic materials mediated by organicmatrixes and biomimetic synthesis of inorganic materials with higher performanceand more exquisite morphologies have become the focus of material science.
     Biomineralization is mother natures approach to advanced materials synthesis,and it attempts to chemically control the growth of inorganic crystals in theorganicsubstrate by adapting or imitating biological mineralization strategies. Thekey to the successful synthesis of an inorganic-organic composite is an understandingof the parameters that control the nucleation and growth of inorganic crystals underthe substrate in aqueous solution. In this thesis, we try some new substrates to controlthe polymorphism and morphology of crystal.
     1. We study the behavior of the CuSO4·5H2Ocrystals grown on the different state film. Theexperimental results demonstrated that the LB film in the liquid state has the ability of directingthe nucleation and grow of crystals. Moreover, the CuSO4·5H2O crystals grown on the liquid filmhave quite different orientation and morphology from those grown on the solid film.
     2. Control of crystal polymorph and size is very important in many applicationfields. In the present study, Au and Si substrates were used as solid templates tocontrol the growth of calcium carbonate (CaCO3) crystals have been described. The obtained composite CaCO3were characterized by using X-ray powder diffraction(XRD) analysis, Scanning electron microscopy (SEM) and Fourier transforminfrared spectroscopy (FTIR) measurement.
     3. The MPTS SAMS films is used as template to induce the nucleation andgrowth of KCl crystals. X-ray diffraction (XRD) patterns and optical microscopyimages show that the orientation and morphology of the crystals have successfullybeen controlled by changing the orientation and position of the self-assembly films inthe solutions.
     4. In the present study, uniform and rather flat melanin films with the dendritesstructure obtained using self-assembly technique on Si substrate. The structure offilm was confirmed by Fourier-transformed infrared spectrometry (FTIR), X-raydiffraction (XRD) and Scanning Electron Microscopy (SEM). Experimental resultsshowed that the grown on the Si substrate, self-assembly film had oriented quality.Furthermore, according to the results,a model of the secondary structure in themelanin films was suggested. Then the SAMS films are used to serve as templates toinduce glycine crystal growth. The results of experiment proved that it is not onlythat morphology and orientation of crystal can be controlled by the optimization ofthe structure and chemistry of the SAMS film.
     5.The control of crystal polymorphism of the trimorphic crystals of glutamicacid (Glu) grown in solutionsin the presence of formic acid、acetic acid,propionicacid,methanol,ethanol,propanol,butanol,acetone. The presence of acids insolutions induces-polymorphs of glutamic acid when the temperature of solutionsranges from70°C to0°C. At the same experiment conditions, the other additivesinduce α-polymorphs of glutamic acid.
     6. We demonstrate that silver colloid can serve as additive and induced theγ-form polymorph of glycine crystals in the netural solution. The silver colloid couldquickly affect the packing arrangements of glycine molecules in aqueous solutionleading to the competitive nucleation of the two polymorphs.
引文
[1] Mann S, Ozin G A. Synthesis of inorganic materials with complex form [J]. Nature,1996,382:313–318.
    [2] Yang H, Coombs N, Ozin G A. Morphogenesis of shapes and surface patterns inmesoporous dilica[J]. Nature,1997,386:692–695.
    [3] Ahmadi T S, Wang Z L, Travis C, Green T C, Henglein A, El-Sayed M. A.Shape-controlled synthesis of colloidal platinum nanoparticles[J]. Science,1996,272:1924-1925.
    [4] Matijevic E. Controlled Colloid Formation:Current Opinion in Colloid&Interface [J].Science,1996,1:176-183.
    [5] Matijevic E. Preparation and properties of uniform size colloids[J]. Chemistry Materials,1993,5:412-426.
    [6] Mann S, Webb J, Williams, R J P Biomineralization: Chemical and biochemicalperspectives[M].Weinheim: VCH Publishers,1989.
    [7] Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry[J].Nature,1993,365:499–505.
    [8]戴永定.生物矿物学[M].北京:石油工业出版社,1994.
    [9] Weiner S, Addadi L. Design strategies in mineralized biological materials[J]. Journal ofMaterials Chemistry,1997,7:689-702.
    [10]崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版社,2004.
    [11] England J, Cusack M, Dalbeck P and Perez-Huerta A. Comparison of thecrystallographicstructure of semi nacre and nacre by electron backscatter Diffraction [J]. Crystal GrowthDesign,2007,7:307-310.
    [12]欧阳健明.基质调控碳酸钙生物矿化过程及其体外模拟[J].功能材料,2005,36(2):173-176.
    [13] Katti K S, Katti D R, Pradhan S M and Bhosle A. Platelet interlocks are the key totoughness and strength in nacre[J].Journal of Materials Research,2005,20:1097-1100.
    [14] Mann S. Biomineralization Principles and Concepts in Bioinorganic MaterialsChemistry[M]. New York: Oxford University Press,2001.
    [15] Colfen H and Mann S. Higher-order organization by mesoscale self-assembly andtransformation of hybrid nanostructures[J]. Angewandte Chemie-International Edition,2003,42:2350-2365.
    [16] Addadi L, Joester D, Nudelman F and Weiner S. Mollusk shell formation: A source ofnew concepts for understanding biomineralization processes[J]. Chemistry-a EuropeanJournal,2006,12:981-987.
    [17] Addadi L and Weiner S. Interactions between Acidic Proteins andCrystals-Stereochemical Requirements in Biomineralization[C]. Proceedings of theNational Academy of Sciences of the United States of America,1985,82:4110-4114.
    [18]Falini G, Weiner S, and Addadi L. Chitin-silk fibroin interactions: Relevance to calciumcarbonate formation in invertebrates[J].Calcified Tissue International2003,72:548-554.
    [19] Levi-Kalisman Y, Falini G, Addadi L,and Weiner S. Structure of thenacreous organicmatrix of a bivalve molluskshell examined in the hydrated state using Cryo-TEM[J].Journal of Structural Biology,2001,135:8-17.
    [20] Falini G, Albeck S, Weiner S and Addadi L.Control of aragonite or calcitepolymorphism by mollusk shell macromolecules[J]. Science,1996,271:67-69.
    [21] Falini G, Fermani S, Gazzano M, and Ripamonti A. Oriented crystallization of vaterite incollagenous matrices[J].Chemistry-a European Journal,1998,4:1048-1052.
    [22] Falini G, Albeck S, Weiner S, and Addadi L,Control of aragonite or calcitepolymorphism by mollusk shell macromolecules, Science,1996,271:67-69.
    [23] Falini G, Fermani S, Gazzano M, and Ripamonti A: Oriented crystallization of vaterite incollagenous matrices[J]. Chemistry-a European Journal,1998,4:1048-1052.
    [24] Meldrum F C and Colfen H. Controlling mineral morphologiesand structures inbiological and synthetic systems[J]. Chemical Reviews,2008,108:4332-4432.
    [25]Sommerdijk N A J M and de With G. Biomimetic CaCO3Mineralization using designermolecules and interfaces[J]. Chemical Reviews,2008,108:4499-4550.
    [26]冯庆玲生物矿化与仿生材料的研究现状及展望[J].清华大学学报(自然科学版)2005,3:1-4
    [27] Ameye L, Compère P, Dille J and Dubois P. Ultrastructure and cytochemistry of theearly calcification site and of its mineralization organic matrix in Paracentrotus lividus[J].Histochemistry and Cell Biology,1998,110:285-294.
    [28] Saruwatari K, Matsui T, Mukai H, Nagasawa H, and Kogure T. Nucleation and growthof aragonite crystals at the growth front of nacres in pearl oyster[J]. Pinctada fucata,Biomaterials,2009,30:3028-3034.
    [29] Li X D and Huang Z W. Unveiling the formation mechanism of pseudo-single-crystalaragonite Ppatelets in nacre[J]. Physical Review Letters,2009,102:396-412.
    [30]戴永定,沈继英.生物系统中的矿物[J].动物学杂志,1995,30:58-61.
    [31]魏浩.有机质对于碳酸钙矿化过程调控机理研究[D].中国科学院博士学位论文,2005.
    [32]Rosenberg G D and Hughes W W, A metabolic model for the metabolic etabolic modelfor the determination of the shell composition in the bivalve mollusk[J]. Lethaia,1991,24:83-96.
    [33]Lowenstam H A, Weimer S. On Biomineralization[M]. New York: Oxford UniversityPress,1989.
    [34]Simkiss K, Wilbur K M. Biomineraliation: Cell Biology and Mineral Deposition [M].San Diego: Academic Press. Inc.,1989.
    [35]黄磊,杨永强,李金洪.生物矿化研究现状和展望[J].地质与资源,2009,4:317-320.
    [36]王静梅,姚松年.生物材料及其仿生学的研究进展与展望[J].材料研究学报,2000,4:337-343.
    [37] Davis S A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of orderedmacrostructres in silica and silica-surfactant mesophases[J]. Nature1997,385:420-423.
    [38] Heuer A H, Fink D J, Laraia V J. Innovative materials processing strategies: Abiomimetic approach [J]. Science1992,255:1098-1105.
    [39] Simkiss K, Wilbur KM. Biomineralization: cell biology and mineral deposition[M].NewYork: Academic Press,1989
    [40] Watabe N. Shell structure. In: Saleuddin ASM, Wilbur KM, Eds. The Mollusca, vol.ll,Form and Function [M]. NewYork: Academic Press,1983.69-104
    [41] Beedham G E. Observation on the non-calacrious componentof the shell ofLamellibranchia [J]. Quarterly Journal of Microscopical Science,1958,99:341-357.
    [42] Checa A. A new model for periostracum and shell formation in Unionidae (Bivalvia,Mollusca)[J]. Tissue Cell,2000,32:405-416.
    [43]Smith B L, Schaffer T E, Viani M, Thompson J B, et al. Molecular mechanistic origin ofthe toughness of natural adhesives, fibres and composites[J]. Nature,1999,399:761-763.
    [44]孙虎山,王晓安.紫彩血蛤外套膜的组织学和组织化学研究[J].烟台师范学院学报,1999,2:125-129.
    [45]石安静,张兵.三角帆蚌外套膜细胞的超微结构[J].水生生物学报,1987,11:236-240.
    [46]石安静,陈维凉,刘晓光.淡水育珠蚌外套膜表皮细胞分泌方式的研究[J].水生生物学报,1994,18:369-375.
    [47]唐敏,石安静.贝类钙代谢研究概况[J].水产学报,2000,24:86-91.
    [48] Jones R Q, Dais W L. Calcium containing lysosomes in the outer mantle epithelial cellsof Amblema, a fresh water mollusk[J]. The Anatomical Record,1982,203:337-343.
    [49] Bany P H, Diamond J M. A theory of ion permeation through membranes with fixedneutralsites[J]. Journal of Membrane Biology,1971,4:295-330.
    [50] Neff J M. Ultructural studies of periostrcum formation in the hard shelled clamMercenaria mercennaria[J]. Tissue Cell,1972,4:311-326.
    [51] Wilbur KM,Saleuddin ASM. Shell formation. In: Saleuddin ASM, Wilbur KM, Eds.The Mollusca, vo1.4, Physiology[M]. NewYork: Academic Press,1983.235-287
    [52]宋慧春.关于淡水无核珍珠的形成机理和生化特性[J].生物学通报,1999,34:12-14
    [53] Addadi L. Weiner S. A pavement of pearl[J]. Nature,1997,389:912-915.
    [54]Addadi L.Weiner S.Interactions between acidic proteins and cnstals: stereocbemicalrequirements in biomineralization[C]. Proceedings of the National Academy of Sciences,1985,82:4110-4114.
    [55]Huang L J, Li H D. Observation of the Phase Transformation in the growth of abiomineralized calcium carbonate [J]. Biochemical Biophysis,1991,176:654-661.
    [56] Mann S, Didymus J M, Samper E J A, et al. Morphological influence of functionalizedand non-functionalized α,ω-dicarboxylates on valcite crystallization[J]. Journal of theChemical Society, Faraday Transactions,1990,86(10):1873-1880.
    [57]王夔.生物无机化学[M].北京:清化大学出版社,1988.
    [58] Young J R, Didymus J M, Bown P R, Prins B, Mann S.Crystal assembly andphylogenetic evolution in heterococcoliths[J]. Nature,1992,356:516-518.
    [59]戴永定.生物矿物学[M].北京:石油工业出版社,1994.
    [60]仲维卓,华素坤,晶体生长形态学[M].北京:科学出版社,1999,
    [61] Gowerand L A, Tirrell D A. Calcium Carbonate Films and Helices grown in solutions ofpoly(aspartate)[J].Journal of Crystal Growth1998,191:153-160.
    [62]Addadi L, Raz S, Weiner S. Taking Advantage of Disorder: Amorphous CalciumCarbonate and its Roles in Biomineralization[J]. Advanced Materials,2003,15:959-970.
    [63] Naka K. Delayed action of synthetic polymers for controlled mineralization of calciumcarbonate, Topics in Current Chemistry2006,DOI:10.1007/128_055
    [64]Naka K, Keum D K, Tanaka Y, Chujo Y. Control of Crystal Polymorphs by a 'LatentInductor': Crystallizationof calcium carbonate in conjunction with in situ radicalpolymerization of sodium acrylate in aqueous solution[J]. ChemicalCommunalization2000,16:1537-1538.
    [65] Braun E, EiChen Y. DNA-Templated assembly and electrode attachment of a conductingsilver wire, Nature1998,391:775-778.
    [66] Meldrum F C, Nimmo D L, Heywood B R, Mann S. Synthesisof inorgnic nanophasematerials in supramolecular protein cages[J], Nature1991,349:684-687.
    [67] Jones F, Colfen H, Antonietti M. Interaction of kappa-carrageenan with nickel, cobalt,and iron hydroxides, biomacromolecules,2000,1:556-563.
    [68] Pileni M P. The role of soft colloidal templates in controlling the size and shape ofinorganic nanocrystals[J]. Nature Materials.2003,2:145-150.
    [69] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles togive structures with sontrolled organization[J]. Nature,1999,402:393-395.
    [70]Volkmer D, Fricke M, Agena C, Mattay J. Interfacial Electrostatics Guiding theCrystallization of CaCO3underneath monolayers of calixarenes and resorcarenes[J].Materials Chemistry2004,14:2249-2259.
    [71]Mann S, Heywood B R, Rajam S, Birchall J D Controlled crystallization of CaCO3understearic Acid monolayers[J]. Nature,1988,334:692-695.
    [72]Xu G F, Yao N, Aksay I A, Groves J T. Biomimetic synthesis of macroscopic-scalecalcium carbonate thin films. Evidence for a multistep assembly process[J]. Journal ofAmerical Chemistry Society,1998120:11977-11985.
    [73] Fendler J H, Meldrum F C. The Colloid-chemical approach to nanostructurematearials[J]. Advance Materials,1995,7:607-632.
    [74] Travaille A M, Donners J J J M, Gerritsen J W, SommerdijkN A J M, Nolte R J M, vanKempen H.Aligned Growth of calcite crystals on a self-assembled monolayer[J].Advance Materials,2002,14:492-495.
    [75] Aizenberg J.Crystallization in Patterns: A bio-inspired approach[J]. Advanced Materials,2004,15:1295-1302.
    [76]Aizenberg J, Grazul J L, Muter D A, Hamann D R. Direct fabrication of largemicropatterned single crystals[J]. Science,2003,299:1205-1208.
    [77] Sugawara A, Ishii T, Kato T. Self-organized calcium carbonate with regularsurface-relief structures[J]. Angewandte Chemie International Edition,2003,42:5299-5303.
    [78]Loste E, Park R J, Waren J, Meldrum F C. Precipitation of calcium carbonate inconfinement[J]. Advanced Functional Materials,2004,14:1211-1220.
    [80]房岩,孙刚,丛茜,任露泉.仿生材料学研究进展[J].2006,11:163-167.
    [81] Hartman P, Perdok W G. On the relations between structure and morphology of crystalsIII [J]. Acta Crystallographica,1955,8:525-529.
    [82] Hartman P. The attachment enemy as a habit controlling factor, II.Application toanthracene, tin tetraiodide and orthorhombic sulphur[J]. Journal of Crystal Growth,1980,49:157-165.
    [83] Hartman P. The Attachment Enemy as A Habit Controlling Factor, III. Application tocorundum[J]. Journal of Crystal Growth,1980,49:166
    [84]仲维卓.晶体生长形态学[M].北京:科学出版社,1999.260-261
    [85] Wells A F. Crystal habit and internal structure[J]. Philosophical Magazine,1946,37:184-189
    [86]龚俊波,6ApA结晶过程研究[D].天津:天津大学,2001
    [87] Sangwal K. Mielniczek E. Effect of Fe(III) ions on the growth kinetics of ammoniumoxalate monohydrate crystals from aqueous solutions[J]. Journal of Crystal Growth,2001,233:343-354
    [88] Sangwal K, Kinetic effects of impurities on the growth of single crystals fromsolutions[J]. Journal of Crystal Growth,1999,203:197-212
    [89] Sangwal K, Effect of impurities on the process of crystal growth[J]. Journal of CrystalGrowth,1993,128:1236-1244.
    [90] Rosmalen G M V. Bennema P.Characterization of additives performance oncrystallization: habit modification[J]. Journal of Crystal Growth,1990,99:1053-1060.
    [91]Framk F C, On the kinematic theory of crystal growth and dissolution process, II, Z.Physic Chemistry,1972,77:84-87.
    [92] Hartman P, Perdok W G. On the Relations between structure and morphology of crystalsI [J]. Acta Crystallographica,1955,8:49
    [93] Hartman P, Perdok W G. On the Relations between Structure and Morphology ofCrystals II [J]. Acta Crystallographica,1955,8:521
    [94]逯乐慧,王丽颖,曹立新,崔海宁,席时权. LB膜模板诱导晶体取向生长[J].人工晶体学报,1999,28:303-307.
    [95] Heywood B R, Mann S. Organic Template-directed inorganic crystallization: orientednucleation of BaSO4under compressed Langmuir monolayers [J], Journal of ChemistrySociety,1992,114:4681-4686.
    [96] Cashell C, Sutton D, Corcoran D, Hodnett B K. Inclusion of the stable form of apolymorph within crystals of its Metastable Form [J]. Crystal Growth Design,2003,3:869–872.
    [97]张晓松.药物的多晶型对疗效及理化性质的影响[J].华西药学杂志,1999,14(1):37-40
    [98]王洪亮,董燕,药物多晶型的鉴别方法[J].河北医科大学学报,2002,23:307-309.
    [99]沈建林,姜倩.药物多晶型研究进展[J].中国医院药学杂志,2001,21:304-305.
    [100] Kitamura M. Controlling factor of polymorphism in crystallization process [J].Journalof Crystal Growth,2002:2205-2214.
    [101] Kitamura M, Nakamura T. Inclusion of amino acids and the effect on growth kinetics of1-glutamicacid[J]. Powder Technology,2001:39-45.
    [102] Ulman A. An Introduction to ultrathin organic films: From Langmuir-Blodgett toself-assembly[M]. Boston: Academic Press,1991.
    [103] Petty M C. Langmuir-Blodgett Films[M]. Cambridge: Cambridge University Press,1996.
    [104] Kewalramani S, Dommett G, Kim K, et al. Aggregation-governed oriented growth ofinorganic crystals at an organic template[J].The Journalof Cheistical Physics,2006,125:2247131-2247135.
    [105] Pechkova E, Nicolini C. Accelerated protein crystal growth by protein thin filmtemplate[J]. Journal of Crystal Growth,2001,231:599-602.
    [106] Pechkova E, Fiordoro S, Fontani D, Nicolini, C. Investigating crystal-growthmechanisms with and without LB template: Protein transfer from LB to crystal[J]. ActaCrystallographica Section D,2005,61:809-812.
    [107] Muller H, Zentel R, Janshoff A, Janke M. Control of CaCO3crystallization by demixingof monolayers[J]. Langmuir,2006,22:11034-11040.
    [108] IskhakovaL D, Trunov V K, Shchegoleva T M, et al. The crystal-structure ofchalcanthite CuSO4·5H2O obtained under microgravitation conditions[J]. Kristallografiya,1983,28:651-652.
    [109] Rabe J P. Swalen J D. Rabolt, J F. Order-Disorder Transitions in Langmuir-BlodgettFilms. III. Polarized Raman Studies of Cadmium Arachidate Using Integrated OpticalTechniques [J]. Journal of Chemical Physics,1987,86:1601-1607.
    [110] Kobayashi T, Takaoka K, Ochiai S. omparison of thermal stability ofLangmuir-Blodgett films of icosanoic acid and cadmium icosanoate[J]. Thin SolidFilms,1989,178:453-458.
    [111] Wang HS, Ozaki Y. Novel method for preparing a mixed-stack charge-transfer film of2-octadecyl-7,7,8,8-tetracyanoquinodimethane and3,3',5,5'-tetramethylbenzidine: The useof amixed Langmuir-Blodgett film of2-octadecyl-7,7,8,8-tetracyanoquinodimethane andstearic acid as starting material for the fabrication of the charge-transfer film[J]. Langmuir,2002,18(26):10243-10247.
    [112] Wang Y. Nichogi K, Iyama K, et al Thermal behavior of mixed-stack charge transferfilms of2-octadecyl-7,7,8,8-tetracyanoquinodimethane and3,3',5,5'-tetramethylbenzidine prepared by the Langmuir-Blodgett Technique and DonorDoping.1. Dependence of thermal behavior on the number of layers studied byultraviolet-visible-near infrared and infrared spectroscopies[J]. Journal of PhysicsChemistry,1996,100:17232-17237.
    [113] Umemura J, Takeda S, Hasegawa T, Takenaka, T. Thickness and temperaturedependence of molecular structure in stearic acid LB films Studied by FT-IRreflection-absorption spectroscopy[J]. Journal of Molecular Structure,1993,297:57-62.
    [114] Tang R K, Jiang C Y, Tai Z H. Effect of different amphiphiles and theirmonolayers on the crystallization of CuSO4·5H2O[J]. Journal of the Chemical SocietyDalton Transactions,1997,21:4037-4041.
    [115] Xu A W, Dong W F, Antonietti M, and Colfen H. Polymorph switching of calciumcarbonate crystals by polymer-controlled crystallization[J]. Advanced FunctionalMaterials,2008,18:1307-1313.
    [116] Flaten E M, Seiersten M, and Andreassen J P. Polymorphism and morphology ofcalcium carbonate precipitated in mixed solvents of ethylene glycol and water[J].Journal of Crystal Growth,2009,311:3533-3538.
    [117] Liu F L, Gao Y Y, Zhao S Q, Shen Q A, Su Y L, and Wang D J. Biomimeticfabrication of pseudohexagonal aragonite tablets through a temperature-varyingapproach[J].Chemical Communications,2010,46:4607-4609.
    [118] Nan Z D, Chen X N, Yang Q Q, et al. Structure transition from aragonite to vaterite andcalcite by the assistance of SDBS[J]. Journal of Colloid and Interface Science,2008,325:331-336.
    [119] Nan Z D, Yan B Q, Wang X Z, Guo R, and Hou W G.Fabrication of calcite aggregatesand aragonite rods in a water/pyridine solution[J]. Crystal Growth&Design,2008,8:4026-4030.
    [120] Zhou G T, Yao Q Z, Ni J, and Jin G. Formation of aragonite mesocrystals andimplication for biomineralization[J]. American Mineralogist,2009,94:293-302.
    [121]An X Q, Cao B. Biomineralization of CaCO3through the cooperative interactionsbetween multiple additives and self-assembled monolayers[J]. The Journal of PhysicalChemistry,2008,112:6526–6530.
    [122] Manoli F, Dalas E. Spontaneous precipitation of calcium carbonate in the presence ofchondroitin sulfate[J]. Journal of Crystal Growth,2000,217:416-421.
    [123]Zhao Y, Lu Y, Hu Y, Li J P, Dong L A, Lin L N and Yu S H. Synthesis ofsuperparamagnetic CaCO3mesocrystals for multistage delivery in cancer therapy[J].Small,2010,6:2436–2442.
    [124] Kim Y Y, Douglas E P, Gower L B. Patterning inorganic (CaCO3) thin films via apolymer-induced liquid-precursor process[J]. Langmuir,2007,23:4862-4670.
    [125]Lee J R I, Han T Y J, Willey T M, et al. Structural development of mercaptophenolself-assembled monolayers and the overlying mineral phase during templated CaCO3crystallization from a transient amorphous film[J]. Journal of American ChemicalSociety,2007,129:10370-1381.
    [126] Benoy t P Pichon, Paul H H, Frederik Peter M, et al. A Quasi-Time-Resolved CryoTEM study of the nucleation of CaCO3under Langmuir monolayers[J]. Journal ofAmerican Chemical Society,2008,130:4034–4040.
    [127] Ahn Erman D J, Lio A, SalmeronM, Reichert A, Charych D. Total alignment of calciteat acidic polydiacetylene films: cooperativity at the organic-inorganic interface [J].Science,1995,269:515-518.
    [128] Archibald D D, Quadri S B and Gaber B P.Molecular self-assembly of aliphatic thiolson gold colloids[J]. Langmuir,1996,12:3763-3772.
    [129] Addadi M, Moradian J, Shay E, Maroudas N G and Weiner S. A chemical model for thecooperation of sulfates and carboxylates in calcite crystal nucleation: Relevancetobiomineralization[J]. Proceedings of the National Academy of Sciences,1987,84:2732-2736.
    [130] Donners J J, Nolte R J M and Sommerdijk N A J M. A shape-persistent polymericcrystallization template for CaCO3[J]. Journal of American Chemical Society,2002,124(33):9700-1.
    [131] Han Y J and Aizenberg J. Face-selective nucleation of calcite on Self-AssembledMonolayers of alkanethiols: effect of theparity of the alkyl chain[J]. AngewandteChemie International Edition,2003,42:3668–3670.
    [132] Stephens C J, Mouhamad Y, Meldrum F C and Christenson H K. Epitaxy of calcite onmica[J]. Crystal Growth Design,2010,10:734-738.
    [132] Weber E. In Design of organic solids[M]. New York: Springer,1998.
    [133] Rogers R D. Polymorphism in arystals-a special issue of crystal growth&design[J].Crystal Growth Design,2004,4:1085-108.
    [134] Xu X, Cesarano J, Burch E, Lopez G. Template-assisted electrochemical deposition ofultrathin films of cadmium sulfide[J]. Thin Solid films,1997,305:95-102.
    [135] Heywood B R, Mann S. Organic Template-directed inorganic crystallization: orientednucleation of BaSO4under compressed Langmuir monolayers[J]. Journal of ChemistrySociety,1992,114:4681-4686.
    [136] Rajam S, Heywood B R, Walker J B A, Mann, S. Oriented crystallization of CaCO3under compressed monolayers. Part1-morphological studies of nature crystals[J].Journal of the Chemical Society, Faraday Transactions,1991,87(5):727-734.
    [137] Heywood B R, Rajam S, Mann S.Oriented Crystallization of CaCO3under compressedmonolayers Part2-Morphology, structure and growth of immature Crystals[J]. Journalof the Chemical Society, Faraday Transactions,1991,87(5):735-743.
    [138] Kuzmenko I, Rapaport H, Kjaer K, Als-Nielsen J, etal. Design and characterization atcrystalline thin film architectures at the air-liquid interface: simplicity tocomplexity[J].Chemical Reviews,2001,101:1659-1696.
    [139] Mann, S. Biomineralization: Principles and Concepts in Bioinorganic MaterialsChemistry[M]. New York: Oxford University Press,2001.
    [140] Ulman A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett toSelf-Assembly [J]. Boston: Academic Press,1991.
    [141]Krampit G and Graser G. An enzyme-labile linker group for organic syntheses on solidsupports [J]. Angewandte Chemie International Edition1988,27:1143–1146.
    [142] Meenakshi V R, Hare P E and Wilbur K M. Amino acids of the organic matrix ofneogastropod shells[J].Comparative Biochemistry and Physiology Part B: ComparativeBiochemistry,1971,40:1037–1043.
    [143] Kewalramani S, Dommett G, Kim K, et al. Aggregation-governed oriented growth ofinorganic crystals at an organic template[J]. The Journal of Chemical Physics,2006,125:2247131-2247135.
    [144] Pechkova E, Nicolini C. Accelerated protein crystal growth by protein thin filmtemplate[J]. Journal of Crystal Growth,2001,231:599-602.
    [145] Pechkova E, Fiordoro S, Fontani D, Nicolini,C. Investigating crystal-growthmechanisms with and without LB template: Protein transfer from LB to crystal[J]. ActaCrystallographica Section D,2005,61:809-812.
    [146] Lu L H, Cui H N, Li W, et al. Selective crystallization of BaF2under a compressedLangmuir monolayer of behenic acid[J]. Chemical Materials,2001,13:325-328.
    [147] Li B, Liu Y, Lu N, et al. Oriented crystallization of KH2PO4under a compressedLangmuir monolayer[J]. Langmuir1999,15:4837-4841.
    [148]Sato K, Kogure T, Kumagai Y, Tanaka J. Crystal Orientation of hydroxyapatite inducedby ordered carboxyl groups[J].Journal of Colloid and Interface Science,2001,240:133-138.
    [150]Sato K, Kogure T, Kumagai Y, Tanaka J. Hierarchical texture of calcium carbonatecrystals grown on a polymerized Langmuir-Blodgett film[J]. Langmuir,2004,20:2979-2981.
    [151]Hiremath R, Basile J A, Varney S W, Swift J A. Controlling molecular crystalpolymorphism with self-assembled monolayer templates[J]. Journal of AmericanChemistry Society,2005,127:18321-18327.
    [152]Lu F, Zhou G D, Zhai H J. Nucleation and growth of glycine crystals withcontrollable sizes and polymorphs on Langmuir–Blodgett films[J]. Crystal Growth&Design,2007,7:2654-2657.
    [153] Booth N A, Land T, Erhmann P, Vekilov P G. TheAspect ratio of potassiumdideuterium phosphate (DKDP) crystal[J]. Crystal Growth Design,2005,5:105-110.
    [154] Zhang L J, Liu H G, Feng X S, Qian D J, Zhang L,Yu X L, Feng Q L. Study on growthof hydroxyapatite induced by dipalmitoylphosphatidylcholine Langmuir Monolayer[J].Thin Solid Films,2004,58:287-291.
    [155] Freij S J, Parkinson G M, Reyhani M M. Atomic Force Microscopy Study of the growthmechanism of gibbsite crystals[J]. Physical Chemistry Chemical Physics,2004,6:1049-1055.
    [156] Li H, Liu R, Zhao R, Zheng Y, Chen W, Xu Z. Morphology control of electrodepositedCu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids[J].Crystal Growth Design,2006,6:2795-2798.
    [157] Kumar P,Khonsari M M. On the role of lubricant rheology and piezo-viscousproperties in line and point contact EH[J].Tribology International,2009,42:1522-1530.
    [158]Brian M, Michael J Z and Zaworotko J. Crystal engineering of a nanoscale kagomélattice[J]. Chemistry Reviews,2001,101:1629-1631.
    [159] Weber, E. M.R. Caira. Design of Organic Solids[M]. New York: Springer,1998.
    [160] Kang, J F, Zaccaro J, Ulman A, Myerson A. Nucleation and growth of glycine crystalson self-Assembled monolayers on Gold[J]. Langmuir,2000,16:3791-3796.
    [161] Tarasevich B J, Chusuei C C, Allara D L. Nucleation and growth of calcium phosphatefrom physiological solutions onto self-Assembled templates by a solution-formednucleus mechanism[J]. Journal of Physical Chemistry B,2003,107:10367-10377.
    [162] Prota G. Melanins and Melanogenesis[M]. San Diego: Academic Press,1992.
    [163] Schreiber F. Structure and growth of self-assembling monolayers[J]. Progress inSurface Science,2000,65:151-256
    [164] Aswal D K, Lenfant S, Guerin D, Yakhmi J V, Vuillaume D. Self assembledmonolayers on silicon for molecular electronics[J]. Analytica Chimica Acta,2006,568:84–108.
    [165] Turchanin A, Weber D, Büenfeld M. Conversion of self-assembled monolayers intonanocrystalline graphene: structure and electric transport [J]. ACS Nano,2011,5:3896–3904.
    [166]张俊苓,杨芳,郑文杰,白燕,欧阳健明.自组装单分子膜及其表征方法[J].化学进展,2005,17:203-207.
    [167] Vollhardt D, Wittig M, Maulhardt H, Kunath D. FTIR Spectroscopic studies of layersystems transferred onto germanium supports[J]. Colloid&Polymer Science,1984,262:574–578.
    [168] Oliveira H P, Graeff C F O, Zanta C L PS, Galina A C and Gon alves P J. Synthesis,characterization and properties of a melanin-like/vanadium pentoxide hybridcompound[J]. Journal of Materials Chemistry,2000,10:371-375.
    [169] Capozzi V, Pema G, Carmone P, et al. Optical and photoelectronic properties ofmelanin[J]. Thin Solid Films,2006,511-512(3):362-366.
    [170]Towler C S, Davey R J, Lancaster R W, Price C J. Impact of molecular speciation oncrystal nucleation in polymorphic systems: The conundrum of gamma glycine andmolecular 'Self Poisoning'[J]. Journal of the American Chemical Society,2004,126:13347–13353.
    [171] Weissbuch I, Addadi L, Berkovitch-Yellin Z, et al. Centrosymmetric crystals for thedirect Assignment of the Absolute Configuration of Chiral Molecules. Application tothe Alpha-Amino Acids by their Effect on Glycine Crystals[J]. Journal of the AmericanChemical Society,1983,105:6615–6621.
    [172] Perlovich G L, Hansen L K and Bauer-Brandl A The Polymorphism of GlycineThermochemical and structural aspects[J]. Journal of Thermal Analysis andCalorimetry,2001,66:699-715.
    [173]Ferrari E S, Davey R J, Wendy I, et al. Crystallization in Polymorphic Systems: TheSolution-Mediated Transformation of α to β Glycine[J]. Crystal Growth&Design,2003,3:53-60.
    [174] Tang R K, Jiang C Y, Tai Z. Effect of different amphiphiles and their monolayers onthe crystallization of CuSO4·5H2O[J]. J. Chem. Soc., Dalton Trans.1997,21,4037–4042.
    [175]王继扬,吴以成.光电功能晶体材料研究进展[J].中国材料进展,2010,29:1-13.
    [176]王焕英,张彦,杜秀果,张兆志,张萍,王甫丽.人工纳米晶体材料的制备研究进展[J].中国陶瓷,2010,11:17-20.
    [177]Bykov T V, Zeng X C. Homogeneous nucleation at high supersaturation andheterogeneousnucleation on microscopic wettable particles: A hybridthermodynamic density-functional theory[J].The Journal of Chemical Physics,2006,125:144515.
    [178] Allain K, Bebawee R, Lee S. Controlled Nucleation of K3Fe(CN)6in isolatedmicrodroplets at liquid liquid interface[J]. Crystal Growth Design,2009,9:3183–3190.
    [179] Nassrallah-Aboukais N, Boughriet A, Laureyns J, et al. A new low temperatureone-step route to metal chalcogenide semiconductor: PbE, Bi2E3(E=S, Se, Te)[J].Journal of Materials Chemistry,1998,8:1949-1951.
    [180] Lowenstam H A, Weiner S On Biomineralization[M]. New York: Oxford UniversityPress,1999.
    [181] Lowenstam H A. Mineralization processes in monerans and protoctists. In:Biomineralization in lower plants and animals[M]. New York: Oxford University Press,1986.
    [182] Levi-KalismanY, Raz S, Weiner S, Addadi L, Sagi I. Structural differences betweenbiogenic amorphous calcium carbonate phases using x-ray absorption spectroscopy [J].2002, Advanced Functional Mat,12(1):43-48.
    [183]Garti N, Sato K. Effects of Surfactats on transition kinetics of stearic-acidpolymorphs[J]. Journal of the American Oil Chemists' Society,1986,63:236-24.
    [184] Black S N, Davey R J, Halcrow M. The Kinetics of Crystal Growth in the Presence ofTailor-Made Additives [J].Journal of Crystal. Growth,1986,79:765-774.
    [185] Hirokawa, S. A new modificationof L-glutamic acid and its crystal structure [J]. ActaCrystallographica,1955,8:637-641.
    [186]Sakata Y, Owada Y, Sato K, et al. Structure and expression of the glycine cleavagesystem in rat central nervous system[J]. Molecular Brain Research,2001,94:119–130.
    [187] Kitamura, M. Polymorphism in the crystallization of L-glutamic acid[J]. Journal ofCrystal Growth,1989,96:541-546.
    [188] Cashell C,Corcoran D, Hodnett, B K. Effect of amino acid additives on thecrystallization of L-glutamic acid [J]. Crystal Growth Design,2005,5:593-597.
    [189] Scholl, J, Lindenberg C, Vicum L. Brozio, J. Mazzotti, M. Precipitation of alphaL-Glutamic Acid: determination of growth kinetics[J]. Faraday Discussions,2007,136:247-264.
    [190]墨玉欣. L-谷氨酸多晶型成核及晶型转化机理的研究[D].天津大学博士学位论文,2011.
    [191] Iyanar M, Thomas Joseph Prakash J. Muthamizhchelvan C and Ponnusamy S. Synthesis,growth, and characterization studies of a semiorganic nonlinear optical single crystal ofgamma glycine[J]. Journal of Physical Sciences,2009,13:235-244
    [192]唐娜,白丽荣,沙作良,王学魁,韩焱熙.添加剂对硫酸钠晶体粒度的影响[J].盐业与化工,2007,6:1-3.
    [193]唐娜,王学魁,袁建军,等. Mg2+、K+//Cl-、SO42--H2O体系添加剂对硫酸钾结晶动力学的影响[J].盐业与化工,2006,35(4):7-9.
    [194] Erdemir D, Lee A Y, and Myerson A S. Polymorph selection: The role of nucleation,crystal growth and molecular modeling[J]. Current Opinion in Drug Discovery andDevelopment,2007,10:746-755.
    [195]Bernstein J, Polymorphism in molecular crystals[M]. New York: Oxford UniversityPress,2002.
    [196] Bernstein J. Cultivating crystal forms[J]. Chemical Communications,2005,41:5007-5012.
    [197] Park K, Evans J M B and Myerson A S. Determination of solubility of polymorphsusing differential scanning calorimetry[J].2003, Crystal Growth&Design,3:991-995.
    [198] Dowling R, Davey R J, Curtis R A, Han G J, et al. Acceleration of crystal growthrates:an unexpected effect of tailor-made additives[J]. Chemical Communications,2010,46:5924-5926.
    [199] Towler C S, Davey R J, Lancaster R W, Price C J. Impact of Molecular Speciation onCrystal Nucleation in Polymorphic Systems: The Conundrum of Gamma Glycine andMolecular Self Poisoning[J]. Journal of the American Chemical Society,2004,126:13347–13353.
    [200] Chattopadhyay S, Erdemir D, Evans, J M B, et al. SAXS Study of the nucleation ofglycine crystals from a supersaturated solution[J]. Crystal Growth&Design,2005,5:523-527.
    [201] Li L and RodrIguez-Hornedo N. Growth kinetics and mechanism of glycine crystals[J].Journal of Crystal Growth,1992,121:33-38.
    [202]Lee P C, Melsel D. Adsorption and surface-enhanced Raman of dyes on silver and goldsols[J]. The Journal of Physical Chemistry B,1982,86:3391-3395.
    [203]陶国胜,陆春华,倪亚茹,许仲梓. Ag@SiO2核壳结构颗粒的可控合成与性能研究[J].电子元件与材料,2010,7:24-26.
    [204] Klug H P, Leroy E. Alexander L. X-Ray Diffraction procedures: For polycrystalline andamorphous materials[M].New York: Wiley,1987.
    [205] Dou X,Jung Y M, Yamamoto H, Doi S, and Ozaki Y. Surface-Enhanced RamanScattering of biological molecules on metal colloid II: effects of aggregation of goldcolloid and comparison of effects of pH of glycine solutions between gold and silvercolloids[J]. Applied Spectroscopy,1999,53:1440-1447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700