用户名: 密码: 验证码:
太阳能喷射式制冷系统的仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,空调的使用日益广泛。与此同时,大量使用机械压缩制冷系统带来电能消耗、环境污染问题也向人类可持续发展提出了挑战。利用太阳能等可再生资源来满足人们需求是众多可供选择方案中最直接的解决方法。太阳能喷射式制冷系统,在充分利用太阳能的同时,本身结构简单,运行稳定可靠,因此在国内外得到了较多的关注。
     本文对太阳能喷射式制冷系统进行了热力学分析,明确了系统性能变化的一般理论性规律,确定影响制冷系统性能变化的主要运行参数:采用热动力学的方法,描述了系统参数间的耦合关系,给出每个部件的信号图以及系统的耦合关系图。在此基础上,对太阳能喷射式制冷系统的进行仿真计算。基于本文系统仿真研究的目的和要求,选择了稳态仿真的方法。考虑各部件在系统中承担的作用和特点的不同,分别对各部件采用集中和分布参数模型。在算法的设计上,利用了当前制冷装置仿真用的几种实用方法,能够比较快速、准确完成迭代收敛计算。
     仿真模拟了随太阳辐射强度变化喷射式制冷系统的运行性能。结果表明,在发生温度为69.1℃,系统性能系数相对偏低;在发生温度提高到78.7℃,系统性能系数能提高近2倍。此外,还模拟研究了系统的一些运行参数,包括发生温度、蒸发器冷风风量和风温等,对制冷系统性能的影响关系。
With the improvement of the standard of living, air-conditioner has been more and more popularized. At the same time, mechanical compression refrigerators consume a big quantity of electric power and indirectly make the pollution problem more severe, which bring forward great challenge to the human's sustainable development Among the various solutions the utilization of solar energy and other regenerative energy for refrigeration is one of the promising choices. The solar ejector refrigerant system, at the same time when it makes full use of solar energy, because of its simple structure and stable, reliable operation, has gained much attention.
    In this paper, first the thermodynamic analysis of refrigeration system has been carried out to get the universal order and the key operation parameters influencing the performance of refrigerant system. The dynamics analysis of refrigeration system is used to describe the coupling relationship among refrigerant system parameters and provide the parts signal diagram and system coupling diagram. On the basis of the analysis, we have simulated the solar ejector refrigeration system. Due to system simulation's request, the steady-state simulation is used for the system. In the view of the different duty of parts in the solar ejector refrigeration system, we have set up distributed model or centralized model for different parts. In the aspect of simulation arithmetic, some practical plans of refrigeration system simulation are used to promptly and accurately make arithmetic convergence.
    A simulation model is set up to study the performance characteristics of ejector refrigeration system varying with the solar radiation. The simulation result show the low system COP at 69.1C of generation temperature but almost double system COP at 78.7C of generation temperature. It also studies the influence relationship between system performance and operation parameters including generation temperature, the air temperature of evaporator and so on.
引文
[1] Zeren. F. and Holmes. R.E. Performance evaluation for a jet pumps solar cooling system. ASME paper No. 81-WA/SOL
    [2] N.A. Shchetinina, S.Z. Zhadan and Y.A. Petrenko. Experimental investigation of a solar-ejector Freon refrigerating machine, Gelioteknika, 1987,23(2):66-69
    [3] Chen,S.L. Study on the Availabilty of Solar-Driven Ejector Refrigeration System. EC, MOEA Report No. SI2J4, June, 1993(in Chinese)
    [4] B.J. Huang, etc. A solar ejector cooling system using refrigerant R141b. Solar Energy, 1998,64(4-5):232-226
    [5] 陈芝久.制冷系统热动力学[M].北京:机械工业出版社,1998
    [6] Steam-Jet Refrigeration Equipment. In ASHRAE Equipment Handbook. ASHRAE, Chap. 13, Atlanta, GA, 1979
    [7] Zeren. F. Holmes. R.E, and Jenkins. P.E., Design of Freon Jet Pump for Use in Solar Cooling System, ASME Paper No. 78 WA/SOL-15, August, 1979.
    [8] Zeren. F. Freon-12 vapor compression jet pump solar cooling system, Ph.D. thesis, Texas A&M university, Texas, U.S. A
    [9] J. Mizrahi, M. Solomiansky, T. Zisner, W. Resnick. Ejector refrigeration from low temperature energy sources. Bull. Res. Counc. Of Israel 1957,6:1-8
    [10] L.T. Chen. A heat drive mobile refrigeration cycle analysis. Energy Conversion, 1977,18:25-29
    [11] R.H. Hammer. An alternate source of cooling: the ejector-compression heat pump. ASHRAE J. 1980,22:62-67
    [12] D.C. Faithfull. A combined Rankine and vapour compression cycle heat pump for teaching purposes. In Proc. Int. Conf. on Directly Fired Heat Pumps- For use in Domestic and Commercial Premises. P.W. Fitt and R.T. Moses(Eds). University of Bristol, U.k., 19-21 Sap. 1984,31:1-7
    [13] K.P. Tyagi and K.N. Murty. Ejector compression system for cooling:utilizing low grade waste heat. Heat Recovery System. 5(6):545-550
    [14] Huang, M.C.,and Chen, S.L.,The Experimental Study of Ejector Performance Characteristic in a jet Refrigeration System. Heat Recovery Syst. CHP(submitted).
    [15] Chen. F.C.,and Hsu, C.-T., Performance of Ejector Heat Pumps. Energy Res. 11,289-300,1987.
    [16] Sokolov M, Hersiigal D. Enhanced ejector refrigeration cycles powered by low grade heat (part 1,2) [J] . Int J Refrig, 1990, 13(9): 351-363
    [17] Sokolov M, Hersiigal D. Enhanced ejector refrigeration cycles powered by low grade heat (part 3) [J] .Int J Refrig, 1991, 14(1):24-31
    [18] Sokolov M, Hersiigal D. Compression enhanced ejector refrigeration cycle for low-grade heat utilization, Proceedings of the Intesociety Energy Conversion Engineering Conference v5, Aug 1998,6-11:2543-2548
    [19] Sokolov M, Hersiigal D. Solar-powered comprssion-ehanced ejector air conditioner. Solor energy, 1993,50(6):183-194
    [20] E. Nahdi etc. Optimal geometric parameters of a cooling ejector-compressor. Int. J. Refrig. 1998,16(1):67-72
    [21] LUKT, KOU H S, LAN T H. Gemetrically and thermally non-optimum ejector heat pump analysis [J] . Energy Convers. Mg mt, 1993, 34(12):1287-1297.
    [22] R. Dorantes, C.A. Estrada and I. Pilatowsky. Mathematical Simulation of a solar ejector-compression refrigeration system. Applied thermal Eng, Vol. 16, No. 8/9 669-675,1996
    [23] D.W. SUN, I.W.Eames, Performance Characteristics of HCFC-123 Ejector
    
    Refrigeration Cycles. Int. J. of Energy Res., 1996,20(2):871-885
    [24] 沈胜强,张博.太阳能喷射式制冷系统的模拟.节能,2001,NO,5:3-5.
    [25] 张博,沈胜强,阿布里提·阿不都拉.太阳能喷射式制冷系统性能分析.太阳能学报,2001,Vol,22.NO,4:451-455
    [26] 方承超,赵军等.太阳能增强型喷射式制冷系统的研究.太阳能学报,1994,Vol.15,No.2:185--189
    [27] 方承超,赵军等.利用低焓能的压缩-喷射制冷系统的研究.工程热物理学报,1995,16(1):5-8
    [28] Satha Aphornratana and Ian W. Eames. Experimental investigation of a combined ejector-obsorption refrigerator. Int. J. of Energy Res.,22,195-207,1998
    [29] 顾兆林,郁永章.吸收-喷射复合制冷循环特性分析.第七届全国余热制冷与热泵技术学术会议论文集,1994
    [30] 顾兆林,钱承耀,李兴武等.太阳能吸收-喷射复合制冷系统研究.太阳能学报,1996,17(1):75
    [31] 顾兆林等.新型CH_3OH—LiBr—ZnCl_2吸收—喷射制冷系统变工况分析[J] 太阳能学报,1998.19(3):2 54—259
    [32] Chi J, Didson A Simulation Model of Transient Performane of a Heat Pump. Int Refrig 1982.5:176-180
    [33] Macarthur J W. Transient Heat Pump Behaviour, A Theoretical Investigation. 2Mars 1984
    [34] 陈芝久.新学科“制冷系统热动力学”初探.制冷学报,1987,Vol.4:11-35
    [35] 陈芝久,丁国良,王险峰.多工质小型制冷装置动态仿真.制冷学报,1995(2):7-13
    [36] 陈芝久,刘维华.HFCl34汽车空调系统动态仿真制冷学报 1994,3:1-5
    [37] 丁国良,张春路,于兵,陈芝久 异丁烷冰箱动态仿真制冷学报 1998 4:19-24
    [38] 丁国良,阙雄才,陈芝久.用于制冷系统仿真的冷凝器数学模型研究.流体工程,1990,(9):50—53
    [39] 丁国良 陈芝久 直冷式电冰箱蒸发器动态特性及其数学模型研究.流体工程1992,20,(4):49-51
    [40] 于兵,阙雄才等 电冰箱制冷系统稳态热力参数的一种新型仿真方法.制冷学报.1994.No.3.:27-31
    [41] 葛云亭,彦启森蒸发器动态参数数学模型的建立与理论计算制冷学报,1995,1:9-17
    [42] 葛云亭,彦启森冷凝器动态参数数学模型的建立与理论计算制冷学报,1995,3:17-26
    [43] 沈胜强,李素芬,夏远景.喷射式热泵的设计计算与性能分析[J].大连理工大学学报,1998,38(5):558-561.
    [44] 刘志强,沈胜强,李素芬 喷射器一维设计理论的研究进展.热能动力工程,2001,16(1):229-232
    [45] 刘志强等,蒸汽喷射式热泵性能实验研究.大连理工大学学报,2001,41(30):310-313.
    [46] I.W. Eames, J. Aphomratana and H Haider. Theoretical and experimental study of a small-scall steam jet refrigerator. Int. J. Refrig, 1995,18(6):387-390
    [47] D.W. SUN, I.W. Eames. Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Conversion & Management, 1999,40(3):873-884
    [48] 林贵平,袁修干.喷射式制冷系统工质研究.太阳能学报1998,Vol,19.NO,2:178-182
    [49] Dossat, R., Principles of Refrigeratian, John Wiley, NewYork (1961)
    [50] Holton, W.,Columbs, Ohio, Effect of molecular weight of entrained fluid on the performance of steam jet ejectors ASME Transaction (1951) 905-910
    [51] 何梓年,蒋富林等.热管式真空管集热器的热性能研究.太阳能学报,Vol,15,No.1,1994,1 pp73--82
    [52] 何梓年,郑维杰,林渡明.热管式真空集热管的热性能测定方法.太阳能学报,1990.
    
    11(1):108-112
    [53] Ribot J, McConnell R D. Testing and analysis of a heat pipe solar collector. ASME J. of Solar Energy Engineering, 1983,105:440-445
    [54] Ezekwe C I, Thermal performance of heat pipe solar energy systems. Solar and Wind Technology, 1990, 7(4):349-354
    [55] Keenna, J.H., Neumann, E.P. and Lustwerk, F., An Investigation of ejector design by analysis and Experiment. ASME J. Appl. Mech. 17, 299-309,1950
    [56] KEENAN J H, NEUMANN E P. A simple air ejector [J] . J Applied Mechanics, TransASME, 1942,64:A75-A81.
    [57] E·R·索科洛夫,H·M·津格尔.喷射器.北京:科学出版社,1977
    [58] H. Narmine, M.M. Aly Karameldin. Shamloul. Modeling and simulation ofsteam jet ejectors. Dedalination, 1999, 23:1-8.
    [59] Shah, M M. A General Correlation for Heat Transfer During Film Condensation Inside Pipes. Int J Heat Mass Transfer, 1979,22(4):547-556
    [60] 李妩,陶文铨,康海军等.整体式翅片管换热器传热和阻力性能的试验研究.机械工程学报,1997,33(1):81-86
    [61] Escanes F, Perez-Segarra C D, Oliver A. Numerical simulation of capillary-tube expansion devices. Int J Refrigeration, 1995, 18(2): 113~122
    [62] Churchill S W. Frictionalequation spans all fluid flow refimes. Chemical Engineering, 1977,84:91-92
    [63] MacAdams W H, Wood W K, BryanR L. Vaporation inside horizontal tubes-ⅱ-benzene-oil mixture, Transactions of the ASME, 1942,64:193
    [64] Ding G L, Zhang C L, Li H, et al. Modeling flow characteristics of capillary tubes: extension to include superheated regime. In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, California, USA, 1999
    [65] Gungor K E Winterton R H S. A general correlation for flow boiling in tubes and annuli. Int. Heat Mass Transfer
    [66] M.G. Cooper. Saturation nucleate pool boiling. A simple correlation. 1st U.K. National Conference on Heat Transfer Vol. 2. pp. 785-793. (1. Chem. E. Symposium series No. 86.1984)
    [67] 丁国良,张春路等 制冷空调装置智能仿真方法研究初探.制冷学报,1998,2:10-14
    [68] 丁国良,张春路等 神经网络在空调器仿真中的应用研究.制冷学报,1999,2:31-37
    [69] 丁国良,张春路等 制冷空调装置智能仿真 科学出版社.2002,6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700