用户名: 密码: 验证码:
复杂非均质土中桩土竖向振动理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析了非均质土中纵向振动荷载作用下桩的动力响应问题。基于土体及桩的本构关系,建立非均质土体平面的或三维轴对称的波动方程及一维粘弹性或弹性桩的波动方程,再引入边界条件以及桩-土接触条件,采用解析的方法求解桩-土动力振动方程,由此建立了非均质土体的复刚度传递平面应变模型以及三维轴对称连续介质模型,较系统和深入地研究了弹性桩或粘弹性桩与非均质土在纵向振动力作用下的动力耦合振动问题。主要工作和创新成果包括:
     1.在考虑土体径向非均质性情况下,利用平面应变土体模型,结合边界条件对黏弹性土体从外至内通过复刚度传递,求得土体与桩接触面上的复刚度,进而推导得到单桩桩顶受纵向激振力作用下的桩振动方程的频域表达式,再利用卷积定理和Fourier逆变换得到桩顶的时域响应半解析解。基于所得解对桩-土耦合振动的机理以及土体动力反应特性进行研究,重点研究了土体的非均质性对桩-土动力特性的影响。研究表明,土体的非均质性对桩-土动力特性有着明显的影响,考虑土体非均质性十分必要。
     2.在考虑土体径向非均质性情况下再考虑纵向成层性,利用复刚度传递平面应变土体模型求得纵向不同性质桩侧土层的复刚度,进而对各段变截面粘弹性桩身从下往上逐段推导得到单桩桩顶受纵向激振力作用下的桩基振动的频域响应解析解以及时域半解析解。通过对土体参数研究,得出了双向非均质土中桩顶动力响应的特性。
     3.在三维轴对称条件下利用连续介质理论研究径向非均质土中桩-土的纵向振动问题。对任意圈层完全连续土体动力平衡方程由外而内逐圈层求解,进而利用桩-土完全耦合条件求解桩动力平衡方程,得到桩顶的频域响应解析解和时域响应半解析解。在此基础上,研究了双向非均质土中粘弹性支承桩受纵向动力荷载作用下的响应问题,得到了桩基振动的频域解析解和时域半解析解。对桩身变阻抗性质和土体非均质的研究,用以揭示非均质土中变截面桩的振动特性。
     4.对径向非均质土体中复刚度传递的多圈层平面应变模型、多弹簧串联的多圈层平面应变模型和精确的三维连续介质模型进行对比研究,发现复刚度传递的多圈层平面应变模型和精确的三维连续介质模型在绝大多数情况下计算结果比较接近,而采用多弹簧串联的多圈层平面应变模型的结果误差较大,说明复刚度传递平面应变模型具有足够高精度,可以用相对简单的复刚度传递平面应变模型代替复杂的连续介质模型进行桩-土动力研究。
     5.通过对桩底支承的研究,提出了虚土桩模型,把桩底有限层土体对桩基的支承作用模拟为一段土柱,土柱与桩完全接触,从而求得桩顶频域响应解析解和时域响应半解析解。虚土桩法求解桩基动力响应问题,桩底土支承直接与土体性质联系,使桩-土动力耦合作用更严密更精确。
     本文是在其他现有理论上的基础上进一步深入的理论,全面分析了桩-非均质土耦合振动问题,揭示了非均质土中桩基振动的机理。
Dynamic response analysis of a pile considering soil inhomogeneity under vertical vibration load is presented. Dynamic wave equations of plane or three-dimensional axisymmetric inhomogeneous soil and one-dimensional viscoelastic or elastic pile are constructed based on constitutive relations of soil and pile. Leading-in boundary conditions and pile-soil contact condition, the dynamic equations are solved by analytical solution method, thereout a complex stiffness transfer plane-strain model or three-dimensional axisymmetric continuum medium model in inhomogeneous soil are constructed. The dynamic interactions of pile and inhomogeneous soil under vertical vibration load are systematically investigated. The principal contents and original work are as follows:
     1. A new model for analyzing vertical dynamic response of pile under vibration load is presented. The soil is assumed to be viscoelastic and radially inhomogeneous, by utilizing the plane strain model and combining the boundary condition, complex stiffness at the interface of pile and soil is derived by complex stiffness transfer method from outer zone to inner zone. Then, the pile is modeled as one-dimension elastic theory valid for long straight bar, the expression of the impedance function and frequency response function at pile top are derived by solving the dynamic equation. Subsequently, the relevant responses in time domain are obtained by the convolution theorem and the Inverse Fourier Transform. Finally, pile-soil interactions and dynamic characteristics of soil are obtained by investigating the influences of soil inhomogeneity caused by construction. The researched results prove that soil inhomogeneity is necessary to take into account and complex stiffness transfer plane strain model considering the soil inhomogeneity is fit for the engineering practice.
     2. The soil is assumed to be radially inhomogeneous and vertically layered. At first, complex stiffness at the interface of pile sections and soil is derived by complex stiffness transfer plane strain model, and then an analytical solution of dynamic response in frequency domain and a semi-solution of dynamic response in time domain are derived by solving the dynamic equations of pile sections from bottom to top step by step. Finally, rules of dynamic response in vertical layered and radially inhomogeneous soil are obtained by soil parametric analysis.
     3. A radially inhomogenous continuum medium model is presented. Based on the three-dimensional axisymmetric soil model, the vertical dynamic response of a pile embedded in radially inhomogeneous soil layers caused by construction effect of pile is investigated, in which the soil surrounding the pile is subdivided into arbitrary numerous annular zones to consider the inhomogeneity of soil. Then combining the boundary conditions and continuum conditions of displacement and stress between adjacent soil zones, the dynamic equilibrium equations of every soil zone are solved one by one from outer zone to inner zone. At last, by means of the coupled condition of pile-soil interface, the dynamic equilibrium equation of pile is also solved and analytical solutions in frequency domain and semi-analytical solutions in time domain are obtained. Based on the new model, dynamic response of pile in radially inhomogeneous layered soil under vertical dynamic loading is investigated. Analytical solutions in frequency domain and a semi-analytical solution in time domain are obtained. Influences of a pile with variable impedance and layered imhomogeneous soil are investigated, the rules of dynamic response of pile with variable impedance in vertical layered and radially inhomogeneous soil.
     4. The comparisons of complex stiffness transfer plane-strain model, series connection spring plane-strain model and precise three-dimensional continuous medium model in radially inhomogeneous soil are presented. The comparative results of the three models show that the differences between the 3-D continuum model and the complex stiffness transfer plane-strain model are small as a whole, and the precision of complex stiffness transfer plain-strain model is enough. However, the contrastive results also show that precision of the series connection spring plane-strain model is short. It can be concluded that complex stiffness transfer plane-strain model which has enough precision and relative simpleness can substitute the 3-D continuous medium model to analyze the pile-soil dynamic response in general cases.
     5. Based on some researches of support at the pile bottom, "fictitious soil pile" model is present, in which the finite soil layer below the pile bottom is modeled as a fictitious soil pile with soil parameters. The fictitious soil pile and pile is continuous and then the analytical solution and semi-analytical solution of dynamic response at the top of pile in frequency domain or time domain are obtained, respectively. It could be proved that the results are much more rigorous and precise by the "fictitious soil pile" model than other approximate model.
     The vertical pile-soil dynamic interaction models in inhomogeneous soil layers developed in this dissertation are the further theories based on existing pile-soil theories. Pile-inhomogeneous soil dynamic interaction is completely investigated to point out the rules of pile vibration.
引文
[1] Assaf Klar and Sam Frydman, Three-dimensional analysis of lateral pile response using two-dimensional explicit numerical scheme. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002,128(9): 775-784.
    
    [2] Awojobi, A.O. and Grootenhuis, P. Vibration of rigid bodies on semi-infinite elastic media.Proceedings of the Royal Society of London, 1965,287(A): 27-63.
    [3] Bycroft, G. N., Forced vibrations of a rigid circular plate on a sem-infinite elastic space and on an elastic stratum. Philosophical Transaction of the Royal Society of London. 1956, 248(948),P327-368.
    [4] Davies, T. G., Sen, R. and Banerjee P. K., Dynamic behavior of pile groups in inhomogeneous soil. Journal of the Geotechnical Engineering, 1985,111(12): 1365-1379.
    [5] El Marsafawi H. and Han Y. C., Dynamics experiments on two pile groups. Journal of Geotechnical Engineering, ASCE, 1992,118(4): 576-592.
    [6] El Naggar M. H. and Novak M., Nonlinear axial interaction in pile dynamics. Journal of Geotechnical Engineering, ASCE, 1994, 120(4): 678-696.
    [7] El Naggar M. H. and Novak M., Nonlinear lateral interaction in pile dynamics. Soil Dynamics and Earthquake Engineering, 1995,14: 141-157.
    [8] El Naggar M. H. and Novak M., Nonlinear analysis for dynamic lateral pile response. Soil Dynamics and Earthquake Engineering, 1996,15: 233-244.
    [9] El Naggar M. H., Vertical and torsional soil reactions for radially inhomogeneous soil layer[J].Structural Engineering and Mechanics, 2000,10(4): 299-312.
    [10] Gazetas, G., Seismic response of end-bearing single piles. Soil dynamics and earthquake Engineering, 1984, 3(2): 82-93.
    
    [11] Gazetas, G.; Dobry, R. and Tassoulas, J. L. Vertical response of arbitrarily shaped embedded foundations. Journal of Geotechnical Engineering, ASCE, 1985, 111(6): 750-771.
    
    [12] Gazetas, G. and Makris, N. Dynamic pile-soil-pile interaction. I: Analysis of axial vibration.Earthquake Engineering and Structure Dynamics, 1991, 20(2): 115-132.
    [13] Gazetas G, Fan K., Kaynia AM, Kausel E. Dynamic interaction factors for floating pile groups.Journal of Geotechnical Engineering. ASCE 1991,117: 1531-1548.
    [14] Guo W. D. and Randolph M. F., Vertical loaded piles in non-homogeneous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2000; 24:135-163.
    [15] Guo W. D., Visco-elastic load transfer models for axially loaded piles. International Journal for Numerical and Analytical Methods in Geomechanics, 1997; 21:507-532.
    [16] Han Y. C., Dynamic vertical response of piles in nonlinear soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997,123(8):710-716.
    [17] Han, Y.C. Coupled vibration of embedded foundation. Journal of Geotechnical Engineering, ASCE, 1989, 115(9): 1227-1238.
    [18] Han, Y.C. and Vaziri, H., Dynamic response of pile group under lateral loading. Soil Dynamics and Earthquake Engineering, 1992, 11(2): 87-99.
    [19] Vaziri, H. and Han, Y.C., Impedance functions of piles in inhomogeneous media. Journal of Geotechnical Engineering, ASCE, 1993, 119(9): 1414-1430.
    [20] Han, Y.C. and Sabin, G.C.W. Impedance for radially inhomogeneous viscoelastic soil media.Journal of Engineering Mechanics, ASCE, 1995, 121(9): 939-947.
    [21] Han Y. C., Dynamic vertical response of piles in nonlinear soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(8):710-716.
    [22] Kagawa, T. Dynamic soil reaction to axially loaded piles. Journal of Geotechnical Engineering,ASCE, 1991, 117(7): 1001-1020.
    [23] Kattis, S.E.; Polyzos, D.and Beskos, D.E. Vibration isolation by a row of piles using a 3-D Frequency domain BEM. International Journal of Numerical Methods in Engineering, 1999,46:713-28.
    [24] Kaynia A.M., Kausel E. Dynamics of piles and pile groups in layered soil media. Soil Dynamics and Earthquake Engineering, 1991, 10:386-401.
    [25] Keming, Sun and Pires, J. A. Simplified approach for pile and foundation interaction analysis.Journal of Geotechnical Engineering, ASCE, 1993, 119(9): 1462-1479.
    [26] Konagai, K. and Nogami, T., Time-domain axial response of dynamically loaded pile groups.Journal of Engineering Mechanics, ASCE, 1987,113(3): 417-430.
    [27] Konagai, K. and Nogami, T., Subgrade model for transient response analysis of multiple embedded bodies. Earthquake Engineering and Structural Dynamics, 1994,23: 1097-1114.
    [28] Kuhlemyer, R. L., Vertical vibration of piles. Journal of the Geotechnical Engineering Division,ASCE, 1979(a), 105(2): 273-287.
    [29] Kuhlemyer, R. L., Static and dynamic laterally loaded floating piles. Journal of the Geotechnical Engineering Division, ASCE, 1979(b), 105(2): 289-304.
    [30] Lee, S. L.; Kog, Y. C. And Karunaratne, G. P., Axially loaded piles in layered soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 113 (4): 366-381.
    [31] Lei, Z. K.; Cheung, Y. K. and Tham, L. G., Vertical response of single piles: transient analysis by time-domain BEM. Soil Dynamics and Earthquake Engineering, 1993, 12:37-49.
    [32] Liyanapathirana, D. S. and Poulos, H. G., Seismic lateral response of pile in liquefying soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(12): 1466-1479.
    [33] Maeso, O.; Aznarez, J. J. and Garcia, F. Dynamic impedances of piles and groups of piles in Saturated soils. Computers and Structures, 2005, 83: 769-782.
    [34] Maheshwari B. K.; Truman, K. Z.; Gould,P. L. and El Naggar, M. H., Three-Dimensional Nonlinear Seismic Analysis of Single Piles Using Finite Element Model: Effects of Plasticity of Soil. International Journal of Geomechanics, ASCE, 5(1): 35-44.
    [35] Mamoon, S. M.; Kaynia, A. M. and Banerjee, P. K., Frequency domain dynamic analysis of piles and pile groups. Journal of Engineering Mechanics, ASCE, 1990,116(10): 2237-2257
    [36] Matlock H, Foo S.H.C, Axial analysis of piles using a hysteretic degrading soil model. Proc. Int. Symp. Numer. Methods Offshore Piling, Institute of Civil Engineers, London, England, 1979.
    [37] Miura, K., Kaynia A.M. and Masuda K., Kitamura E, Seto Y. Dynamic behavior of pile foundations in homogeneous and non-homogeneous media. Earthquake Engineering and Structural Dynamics, 1994, 23: 183-192.
    [38] Nogami, T. and Novak, M., Soil-pile interaction in vertical vibration. Earthquake Engineering and Structural Dynamics, 1976,4: 277-293.
    [39] Nogami, T. and Novak, M., Resistance of soil to a horizontally vibrating pile. International Journal of Earthquake Engineering and Structural Dynamics, 1977,3(3): 247-261.
    [40] Nogami, T. and Novak, M. Coefficients of soil reaction to pile vibration. Journal of the Geotechnical Engineering Division, ASCE, 1980,106(GT5): 565-570.
    [41] Nogami, T., Dynamic group effect axial responses of grouped pile. Journal of the Geotechnical Engineering, ASCE, 1983, 109(2): 228-243.
    [42] Nogami, T. and Konagai. K. Time domain axial response of dynamically loaded single piles.Journal of Engineering Mechanics, ASCE, 1986,112(11): 1241-1252.
    [43] Nogami, T. and Konagai, K., Dynamic response of vertically loaded nonlinear pile foundations.Journal of Geotechnical Engineering, ASCE, 1987,113(2): 147-160.
    [44] Nogami, T. and Konagai, K. Time domain flexural response of dynamically loaded single piles.Journal Engineering Mechanics, ASCE, 1988, 114(9): 1512-1525.
    [45] Nogami, T.; Otani J.; Konagai, K. and Chen, H. L., Nonlinear soil-pile interaction model for dynamic lateral motion. Journal of Geotechnical Engineering, ASCE, 1992,118(1): 89-106.
    [46] Nogami, T.; Ren F. Z.; Konagai, K. and Chen, J. W., Vertical vibration of pile in vibration-induced excess pore pressure field. Journal of Geotechnical Engineering, ASCE, 1997,123(5): 422-429.
    [47] Novak, M. and Beredugo, Y.O. Vertical vibration of embedded footings. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972,98(SM12): 1291-1310.
    [48] Novak, M. Dynamic stiffness and damping of piles. Canadian Geotechnical Journal, 1974, 11(4):574-598.
    [49] Novak, M. Vertical vibration of floating piles. Journal of the Engineering Mechanics Division,ASCE, 1977, 103(EM1): 153-168.
    [50]Novak,M.and Nogami,T.,Soil-pile interaction in horizontal vibration.International Journal of Earthquake Engineering and Structural Dynamics,1977,5(3):153-168.
    [51]Novak,M.and Aboul-Ella,F.Impedance functions of piles in layered media.Journal of the Engineering Mechanics Division,ASCE,1978,104(EM6):643-661.
    [52]Novak,M.and Aboul-Ella,F.Dynamic soil reaction for plane strain case.Journal of the Engineering Mechanical Division,ASCE,1978,104(EM4):953-959.
    [53]Novak,M.and Sheta,M.Approximate approach to contact problems of piles.Proceedings of the Geotechnical Engineering Division,American Society of Civil Engineering National Convention,Florida,1980:53-79.
    [54]Novak,M.and Han,Y.C.Impedances of soil layer with disturbed boundary zone.Journal of Geotechnical Engineering,ASCE,1990,116(6):1008-1014.
    [55]Novak,M.Piles under dynamic loads.Proceedings of 2~(nd) International Conference on Recent Advances in Geotechnical earthquake Engineering and Soil Dynamic.University of Missouri-Rolla,1991,2433-2457.
    [56]Padron,L.A.;Aznarez,J.J.and Maeso,O.,Dynamic analysis of piled foundations in stratified soils by a BEM-FEM model.Soil Dynamic and Earthquake Engineering,2008,28(5):333-346.
    [57]Poulos,H.G.and Davis,E.H.Pile foundation analysis and design.Wiley,New York.
    [58]Rajapakse,R.K.N.D.A torsion load transfer problem for a class of non-homogeneous elastic solids.International Journal of Solids and Structures,1988,24(2):139-151.
    [59]Rajapakse,R.K.N.D.A note on the elastodynamic load transfer problem.International Journal of Solids and Structures,1988,24(7):963-972.
    [60]Rajapakse,R.K.N.D.Dynamics of piles:A critical evaluation of continuum solution models.Proc.CSCE Annual Conference,Calgary,Canada,1988,Ⅲ:216-236.
    [61]Rajapakse,R.K.N.D.Stress analysis of borehole in poroelastic medium.Journal of Engineering Mechanics,ASCE,1993,119(6):1205-1227.
    [62]Rajapakse,R.K.N.D.and Senjuntichai,T.Dynamic response of a multi-layered poroelastic medium.Earthquake Engineering and Structural Dynamics,1995,24:703-722.
    [63]Rajapakse,R.K.N.D.and Selvadurai,A.P.S.Torsional stiffness of non-uniform and hollow rigid piers embedded in isostropic elastic media.International Journal for Numerical and Analytical Methods in Geomechanics,1985,9:525-539.
    [64]Rajapakse,R.K.N.D.and Shan,A.H.On the lateral harmonic motion of an elastic bar embedded in an elastic half space.International Journal of Solids and Structures,1987,23(2):287-303.
    [65]Rajapakse,R.K.N.D.and Shah,A.H.Impedance curves for an elastic pile.Soil Dynamics and Earthquake Engineering,1989,8(3):145-152.
    [66]Rajapakse,R.K.N.D.,Shan,A.H.and Datta,S.K.Torsional vibrations of elastic foundations embedded in an elastic half-space.Earthquake Engineering and Structural Dynamics,1987,15: 279-297.
    [67] Randolph, M.F. and Worth, C.P. Analysis of deformation of vertically loaded piles. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104: 1465-1487.
    [68] Randolph, M. F. and Wroth, C. P., An analysis of the vertical deformation of pile groups.Geotechnique, 1979,29(4): 423-439.
    [69] Randolph, M.F. The response of flexible piles to lateral loading. Geotechnique, 1981, 31(2):247-259.
    [70] Randolph, M.F. Piles subjected to torsion. Journal of the Geotechnical Engineering Division,ASCE, 1981, 107(GT8): 1095-1111.
    [71] Reissner, E., Axialsymmetrische durch eine schuttelnde masse erregte schwingungen eines homogenen elastischen halbraumes. Ing.-Arch. 1936(7):381-396
    [72] Robertson, I.A. On a proposed determination of the shear modulus of an isotropic half-space by the forced torsional oscillations of a circular disc. Appl. Sci. Res., 1966,17: 305-312.
    [73] Schmitt, P.D. Acoustic multipole logging in transversely isotropic poroelastic formations. Journal of the Acoustical Society of America, 1989, 86(6): 2397-2421.
    [74] Selvadurai, A.P.S. and Rajapakse, R.K..N.D. Variational schemes for torsion of non-uniform bars embedded in elastic media. Journal of Engineering Mechanics, ASCE, 1987,113(10): 1534-1550.
    [75] Sen, R., Davies, T.G. and Banerjee, P.K. Dynamic analysis of piles and pile groups embedded in homogeneous soils. Earthquake Engineering and Structural Dynamics, 1985,13(1): 53-65.
    [76] Sen, R., Kausel, E. and Banerjee, P.K. Dynamic behavior of axially and laterally loaded piles and pile groups embedded in inhomogeneous soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1985,9: 507-524.
    [77] Senjuntichai, T. and Rajapakse, R.K..N.D. Transient response of a circular cavity in a poroelastic medium. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17:357-383.
    [78] Senjuntichai, T. and Rajapakse, R.K.N.D. Dynamic Green's functions of homogeneous poroelastic half-space. Journal of Engineering Mechanics, ASCE, 1994,120(11): 2381-2404.
    [79] Senjuntichai, T. and Rajapakse, R.K.N.D. Vertical vibration of an embedded rigid foundation in a poroelastic soil. Soil Dynamics and Earthquake Engineering, 2006,26:626-636.
    [80] Sharma, M.D. and Gogna, M.L. Wave propagation in an isotropic liquid-saturated porous solids.Journal of the Acoustical Society of America, 1991, 90: (2), Pt.1: 1068-1073.
    [81] Sheta, M. and Novak, M. Vertical vibration of pile groups. Journal of the Geotechnical Engineering Division, ASCE, 1982,108(GT4): 570-590.
    [82] Simon, B.R., Zienkiewicz, O.C. and Paul, D.K. An analytical solution for the transient response of saturated porous elastic solids. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8: 381-398.
    [83] Stehfest, H. Numerical inversion of Laplace transforms. Communication Association Comput.Machines, 1970, B: 47-49.
    [84] Tahghighi, H. and Konagai, K.., Numerical analysis of nonlinear soil-pile group interaction under lateral loads. Soil Dynamics and Earthquake Engineering, 2007,27: 463-474.
    [85] Vaziri, H. and Han, Y.C. Impedance functions of piles in inhomogeneous media. Journal of Geotechnical Engineering, ASCE, 1993,119(9): 1414-1430.
    [86] Veletsos, A.S. and Dotsos, K.W. Impedances of soil layer with disturbed boundary zone. Journal of Geotechnical Engineering, ASCE, 1986,112(3): 363-368.
    [87] Veletsos, A.S. and Dotsos, K.W. Vertical and torsional vibration of foundations in inhomogeneous media. Journal of Geotechnical Engineering, ASCE, 1988,114(9): 1002-1021.
    [88] Veletsos, A.S. and Nair, V.V.D. Torsional vibration of viscoelastic foundations. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(GT3): 225-246.
    [89] Veletsos A.S. and Nair V.V.D. Response of torsionally excited foundations. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(GT4): 476-482.
    [90] Veletsos A.S. and Younan A. H., Dynamic modeling and response of rigid embedded cylinders.Journal of Engineering Mechanics, ASCE, 1995,121(9): 1026-1035.
    [91] Wang C.D. and Liao J.J. Elastic solutions for a transversely isotropic half-space subjected to buried asymmetric-loads. International Journal for Numerical and Analytical Methods in Geomechanics, 1999,23: 115-139.
    [92] Wang, G.C, Ge, W., Pan, X.D. and Wang, Z. Torsional vibrations of single piles embedded in saturated medium. Computers and Geotechnics, 2008, 35(1): 11-21.
    [93] Wang, J.H., Zhou, X.L. and Lu, J.F. Dynamic response of pile groups embedded in a poroelastic medium. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 235-242.
    [94] Wang, Y. and Rajapakse, R.K.N.D. Transient fundamental solutions for a transversely isotropic elastic half-space. Proceedings of the Royal Society of London, 1993, A(442): 505-531.
    [95] Wolf, J.P. A comparison of time-domain transmitting boundaries. Earthquake Engineering and Structure Dynamics, 1986, 14(4):655-673.
    [96] Yang, J. and Sato, T., Analytical study of saturation effects on seismic vertical amplification of a soil layer. Geotechnique, 2001, 51(2): 161-165.
    [97] Yesilce Y.and Catal H. H., Free vibration of piles embedded in soil having different modulus of subgrade reaction. Applied Mathematical Modelling, 2008, 32:889-900
    [98] Zeng, X. and Rajapakse, R.K.N.D. Dynamic axial load transfer from elastic bar to poroelastic medium. Journal of Engineering Mechanics, ASCE, 1999,125(9): 1048-1055.
    [99] Zienkiewicz, O.C., Chang, C.T. and Bettess, P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Geotechnique, 1980,30(4): 385-395.
    [100] Zhou X.L., Wang, J.H. and Lu, J.F. Transient dynamic response of poroelastic medium subjected to impulsive loading.Computers and Geotechnics,2003,30:109-120.
    [101]陈龙珠,吴世明,曾国熙.弹性波在饱和土层中的传播.力学学报,1987,19(3):276-282.
    [102]陈少林,寥振鹏.两相介质动力学问题的研究进展.地震工程与工程振动,2002,22(2):1-8.
    [103]陈胜立,贺海洪.横观各向同性层状饱和地基的轴对称二维Biot固结分析.上海交通大学学报,2005,39(5):760-763.
    [104]陈胜立,张建民.横观各向同性饱和地基轴对称Biot固结问题的解析解.岩土工程学报,2002,24(1):26-30.
    [105]胡安峰,谢康和,应宏伟,钱磊.粘弹性地基中考虑桩体剪切变形的单桩水平振动解析理论.岩石力学与工程学报,2004,23(9):1515-1520.
    [106]胡昌斌.考虑土竖向波动效应的桩土纵向耦合振动理论[博士学位论文].杭州:浙江大学,2003.
    [107]胡昌斌,王奎华,谢康和.考虑桩土耦合作用时弹性支承桩纵向振动特性分析及应用.工程力学,2003,20(2):146-154.
    [108]胡昌斌,王奎华,谢康和.基于平面应变假定基桩振动理论适用性研究.岩土工程学报,2003,25(5):595-601.
    [109]胡昌斌,王奎华,谢康和.桩与粘性阻尼土耦合纵向振动时桩顶时域响应研究.振动工程学报,2004,17(1):72-77。
    [110]胡昌斌,黄晓明.成层粘弹性土中桩土耦合纵向振动时域响应研究.地震工程与工程振动,2006,26(4):205-211。
    [111]胡亚元.横观各向同性饱和土中波的传播[博士学位论文].杭州:浙江大学,1998.
    [112]龚晓南.高等土力学.杭州:浙江大学出版社,1996.
    [113]龚晓南.土塑性力学.杭州:浙江大学出版社,1997.
    [114]孔德森,栾茂田.桩土相互作用分析中的动态Winkler模型研究评述.世界地震工程,2005,21(1):12-17.
    [115]蒯行成,沈蒲生.层状土中单桩水平振动的动力阻抗.湖南大学学报(自然科学版)1998.25(3):51-54,95.
    [116]蒯行成,沈蒲生,陈军.一种用于桩基础动力相互作用的桩单元复刚度矩阵.土木工程学报,1998,31(5):48-55.
    [117]蒯行成,沈蒲生.层状介质中群桩的竖向和摇摆动力阻抗的简化计算方法.土木工程学报,1999,32(5):62-70.
    [118]蒯行成,沈蒲生.层状介质中群桩水平动力阻抗的简化计算方法.振动工程学报,1999,11(3):258-264。
    [119]李强.考虑三维波动的饱和土中桩纵向耦合振动理论[博士学位论文].杭州:浙江大学,2004.
    [120]李强,王奎华,谢康和.饱和土中端承桩纵向振动特性研究.力学学报,2004a,36(4):435-442.
    [121]李强,王奎华,谢康和.饱和土桩纵向振动引起土层复阻抗分析研究.岩土工程学报,2004b,26(5):679-683.
    [122]李强,王奎华,谢康和.饱和土中大直径嵌岩桩纵向振动特性研究.振动工程学报,2005,18(4):500-505.
    [123]李耀庄,王贻荪,邹银生.粘弹性地基中桩的动力反应分析.湖南大学学报,2000,27(1):92-96.
    [124]梁发云,李镜培,陈龙珠.层状地基中单桩性质的积分方程解法及其参数.同济大学学报,2006,34(9):1159-1165。
    [125]廖振鹏.工程波动理论导论(第二版).北京:科学出版社,2002.
    [126]刘东甲.不均匀土中多缺陷桩的轴向动力响应.岩土工程学报,2000,22(4):391-395.
    [127]刘东甲.纵向振动桩侧壁切应力频率域解及其应用.岩土工程学报,2001,23(5):544-546.
    [128]刘东甲,刘煜洲,王杰英.扭转波应用于低应变动力测桩的理论研究.岩土工程学报,2003,25(3):283-287.
    [129]陆建飞.饱和土中的桩土共同作用问题研究[博士学位论文].上海:上海交通大学,2000.
    [130]陆建飞,王建华,沈为平.半空间饱和土中在内部简谐水平力作用下的Green函数.地震学报,2001,23(2):185-191.
    [131]陆建飞,王建华,沈为平.半空间饱和土中在内部简谐水平力作用下的Green函数.地震学报,2001,23(2):185-191.
    [132]陆建飞,王建华,沈为平.半空间饱和土中在内部简谐水平力作用下的Green函数.地震学报,2001,23(2):185-191.
    [133]陆建飞.频域内半空间饱和土中水平力水平受荷桩的动力分析.岩石力学与工程学报,2002,21(4):577-581.
    [134]栾茂田,孔德森.单桩竖向动力阻抗计算方法及其影响因素分析.振动工程学报,2004,17(4):500-505.
    [135]栾茂田,孔德森.层状土中单桩竖向简谐动力响应简化解析方法.岩土力学,2005,26(3):375-380.
    [136]阙仁波,王奎华,考虑土体径向位移时桩土耦合振动特性及其应用.振动工程学报,2005,24(3):212-218.
    [137]阙仁波,王奎华,考虑土体径三维波动效应时弹性支承桩的振动力理论及其应用.计算力学学报,2005,22(6):658-664.
    [138]阙仁波,王奎华.考虑土体三维波动效应时黏性阻尼土中桩的纵向振动特性及其应用研究.岩石力学与工程学报,2007,26(2):381-390.
    [139]沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [140]王桂敏,李强,王奎华.单层饱和土中桩竖向振动简化模型及其解析解.岩石力学与工程学报,2006,25(增2):4233-4240.
    [141]王海东,费模杰,尚守平,卢华喜.考虑径向非匀质性的层状地基中摩擦桩动力阻抗研究. 湖南大学学报(自然科学版),2006,33(4):6-11。
    [142]王海东,尚守平.瑞利波作用下径向非匀质地基中的单桩竖向响应研究,振动工程学报,2006,19(2):258-264。
    [143]王建华,陆建飞,沈为平.半空间饱和土在内部简谐垂直力作用下的Green函数.水利学报,2001.3:54-57.
    [144]王建华,冯士伦.桩土相互作用的振动台试验研究,岩土工程学报,2004,26(5):616-618.
    [145]王奎华,谢康和,曾国熙.有限长桩受迫振动问题解析解及应用.岩土工程学报,1997,19(6):27-35.
    [146]王奎华,谢康和,曾国熙.变截面阻抗桩受迫振动问题解析解及应用.土木工程学报,1998,31(6):56-67.
    [147]王奎华.考虑桩体粘性的变阻抗桩受迫振动问题的解析解.振动工程学报,1999,12(4):513-520.
    [148]王奎华.变截面阻抗桩纵向振动问题积分变换解.力学学报,2001,33(4):479-491.
    [149]王奎华.多元件粘弹性土模型条件下桩的纵向振动特性与时域响应.声学学报,2002,27(5):455-464.
    [150]王奎华.成层广义Voigt地基中粘弹性桩纵向振动分析与应用.浙江大学学报,2002,36(5):565-595.
    [151]王奎华,应宏伟.广义Voigt土模型条件下桩的纵向振动响应与应用.固体力学学报,2003,24(3):293-303.
    [152]王奎华,阙仁波,夏建中.考虑土体真三维波动效应时桩的振动理论及对近似理论的校核.岩石力学与工程学报,2005,24(8),1362-1370。
    [153]王立忠,陈云敏,吴世明,丁皓江.饱和弹性半空间在低频谐和集中力下的积分形式解.水利学报,1996,2:84-88.
    [154]汪越胜,章梓茂.横观各向同性液体饱和多孔介质中平面波的传播.力学学报,1997,29(3):257-268.
    [155]王腾,王奎华,谢康和.任意段变截面桩纵向振动的半解析解及应用.岩土工程学报,2000,22(6):654-658.
    [156]王腾,王奎华,谢康和.变截面桩速度导纳解析解.岩石力学与工程学报,2002,21(4):573-576.
    [157]王腾,王奎华,谢康和.成层土中桩的纵向振动理论研究及应用.土木工程学报,2002,35(1):83-87.
    [158]王腾.成层土中桩纵向振动理论研究及其在PIT中的应用[博士学位论文].杭州:浙江大学,2001.
    [159]王小岗,黄义.横观各向同性饱和地基的三维动力响应.应用数学和力学,2005,26(11):1278-1286.
    [160]王载舆.数学物理方程及特殊函数.北京:清华大学出版社,1991.
    [161]吴大志.横观各向同性饱和地基与圆形基础的扭转动力相互作用研究[博士学位论文].杭州:浙江大学,2005.
    [162]吴大志,蔡袁强,徐长节,占宏.横观各向同性饱和地基上刚性圆板的扭转振动.应用数学和力学,2006,27(11):1349-1356.
    [163]吴大志,蔡袁强,徐长节,占宏.瞬态扭矩作用下横观各向同性饱和地基的响应.浙江大学学报(工学版),2007,41(1):97-103.
    [164]吴志明,黄茂松,吕丽芳.桩-桩水平振动动力相互作用研究,岩土力学,2007,28(9):1848-1855.
    [165]谢康和,周健.岩土工程有限元分析理论与应用.北京:清华大学出版社,2002.
    [166]徐攸在,刘兴满.桩的动测新技术.北京:中国建筑工业出版社,1989.
    [167]杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988.
    [168]杨军,宋二详,陈肇元.桩在饱和土水平振动的辐射阻尼简化算法.岩土力学,2002,23(2):179-183.
    [169]杨军.饱和土动力反应分析及其在桩基振动阻抗计算中的应用[博士学位论文].北京:清华大学,2002.
    [170]杨峻,吴世明,蔡袁强.饱和土中弹性波的传播特性.振动工程学报,1996,9(2):128-137.
    [171]张献民,蔡婧,王建华.基桩缺陷量化低应变动测研究.岩土工程学报,2003,25(1):47-50.
    [172]张玉红,黄义.饱和土与结构动力相互作用分析.西安公路交通大学学报,2000,20(4):11-13.
    [173]张引科,黄义.横观各向同性饱和弹性多孔介质非轴对称动力响应.应用数学和力学,2001,22(1):56-70.
    [174]张智卿,王奎华,谢康和.饱和土层中桩的扭转振动响应分析.浙江大学学报(工学版),2006,40(7):1211-1218.
    [175]张智卿,王奎华,谢康和,非饱和土层中桩的扭转振动响应分析.岩土工程学报,2006,28(6):729-734。
    [176]张智卿,王奎华,谢康和,李强.考虑地下水位影响时桩的纵向振动特性研究.岩石力学与工程学报,2006,25(Supp.2):4215-4225。
    [177]张智卿.饱和非均质土中桩土耦合扭转振动理论研究[博士学位论文].杭州:浙江大学,2008.
    [178]周香莲,周光明,王建华.垂直受荷群桩在半空间饱和土中的稳态反应.计算力学学报,2005,22(5):598-602.
    [179]周绪红,蒋建国,周银生.粘弹性介质中考虑轴力作用时桩的动力分析.土木工程学报,2005,38(2):87-91,96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700