用户名: 密码: 验证码:
煤中汞与矿物相关特性及燃烧前汞/硫脱除的实验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤是目前最常见的一次常规能源,由燃煤引起的汞和硫的排放已对生态环境和人类健康造成了极大的危害,其相关研究已成为当今国际的热点课题。
     本文以煤燃烧前汞/硫的脱除为主线,把几种典型的中国、加拿大的动力煤和高汞/硫煤为研究对象,从煤中汞/硫的赋存形态入手,通过系统的实验研究和理论分析,探索和研究了温和热解技术和空气重介质流化床干法洗煤两种不同的煤燃烧前汞/硫的脱除方法,揭示了煤中不同形态汞、硫在燃烧前的脱除规律,建立了温和热解汞/硫释放的动力学模型,为开发经济有效的新型燃煤汞/硫排放控制技术,实现燃煤污染物减排奠定了科学的基础。
     论文首先利用煤浮沉试验、逐级化学提取、低温灰化-X射线衍射(LTA-XRD)分析、X射线荧光(XRF)分析等多种分析手段,详细研究了痕量元素汞以及硫在煤中的赋存形态及其和矿物之间的相关特性。发现了在汞在加拿大AB煤与一种罕见的矿物Chaoite有较强的相关特性,在中国贵州两种高汞/硫煤LZ和ZY煤中大部分汞则分别富集在煤中的黄铁矿和高岭石中。
     利用水平管式加热炉进行了煤燃烧前温和热解脱汞脱硫的试验,研究了不同气氛、升温速率、热解温度、停留时间等众多因素对温和热解过程中汞硫联合脱除效率的影响及不同形态硫和汞的释放行为。实验结果表明,煤中90%以上的汞可通过温和热解实现燃烧前的脱除。按照汞在煤中的结合形式不同可将煤中汞分为“可挥发态汞”、“分子结合态汞”和“共价结合态汞”。含氧4%的微氧热解气氛较氮气气氛相比可在350-400℃的低温范围内提高汞的脱除率,同时对煤中黄铁矿硫的脱除也有明显的促进作用;快速升温热解对煤中的汞的释放比程序升温热解有明显的促进作用。动力学计算表明,的微氧气氛下热解400℃时汞释放的反应速率较氮气气氛明显提高,同时不同形态硫释放的活化能也相应降低。热解半焦的微观形态研究表明,快速升温热解时煤的膨胀和裂解更加剧烈,半焦产生了更多的微孔和更大而宽的裂隙,而微氧热解气氛使得热解半焦孔隙结构变得更为复杂,表面粗糙度增加,更有利于煤中汞在热解过程中的释放和逸出。本文对温和热解过程的能耗分析表明,含氧4%微氧气氛、400℃温度下快速热解为燃烧前温和热解汞/硫脱除的最佳工况。
     不同形态的汞和硫在热解过程中释放的温度不同。研究结果表明,富集于煤中有机组分中间的汞的释放温度区间在120-300℃;富集与黄铁矿组分中的汞在温和热解过程的释放温度区间为430-590℃;富集与煤中粘土矿物中的汞则极有可能的释放温度区间为250-350℃。煤中不稳定有机硫在热解过程中最易分解释放,其释放峰在370℃附近;黄铁矿硫分解释放峰在550℃附近,微氧气氛下可使黄铁矿的分解温度降低;而煤中难分解的有机硫在10%氧浓度下在800℃以上的温度才能分解。热解过程中氧分子对煤中化学键的断裂具有选择性,在4%的氧浓度下,氧分子首先断裂煤中C-S键,其次断裂C-C键,而当氧气浓度进一步增大,热解过程中氧分子对煤分子化学键断裂的选择性发生变化,大量的C-C键在10%的氧气浓度下会优于C-S键断裂,从而体现出半焦的热值损失增大。
     在空气重介质流化床上研究了煤中汞和硫在燃烧前干法选洗时的脱除特性。分析研究了空气流速、重介质粒径和密度、煤的粒径、煤的加载量等众多因素对空气重介质流化床干法选煤效率的影响,实现了1-3.66mm细粒径段煤的分选。考察了煤中灰分、硫分、以及重金属汞在燃烧前空气重介质流化床干法选煤中的脱除效率以及经济性。研究表明,煤质特性对空气重介质流化床燃烧前分选过程中的灰分及污染物脱除行为有较大影响。本文研究的煤种在最佳分选条件下的精煤产率达到75.31%,灰分脱除率为45.7%,煤中汞和硫的脱除率达到47.2%和49.3%,可燃基收率为89.4%。
     全文较为系统的研究了汞和硫在煤中的赋存形态,利用空气重介质流化床和温和热解两种方法对煤中汞/硫在燃烧前的脱除机制和行为进行了研究,并利用动力学计算和热力学模拟进行了计算分析,研究结果为开发廉价的燃烧前燃煤污染物联合脱除技术奠定了基础。
Coal is the most popular source of primary energy and the coal-fired power plants are still the main source of the demand for electricity in the world especially in China.With the wide exploitation of coal and the rapid progress of society,clean and efficient utilization of coal has become the most important task during coal utilization.
     The objective of the thesis is to investigate the methods and mechanisms for Hg/S removal before coal combustion.Several typical high Mercury/Sulfur(Hg/S)containing coals and steam coals in China and Canada were selected in this study.The occurrence of Hg/S in these coals were firstly investigate.Then mild thermal upgrading and Air Dense Medium Fludized Bed(ADMFB) were used for the pre-combustion removal of Hg/S.The thesis revealed the mechanisms and rules for the removal of different forms of Hg/S and also obtained the relative kinetics data by systemic experiments and theoretical analysis. The overall research can provide scientific knowledges for the exploitation and development of pollutants controlling technologies.
     The occurrence of Hg and S as well as the correlation between those elements and the minerals in different coals were investigated by using variable methods such as float-sink test,sequential leaching,LTA-XRD analysis and XRF.A strong correlation between Hg and an infrequent mineral Chaoite was found in AB coal from Canada.For the other two Chinese coals,Hg was found to be associated with Pyrite and Kaolinite,respectively.
     The removal and releasing behavior of Hg and S during mild thermal upgrading were studied in the horizontal tube furnace.The results showed that over 90%Hg in coal could be removed by mild thermal upgrading.Mercury in coal can be defined as "volatilizable mercury","molecule bound mercury" and "covalent bond mercury" based on different forms of combination.The study also showed that rapid thermal upgrading and a mild oxidizing atmosphere between 350℃and 400℃can facilitate the release of mercury and pyrite surfur.The kinetics calculation showed that the activation energy of sulfur releasing was decreasd and reaction rate constant k was increased under mild oxidizing atmosphere. It indicated that the mild oxidiazing atmosphere was benifical to the removal of Hg and S for the concern of energy consumption.The formation of more and large sizes of cracks course by rapid thermal upgrading and more complicated pore structure and coarser surface of the char under mild oxidizing atmosphere could be responsible for the increase of Hg,and S removal during thermal upgrading.The thesis indicated that rapid thermal upgrading conducted at 400℃under 4%O_2 oxidizing atmosphere was an optimal working condition for the pre-combustion removal of Hg and S by mild thermal upgrading.
     Different forms of mercury and sulfur were found to release at different temperatures during thermal upgrading.It was detected that Hg associated with pyrite could be released from 400℃up to 550℃while Hg associated with clay minerals could be released from 250℃up to 350℃.The study also indicated that the unstabilized organic sulfur in coal was the easiest to decomposed at 370℃,and the SO_2 released by the decomposition of pyrite was found at 550℃,the mild oxidizing atmosphere can lower the releasing temperature of sulfide sulfur about 50℃,the most stable thiophene sulfur can only be decomposed when the temperature reached to over 800℃under 10%O_2 atmosphere.The determination of gases released from thermal upgrading indicated that oxygen would selectively break C-S bound than C-C bound under 4%O_2 concentration.With the increasing of oxygen content,more C-C bounds were broken together with C-S bond which will result in the significant loss of heat value of the char.
     The dry coal cleaning experiments for Hg/Sulfur removal were conducted on ADMFB.Various factors which could influence the efficiencies of the separation of ADMFB were investigated in this study.Under the optimal separation conditions,the fine coal particles with the particle size range from 1 to 3.66mm were separated successfully.The study showed that the characteristics of coal effected theseparation efficiencies distinctly,the best separation for dry coal cleaning could obtain about 75.31% yield of clean coal,45.7%ash rejection,47.2%and 49.3%at the highest Hg and S rejection and also the combustible recovery at about 89.4%.
     The thesis has systematically studied the occurrence of Hg and S in different coals, and investigated the mechanisms and behaviours of Hg/S removal by using two different methods,and also provided the thermodynamic and kinetic data.The conclusions could be useful for the exploitation of low-cost emission controlling technologies before coal combustion.
引文
[1]江泽民.对中国能源问题的思考,上海交通大学学报,2008,42(3):345-359
    [2]中华人民共和国国家统计局.中国统计年鉴2007[M].北京:中国统计出版社,2007
    [3]BP世界能源统计2008.http://www.bp.com.Cn,2008
    [4]中国能源信息网,http://www.zgnyb.com/,2003
    [5]U.S.Environmental.Protection Agency White Paper.Available on the World Wide Web at http://www.epa.gov/mercury/reprot.Htm,1998
    [6]U.S.EPA.A Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units:Final Report to Congress;EPA-453/R-98-004a;U.S.EPA Office of Air Quality Planning and Standards,U.S.Government Printing Office:Washington,DC,1998
    [7]王起超,沈文国.中国燃煤汞排放量估算.中国环境科学,1999,25(4):587-592
    [8]张明泉,朱元成,邓汝温.中国燃煤大气排放汞量的估算与评述.人类环境杂志,2002,31(6):482-484
    [9]任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究:[博士学位论文].杭州:浙江大学图书馆,2003
    [10]陈清,卢国强.微量元素和健康.北京:北京大学出版社,1989:193-210
    [11]喜田村正次,近藤雅臣,藤井正美.汞.原子能出版社,1988,3
    [12]Mercury Study Report to Congress.Volume Ⅰ:Executive Summary.United State Environmental Protection Agency,December 1997
    [13]Chu P.,Porcella D.B.Mercury stack emissions from U.S.electric utility power plants.Water,Air and Soil Pollution,1995,80:135-144
    [14]Itri P.A.D.,Itri F.D.Mercury contamination a human tragedy.Wiley,New York,1977:23-24
    [15]Clarkson T.W.,Amin-Zaki L.,Al-Tikriti S.K.An outbreak of methylmercury poisoning due to consumption of contaminated grain.Mass Health Disasters Related to Environmental Chemicals,1976,35(12):2395-2399
    [16]Finkelman R.B.Mercury in coal and mercury emissions from coal combustion.In:Gray,J.E.(Ed.),Geologic studies of mercury by the US Geological Survey.2003,US Geological Survey Circular,1248:9-11
    [17]Diehl S.F.,Goldhaber M.B.,Hatch J.R.Modes of occurrence of mercury and other trace elements in coals from the warrior Weld,Black Warrior Basin,Northwestern Alabama.International Journal of Coal Geoleology 2004,59(3-4):193-208
    [18]BrownWeld M.E.,AVolter R.H.,Cathcart J.D.,et al.Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone,Puget Group,John Henry No.1 mine,King County,Washington,USA.International Journal of Coal Geoleology,2005,63(3-4):247-275
    [19]Bragg L.J.,Oman J.K.,Tewalt S.J.,et al.US Geological Survey Coal Quality (COALQUAL) Database:Version 2.0.USGeol.Surv.Open File Rep.1998:97-134,CD-ROM
    [20]Finkelman R.B.Trace and minor elements in coal.In:Engel,M.H.,Macko,S.A.(Eds.),Organic Geochemistry.Plenum Press,New York,1993:593-607
    [21]F.Goodarzi,Mineralogy.elemental composition and modes of occurrence of elements in Canadian feed-coals.Fuel,2002,81(9):1199-1213
    [22]Belkin H.E.,Finkelman R.B.,Zheng B.Mercury in People's Republic of China coal.Geol.Soc.Am.Abstr.,2005,37(7):48-55
    [23]黄文辉,杨宜春.中国煤中的汞.中国煤田地质,2002,14(Z1):37-40
    [24]王起超,马如龙.煤及其灰渣中的汞.中国环境科学,1997,17(1):76-78
    [25]郑刘根,刘桂建,齐翠翠等.中国煤中汞的环境地球化学研究.中国科技大学学报,2007,37(8):953-962
    [26]David G.Streets,Jiming Hao,Ye Wu,et al.Anthropogenic mercury emissions in China.Atmospheric Environment,2005,39(40):7789-7860
    [27]Pavlova L.S.,Timofeev A.A.Accompanying mineral resources in coals,Ugol'naya baza Rossii.T.I.,Russian Coal Base.Vol.Ⅰ,Geoinformmark,Moscow. 2000:120-121
    [28] Kizilstein L. Ya., Peretyat'ko A. G., Gofen G. I. Concentration of trace elements in coals in light of hard-soft acid-base concept. Chemical Solid Fuels, 1989, 2: 132-138
    [29] Dvornikov O. G. On the Hg occurrence in the high volatile bituminous coals, Small Folded Structure region (Donetsk basin). Dopov. Akad. Nauk Ukr. RSR [Compt. Rend. Ukr. Sov. Social. Rep. Acad. Sci.], Ser. B. 1976,29(9): 828-830
    [30] Kolker A., Panov B. S., Landa E. R., et al. Trace-metal geochemistry and environmental implications of selected Donbas coals and associated mine water in the vicinity of Donetsk, In: 19th Ann. Int. Pittsburgh Coal Conf. Pittsburgh, Ukraine 2002: 23-27, CD-rom
    [31] Bushell A. J., Williamson J. Trace element distributions and associations in UK coals, in coal science. In: Proc. 8th Int. Conf. Coal Sci. Oviedo, 1995(1): 167-170
    [32] Martinez-Tarazona M. R., Vega J. M. G., Garcia A. B. Pyrite and trace elements in high-rank coals. In: Proc. 9th Intern. Conf. Coal. Sci., DGMK, Essen 1997(1): 397-400
    [33] Querol X., Fernandez-Turiel J. L., Lopez-Soler A. Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 1995, 74(3): 331-343
    [34] Ghosh S. B., Das M. C, Roy R. R., et al. Mercury in Indian coals. Indian J. Chem. Technol, 1994, 69(1): 237-240
    [35] Ding Z., Zheng B., Zhang J., et al. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Appl. Geochem, 2001,16(11-12): 1353-1360
    [36] Diehl S. F., Goldhaber M. B., Hatch J. et al. Mineralogic residence and sequence of emplacement of arsenic and other trace elements in coals of the Warrior Basin, In: Proc. 19th Ann. Int. Pittsburgh Coal Conf. Pittsburgh, 2002: CD-ROM
    [37] Toole-O'Neil B., Tewalt S., Finkelman R. B., et al. Mercury concentration in coal-unraveling the puzzle. Fuel, 1999, 78(1):47-54
    [38] Finkelman R. B. Models of occurrence of potentially hazardous elements in coal : levels of confidence. Fuel Processing Technology, 1994,39(1): 21-34
    [39] Allan Kolker, Constance L. Senior and JeVrey C. Quick. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems.Applied Geochemistry,2006,21(11):1821-1836
    [40]Yudovich Ya.E.,Ketris M.P.Mercury in coal:a review Part 1.Geochemistry,International Journal of Coal Geology,2005,62(3):107-134
    [41]Lyons C.,Palmer C.A.,Bostick N.H.,et al.Chemistry and origin of minor and trace elements in vitrinite concentrates from a rank series from the Eastern United States,England and Australia.Int.J.Coal Geol,1989,13(1-4):481-527
    [42]Khrustaleva G.K.,Andrianova T.P.,Medvedeva G.A.,et al.Geological aspects of coal conversion to liquid fuels:a review.Geoinformmark,Moscow,2001:55-56
    [43]Palmer C.A.,Krasnow M.R.,Finkelman R.B.,et al.An evaluation of leaching to determine modes of occurrence of selected toxic elements in coal.J.Coal Qual,1993,12(4):135-141
    [44]Scherbakov V.P.,Dvornikov O.G.,Zakrenichna G.L.New data about mercury modes of occurrences in Donetsk basin coals.Dopov.Akad.Nauk Ukr.RSR [Compt.Rend.Ukr.Sov.Social.Rep.Acad.Sci.],Ser.B2.,1970:126-130
    [45]赵毅,马双忱,华伟等.电厂燃煤过程中汞的迁移转化及控制技术研究.环境污染治理技术与设备,2003,4(11):59-63
    [46]张军营,任德贻,许德伟等.煤中汞及其对环境的影响.环境科学进展,1999,7(3):100-104
    [47]刘晶,张军营,宋党育.煤中痕量砷和汞的形态分析.华中理工大学学报,2000,28(7):72-73
    [48]王起超,麻壮伟,沈文国等.煤及其灰渣中的有机汞.中国环境科学,2001,21(1):54-57
    [49]冯新斌,洪业汤,洪冰等.煤中汞的赋存状态研究.矿物岩石地球化学通报,2001,20(2):71-78
    [50]冯新斌,洪业汤,倪建宇等.贵州煤中汞的分布、赋存状态及对环境的影响.煤川地质与勘探,1998,26(2):12-15
    [51]冯新斌,洪业汤,倪建宇等.煤中汞的赋存状态.矿物学报,1999,19(1):34-39
    [52]Mason R.P.,Fitzgerald W.F.,Morel F.M.The biogeochemical cycling of elemental mercury: anthropogenic influence. Geochimica et Cosmochimicia Acta, 1994, 58(15): 3191-3198
    [53] Kevin C. G., Christopher J. Z. Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 2000,66(6): 289-310
    [54] Edwards J. R., Srivastava R. K., Kilgroe J. D. A study of Gas-phase mercury speciation using detailed chemical kinetics. J. Air Waste Manage. Assoc, 2001, 51(6): 869-877
    [55] John H. Pavlish. Status review of mercury control option for coal-fired power plant. Fuel Processing Technology, 2003, 82(2-3): 89-165
    [56] Kevin C. Galbreath. Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 2000(65-66): 289-310
    [57] Yewen Tan. An investigation of mercury distribution and speciation during coal combustion. Fuel, 2004, 83(16): 2229-2236
    [58] Carlos E. Romero, Ying Li, Harun B., et al. Modification of Boiler Operation Conditions for Mercury Emissions Reductions in Coal-fired Utility Boilers. Fuel, 2006, 85(2): 204-212
    [59] Wang J. Study of Hg Oxidation in the Post-Combustion Zones of Coal-Fired Boilers. In: Conference on SCR/SNCR for NOx Control. Pittsburgh, Pennsylvania, 2001
    [60] Niksa S., Helble J. J., Fujiwara N. Kinetic Modeling of Homogeneous Hg Oxidation: The Importance of NO and H_2O in Predicting Oxidation in Coal-Derived Systems. Environ. Sci. Technol, 2001,35 (18): 3701-3706
    [61] F. Frandsen, K. Dam-Johansen, P. Rasmussen. Trace elements from combustion and gasification of coal—an equilibrium approach, Prog. Energy Combust. Sci., 1994, 20(2): 115-138
    [62] Kellie S., Cao Y., Duan Y. F., et al. Factors affecting mercury speciation in a 100-MW coal-fired boiler with low-NOx burners. Energy Fuels, 2005, 19(3): 800-806
    [63] Laudal D. L., Brown T. D., Nott B. R. Effects of Flue Gas Constituents on Mercury Speciation. Fuel Process. Technol, 2000(65-66): 157-165
    [64] Norton G. A., Yang H., Brown R. C. et al. Heterogeneous Oxidation of Mercury in Simulated Post Combustion Conditions. Fuel, 2002, 82(2): 107-116
    [65]Lee C.W.Mercury control research:effects of fly ash and flue gas parameters on mercury speciation.In:6~(th) Annu.Waste-to-Energy Conf.Proc.Spec.Conf.1998:221-238
    [66]Behra P.,Bonnissel-gissinger P.,Alnot M.,et al.XPS and XAS Study of the Sorption of Hg onto Pyrite.Lagmuir,2001,17(1):3970-3979
    [67]Serre S.,Silcox G.Adsorption of Elemental Mercury on the Residual Carbon in Coal Fly Ash.Ind.Eng.Chem.Res.,2000,39(6):1723-1730
    [68]周劲松,午旭杰,高洪亮等.循环流化床锅炉工排放及控制实验研究.热力发电,2004,33(1):72-75
    [69]Constance L.,Senior,Lawrence E.,Jospeh R.Morency,et al.Laboratory Study of Trace Element Vaporization form Combustion of Pulverized Coal.Fuel Processing Technology,2000,63:109-124
    [70]Wu C.Y.,Lee T.C.Capture of Mercucy in Combustion Envioments by in Situ Generated Titania Sorbents with UV Irradiation.Combust Sci Technol.1998,15(2):137-148.
    [71]陆晓华,刘晶等.煤灰中部分重金属元素含量与燃料工况的关系模型.环境化学,1998,17(4):345-348
    [72]周劲松,骆仲泱等.燃煤汞排放的测量及其控制技术.动力工程,2002,22(6):2099-2105
    [73]张鹏宇,曾汉才.活化处理的活性炭吸附汞的试验研究.电力科学与工程,2004(2):1-3
    [74]Hancai Zeng,Feng Jin,Jia Guo.Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon.Fuel,2004(83):143-146
    [75]Joseph.Modeling Sorbent Injection for Mercury Control in Baghouse Filters:Ⅱ-Pilot-Scale Studies and Model Evaluation.Air & Waste Management Association,2003,53(4):489-496
    [76]Edward B.Dismukes.Formation of Sulfate Aerosol in an SO_2 Scrubbing System.http://www.netl.doe.gov/publications/proceedings/98/98fg
    [77]Joo-Youp Lee,Soon-Jai Khang,Tim C.Keener.Mercury Removal from Flue Gas with In-situ Aerosol Particles Generated by SO_3 NH_3 Reactions.Industrial &Engineering Chemistry Research,2004(43):4363-4368
    [78]朱锦珍,薛来,谈仪等.300MW煤粉锅炉燃烧产物中汞的分布特性研究.动力工程,2002,22(1):1594-1607
    [79]Todd R.Carey,Oliver W.Hargrove.Factors Affecting Mercury Control in Utility Flue Gas Using Activated Carbon.Air & Waste Management Association,1998(48):1166-1174
    [80]S.Behrooz Ghorishi,Chun W.Lee.Effects of Fly Ash Transition Metal Content and Flue Gas HCl/SO_2 Ratio on Mercury Speciation in Waste Combustion,Environmental Engineering Science,2005,22(2):221-231
    [81]Livengood C.D.,Mendelsohn M.H.Progress for Combined Control of Mercury and Nitric Oxide.In:EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium,1999,Atlanta,Georgia
    [82]Pavlish J.H.,Sondreal E.A.,Mann M.D.,et al.Status review of mercury control option for coal-fired power plant.Fuel Procession Technology,2003,82(2):89-165
    [83]Laudal D.Pilot-Scale Evaluation of the Impact of Selective Catalytic Reduction for NO,on Mercury Speciation.Palo Alto,CA,EPRI,2000
    [84]Hassett D.J.,Heebink L.V.,Gallagher J.R.et al.Microbial Release of Mercury from Coal Combustion By-Products(CCBs).Presented at the USDI Office of Surface Mining Meeting,Denver,CO,April 2002:16-18
    [85]Ghorishi S.B.,Lee C.W.,Kilgroe J.D.Mercury speciation in combutsion system:studies with simulated flue gass and model fly ashes.In:Proceeding of the Air and Waste management Association 92~(nd) Annual Meeting and Exhibition,St.Louis,MO,1999:99-651
    [86]Butz J.,Albiston J.Use of fly ash fractions from western coals for mercury removal from flue gas streams.In:Proceedings of the Air Quality Ⅱ:Mercury,Trace Elements,and Particulate Matter Conference,Mclean,Va,2000:A4-5
    [87]Hower J.C.,Maroto-Valer M.M.,Taulbee D.N.et al.Mercury capture by distinct fly ash carbon forms.Energy Fuels,2000,14(1):224-226
    [88]Christopher R.,McLarnon.Electro-Catalytic Oxidation Technology Applied to Mercury and Trace Elements Removal from Flue Gas.In:Conference on Air Quality McLean,VA,2000:CD-ROM
    [89]杨振宇,羌宁,季学李.美国燃煤电厂锅炉烟气中汞的研究进展.能源环境保护,2003,17(5):3-7
    [90]Senior C.L.,Panagiotou T.,Sarofim Adel F.,et al.Formation of Ultrafine Particulate Matter from Pulverized Coal Combustion.American Chemical Sociaty,2000,45(1):16-21
    [91]Constance L.Senior,Joseph J.Helble,Adel F.Sarofim.Emissions of Mercury,Trace Elements,and Fine Particles from Stationary Combustion Sources.Fuel Processing Technology,2000(65-66):263-288
    [92]Luttrell G.H.,Kohmuench J.N.,Yoon R.H.,et al.An Evaluation of Coal Preparation Technologies for Controlling Trace Element Emissions.Fuel Processing Technology,2000(65-66):407-422
    [93]April Hoffart,Wayne Seames,Evguenii Kozliak,et al.A two-step acid mercury removal process for pulverized coal.Fuel,2006,85(9):1166-1173
    [94]Dronen L.C.,Moore A.E.,Kozliak E.I.,et al.An assessment of acid wash and bioleaching pre-treating options to remove mercury from coal.Fuel,2004,83(2):181-186
    [95]Dronen L.C.,Moore A.l E.,Kozliak E.I.,et al.An assessment of acid wash and bioleaching pre-treating options to remove mercury from coal.Fuel,2004,83(2):181-186
    [96]Merdes A.C.,Keener T.C.,Khang S.J.,et al.Investigation into the fate of mercury in bituminous coal during mild pyrolysis.Fuel,1998,77(15):1783-1792
    [97]Wang M.,Keener T.C.,Khang S.J.The effects of coal volatility on mercury removal from bituminous coal during mild pyrolysis.Fuel Processing Technology,2000,67(2):147-161
    [98]Zhenghe Xu,Guoqing Lu,On Yi Chan.Fundamental Study on Mercury Release Characteristics during Thermal Upgrading of an Alberta Sub-bituminous Coal.Energy & Fuels,2004,18(6):1855-1861
    [99]Guffey F.D.,Bland A.E.Thermal pretreatment of low-ranked coal for control of mercury emissions.Fuel Processing Technology,2004,85(6-7):521-531
    [100]Akira Iwashita,Shomei Tanamachi,Tsunenori Nakajima,et al.Removal of Mercury from Coal by Mild Pyrolysis and Leaching Behavior of Mercury.Fuel,2004,83(6):631-638
    [101]Baofeng Wang,Wen Li,Haokan Chen,et al.The removal of mercury from coal via sub-critical water extraction.Fuel Processing Technology,2006,87(5):443-448
    [102]Ode r R.R.,Jamison R.E.,Brandner E.D.Preliminary Results of Pre-combustion Removal of Mercury,Arsenic,and Selenium from Coal by Dry Magnetic Separation.In:Proceedings of the 24th International Technical Conference on Coal Utilization and Fuel Systems Clearwater,FL,March 8-11,1999:151-158
    [103]Swain D.J.Trace elements in coal and their dispersal during combustion,Fuel Processing Technol.,1994,39(1-3):121-137
    [104]唐修义,黄文辉,赵纪尧.中国煤中的微量元素.北京:商务印书馆,2004
    [105]Swaine D.J.Trace elements in coal.Butterworths,London,1990,278-292
    [106]Swaine D.J.The organic association of elements in coals.Org.Geochem,1992,18(3):259-261
    [107]Finkelman R.B.Mode of occurrence of potentially hazardous elements in coal:levels of confidence,Fule Proc.Technol,1994,39(1-3):21-34
    [108]Wang Jie,Sharma Atul,Tomita Akira.Determination of the Modes of Occurrence of Trace Elements in Coal by Leaching Coal and Coal Ash.Energy and Fuel,2003,17(1):29-37
    [109]Jeffrey L.,Shu Jianing.Sequential extraction analysis of heavymetals using a chelating agent(NTA)to counteract resoption[J].Environmental Pollution,1996,91(1):89-96
    [110]X.Querol,Roberto Juan,Angel Lopez-Soler,et.al.Mobility of trace elements from coal and combustion wastes.Fuel,1996,75(7):821-838
    [111]Feng X.,Hong Y.Modes of occurrence of mercury in coals from Guizhou,People's Republic of China.Fuel,1999,78(10):1181-1188
    [112]Goodarize F.Mineralogy.elemental composition and modes of occurrence of elements in Canadian feed-coals.Fuel,2002,81(9):1199-1213
    [113]Liugen Zheng,Guijian Liu,Cuicui Qi,et al.The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal,Anhui Province,China.International Journal of Coal Geology,73(2):139-155
    [114]Willett J.C.,Finkelman R.B.,Mroczkowski S.J.,et al.Semi-quantitative determination of the modes of occurrence of elements in coal:Results from an international round robin project.Final report.Reston,VA,USA,U.S.Geological Survay,2000
    [115]Martinez-Tarazona M.R.,Spears D.A.,et al.Organic affinity of trace elements in Austrian bituminous coal.Fuel,1992,71(8):909-914
    [116]Querol X.,Fernandez-Turiel J.L.,Lopez-Soler A.Trace element in coal and their behaviour during coal combustion in a large station.Fuel,1996,74(3):331-343
    [117]陆晓华,曾汉才,晏蓉等.煤中痕量元素与三态硫关系的模型.环境化学,1997,16(4):306-310
    [118]Ruppert L.F.,Minken J.A.,McGee J.J.et al.All unusual occurrence of arsenic-bearing pyrite in the Upper Freeprot coal bed,West-central Pennsylvania.Energy and Fuels,1992,6:120-125
    [119]Ward C.R.Sorawit Nunt-jaruwong and Jeni Swanson.Use of mineralogical analysis in geotechnical assessment of rock strata for coal mining.International Journal of Coal Geology,2005,64(1-2):156-171
    [120]Ward C.R.,John C.,Taylor C.E.et al.Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction.International Journal of Coal Geology,2001,46(2-4):67-82
    [121]Ward C.R.,John C.,Taylor C.E.Quantitative mineralogical analysis of coals from the Callide Basin,Queensland,Australia using X-ray diffractometry and normative interpretation.International Journal of Coal Geology,1996,30(3):211-229
    [122]周传辉.浅谈重介质旋流器选煤.煤炭技术,2004,23(11):81-82
    [123]GBT 478-2001煤炭浮沉试验方法
    [124]杨婷.两种典型烟煤中汞及矿物质之间相关性实验研究:[硕士学位论文].武汉:华中科技大学图书馆,2007
    [125]金钦汉.微波化学.北京:科学出版社,1999
    [126]刘伟,阎军,武刚.密闭微波样品消解原理及常识.现代科学仪器,2000(3):51-54
    [127]Standard Test Method for Total Mercury in Coal and Coal Combustion Residues by Acid Extraction or Wet Oxidation/Cold Vapor Atomic Absorption,ASTM D6414-01
    [128]Goresy A.,Donnay G.A new allotriomorphic form of carbon from the Ries Crater.Science,161,363-364
    [129]陈鹏.中国煤中硫的赋存特征及脱硫.煤炭转化,1994,17(2):1-9
    [130]谢克昌.煤的结构与反应性.北京:科学出版社,2002:210-218
    [131]Standard test method for forms of sulfur in coal.ASTM D2492-90
    [132]冯新斌,洪冰,倪建宇等.煤中部分潜在毒害微量元素在表生条件下的化学活动性.环境科学学报,1999,19(4):433-436
    [133]Finkelman R.B.,Palmer C.A.,Krasnow M.R.,et al.Combustion and leaching behavior of elements in the argonne premium coal samples.Energy & Fuels,1990,4(6):755-766.
    [134]齐永琴,李文,陈皓侃等.义马煤的流化床热解脱硫研究.中国矿业大学学报,2003,32(2):128-132
    [135]Quanrun Liu,Haoquan Hu,Shengwei Zhu,et al.Desulfurization of Coal by Pyrolysis and Hydropyrolysis with Addition of KOH/NaOH.Energy & Fuels,2005,19(4):1673-1678
    [136]高梅杉,张建民,罗鸣.煤在还原性气氛下热解硫的析出机理研究进展.洁净煤技术,2005,11(1):34-38
    [137]高洪亮,范晓伟,李冀静等.氧化性气氛下煤热解脱硫的实验研究.电站系统工程,2008,24(1):30-32
    [138]Garcia R.,Moinelo S.R.,Lafferty C.J.,et al.Pyrolytic desulfurization of some high-sulfur coals.Energy Fuels,1991,5(4):582-586
    [139]Sinhar R.K.,Walker P.L.Removal of sulphur from coal by air oxidation at 350℃-450℃.Fuel,1972,51(2):125-129
    [140]Gryglewicz G.Sulfur transformations during pyrolysisof a high sulfur Polish coking coal.Fuel,1995,74(3):356-361
    [141]刘粉荣,李文,李保庆等.氧化性气氛下流化床中煤的热解脱硫及硫的分布.燃料化学学报,2006,34(4):404-407
    [142]严继民,张启元,高敬琮.吸附与凝聚.北京:科学出版社,1986
    [143]Yongqin Qi,Wen Li,Haokan Chen,et al.Sulfur release from coal in fuidized-bed reactor through pyrolysis and partial oxidation with low concentration of oxygen.Fuel,2004,83(16):2189-2194
    [144]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究.煤炭学报,2001,26(5):552-556
    [145]Pfeifer P,Avnir D.Chemistry in noninteger dimensions between two and three.Ⅰ.Fractal theory of heterogeneous surfaces.The Journal of Chemical Physics,1983,79(7):3558-3565
    [146]陈汉平,邵敬爱,杨海平等.一种生物污泥热解半焦孔隙结构特性.中国电机工程学报,2008,28(26):82-86
    [147]He R.,Xu X.,Chen C.,et al.Evolution of pore fractal dimensions for buring porous chars.Fuel,1998,77(12):1291-1295
    [148]郑瑛,史学锋,周英彪等.煤燃烧过程中硫分析出规律的研究进展.煤炭转化,1998,21(1):36-40
    [149]Xu Long,Yang Jianli,Li Yunmei,et al.Behavior of organic sulfur model compounds in pyrolysis under coal-like environment.Fuel Processing Technology,2004,85(8-10):1013-1024
    [150]Shimada M.Analysis of formation rates of sulphur-containing gases during the pyrolysis of various coals.Energy & Fuels,2001,15(3):629-636
    [151]郭慧卿.霍州煤热解预脱硫及热解气体分析:[硕士学位论文].太原理工大学图书馆,2007
    [152]张妮,曾凡桂,降文萍.中国典型动力煤种热解动力学分析.太原理工大学学报,2005,36(5):549-552
    [153]Thorpe A.N.,Senfile F.E.,Alexander C.C.,et al.Oxidation of Pyrite in Coal to Magnetite.Fuel,1984,63(5):662-668
    [154]郭崇涛,煤化学.北京:化学工业出版社,1996
    [155]John H.L.,Tim J.W.The reaction of Pyrite with Water Vapour.Fuel,1988,67(10):1336-1339
    [156]Sugawara K.,Kamoshita T.,TldoYetal.Dynamic Behavior of Sulfur Forms inRapid Pyrolysis of Density-seParated Coals.Fuel,1994,73(7):1224-1228
    [157]赵金成,胡旭东,高晋生.煤热解中有机硫的变化.煤炭转化.1993,16(2):77-81
    [158]Calkins W.H.Investigation of organic Sulfur-containing Struetures in Coal by Flash Pyrolysis Experiment.Energy & Fuels,1987,1(1):59-64
    [159]Badi M.F.,Searoni A.W.,Jenkins R G.Distribution of Sulfur during Coal Pyrolysis in a High Pressure Entrained-Flow Reactor.PreP.PaP.Am.Chem.Soc Div.Fuel Chem,1988,33:265-273
    [160]Montano P.A.,Vaishnava P.P.,King J.A.Mossbauer study decomposition of Pyrite in hydrogen.Fuel,1981,60(8):712-717
    [161]Oh M.S.,Burnham A.K.,Crawford R.W.Evolution of Sulfur Gases during Coal Pyrolysis.PreP.PaP.Am.Chem.$oc.Div.Fuel Chem,1988,33:274-284
    [162]赵毅,汪黎东,王小明等.烟气脱硫产物一亚硫酸钙非催化氧化的宏观反应动力学研究.中国电机工程学报,2005,25(8):116-120
    [163]Miura K.A new and simple method to estimate f(E)and k0(E)in the distributed activation energymodel fromthree sets of experimental data.Energy&Fuels,1995,9(2):302-307
    [164]Hashimoto K.,Miura K.,Watanabe T.Kinetics of thermal regeneration reaction of activated carbons used in waste water treatments.AIChE.J.,1982,28(5):737-746
    [165]Miura K.,Maki T.A simple method for estimating f(E)and K_0(E)in the Distributed Activation Energy Model.Energy & Fuels,1998,12(5):864-869
    [166]孙庆雷,李文,陈皓侃等.DAEM和Coats-Redfem积分法研究煤半焦燃烧动力学的比较.化工学报,2003,54(11):1598-1602
    [167]Yergey A.L.,Lampe F.W.,Vestal M.L.,et al.Nonisothermal kinetics studies of Hydrodesulfurization of coal.Ind Eng Chem Process Des Develop,1974,13(3):233-240
    [168]Garcia-Labiano F.,Hampartsoumian E.,Williams A.Determination of sulfur release and its kinetics in rapid pyrolysis of coal.Fuel,1995,74(7):1072-1079
    [169]陈皓侃,李保庆,杨继礼等.兖州高硫煤的加氢热解脱硫及脱硫动力学.燃料化学学报,1997,25(2):114-118
    [170]Xinqian Shu,Xuchang Xu.Study on Morphology of Chars from Coal Pyrolysis.Energy & Fuels,2001,15(6):1347-1353
    [171]Merdes A.C.,Keener T.C.,Khang S.J.,et al.Investigation into the fate of mercury in bituminous coal during mild pyrolysis.Fuel,1998,77(15):1783-1792
    [172]Wang Min,Keener T.C.,Khang S.J.The effect of coal volatility on mercury removal from bituminous coal during mild pyrolysis.Fuel Processing Technology,2000,67(2):147-161
    [173]郑楚光,徐明厚,张军营等.燃煤痕量元素的排放与控制.武汉:湖北科学技术出版社,2002
    [174]陈清如,骆振福.干法选煤评述,选煤技术,2003,12(6):33-39
    [175]骆振福,赵跃民.流态化分选理论.徐州:中国矿业大学出版社,2002
    [176]管玉平,徐守坤,陈清如等.空气重介质流化床的双流体模型及其数值验证[J].中国矿业大学学报,2001,30(6):554-557
    [177]Wei Lubin,Chen Qingru,Luo Zhenfu.Fine coal and three product dry beneficiation with vibration and double-density fluidized beds.Journal of Central South University of Technology(English Edition),1998,5(2):104-107
    [178]Frase T.,Yancey H.F.The Air-Sand Process of Cleaning Coal,U.S.Patent 15348161925,and Americalnst.Mining and Metallurgical Enqs.Tram,1926.1561F
    [179]陈清如,俞少功,李建民等.干式流化床选煤技术.第四届全国流态化会议论文集[C].兰州,1987
    [180]Chen Q.R.,Wei L.B.,Luo Z.F.Development of Coal dry beneficiation technology with air dense medium fluidized bed[A].In:96 China -Japan Symposium on Particuolony.Beijing:Tsinahua University Press,1996
    [181]骆振福,陶秀祥,陈清如等.空气重介流化床低密度选煤的理论与实践.中国矿业大学学报,1996,25(3):48-53
    [182]Luo Z.,Zhao Y.,Tao X.,et al.Progress in Dry Coal Cleaning using Air-Dense Medium Fludized Beds,Coal Preparation,2003,23(1-2):13-20
    [183]袁乃驹.化学反应工程基础.北京:清华大学出版社,1988:268-270
    [184]Marzocchella S.,Salatino P.Fluidization of Solids with CO_2 at Pressures from Ambient to Supercritical.American Institute of Chemical Engineers Journal,2000,46(5):901-910
    [185]Delebarre A.B.,Morales J.,Ramos L.Influence of the Bed Mass on its Fluidization Characteristics.Chemical Engineering Journal,2004,98(1-2):81-88
    [186]Geldart D.Types of Gas Fluidizafion.Powder Technology,1973,7(5):285-292
    [187]Geldart D.Gas Fluidization Technology.John Wiley and Sons Ltd.,Chichester,NY,1986
    [188]Dahl S.R.,Hrenya C.M.Size Segregation in Gas-Solid Fluidized Beds with Continuous Size Distributions.Chemical Engineering Science,2005,60(23):6658-6673
    [189]Kunii D.,Levenspiel O.Fluidization Engineering SECOND EDITION,"Butterworth-Heinemann,Newton,MA,1991
    [190]Sidorenko I.,Rhodes M.J.Influence of Pressure on Fluidization Properties.Powder Technology,2004,141(1-2):137-154
    [191]Rowe P.N.,Partridge B.A.Proc.Symp.Interaction between Fluids and Particles.Institute of Chemical Engineers,1962,1:50-63
    [192]Yourovsk A.Z.,Goroshko V.D.,Korshunov V.I.,et al.New dry processes for coal preparation-magnetic,aero-suspension,radiometric.In:4~(th) International Coal Preparation Congress,Harrogate,Youkshire,1963
    [193]Dechsiri C.,Van der Zwan E.A.,Dehling H.G.,et al.Dispersion of Particle Pulses in Fluidized Beds Measured by Positron Emission Tomography.American Institute of Chemical Engineers Journal,2005,51(3):791-801
    [194]陶秀祥,陈清如,杨毅等.气泡对空气重介流化床选煤过程的作用机理研究.江苏煤炭,1997,4:3-7
    [195]陈清如,骆振福.干法选煤评述.选煤技术,2003,12(6):34-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700