用户名: 密码: 验证码:
挥发分反应特性和立体分级燃烧对NO_x排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合我国目前经济发展及能源利用状况,开发出具有低成本、高效、安全的燃烧法脱除NO_x排放技术已成为控制污染物排放的一个重要目标。本文以此为出发点,对电站锅炉燃煤过程中的NO析出影响因素展开机理研究,并通过在不同负荷机组上进行工业验证,开发出立体分级低NO_x燃烧系统。
     首先对我国某高挥发分烟煤展开热重—红外光谱仪联用(TG-FTIR)机理试验研究,采用Coasts-Redfern积分法对热解动力学参数进行求解,发现当n=1时其相关系数最佳,建立了升温速率为20、40和80K/min时的热解动力学模型,动力学模型模拟结果与试验结果吻合较好;同时,深入研究了热解条件对挥发分析出产物及含量的影响,确定了在不同升温速率下的CH_4、CO等主要析出产物及含氮化合物(NH3)占原煤的质量份额。
     随后,把热重试验结果,与FG-DVC模型的计算结果进行对比,二者吻合较好,说明该热解模型可以用于描述我国烟煤的热解过程及产物。对真实燃烧条件下的挥发分组分及含量进行计算,采用GRI3.0反应机理的PFR反应器模型,对不同化学当量比下的燃料N生成NO的转化率“CR”进行计算。发现随着化学当量比的增加,NO转化率逐渐降低。得出在燃烧法脱除NO_x所采用的高化学当量比燃烧条件下,NO_x完全转化达到稳定需要较长时间,约为0.2s左右,并据此确定了对于高挥发分烟煤,为了达到降低NO_x排放的目的,由主燃烧区至燃尽区的停留时间不能少于0.32s的结论。从而确立了面向电站锅炉的立体分级燃烧系统方案。
     分别对中储仓式和直吹式制粉系统锅炉机组开展工业试验研究,在保证机组稳定运行基础上,NO_x排放浓度取得大幅度降低,其中50MW中储仓式制粉系统锅炉机组可将NO_x排放量控制在450mg/m3以下;对200MW直吹式制粉系统锅炉机组进行改造后,可将NO_x排放量有效控制在350mg/m3以下,最低可降至250mg/m3左右,取得了巨大的经济及社会效益,从而在不同容量机组上验证了前期机理研究方案的可靠性。
     最后,采用验证后的模型和计算方法对不同容量机组上的燃烧及NO_x排放进行模拟,采用结合FG-DVC热解模型的FLUENT后处理平台,对NO_x排放水平进行模拟计算,结果与试验值吻合较好,验证了模型的稳定性和可靠性。为低NO_x燃烧技术改造结果的预报奠定了模拟研究基础。
     本研究工作对推广及应用立体分级低NO_x燃烧技术,降低电站锅炉NO_x排放,提高燃烧效率,降低能耗提供理论依据及技术参考。
It is a primary goal of China, on the basis of its situation, to develop low-NO_x combustion technologies of low cost, high efficiency and good safety. To reach this goal, this dissertation investigated factors that affect NO_x control in utility boiler units and developed stereo-staged low-NO_x combustion technology for pulverised coal. which was validated via retrofit in a number of boilers.
     Firstly, experimental study was made on pyrolysis of bituminous coal with TG-FTIR. Coasts-Redfern quadrature is used to get the kinetic parameters of coal pyrolysis and it is found that the results are best correlated when reaction order equals to 1. Kinetic model for coal pyrolysis at the heating rates of 20, 40 and 80K/min respectively were proposed, and the modelling results agree well with experimental results. Effects of pyrolysis conditions on volatile components and their yields were studied, and mass fraction of the primary pyrolysis products (CH4, and CO et al) and N-component (NH_3) at different heating rates were determined.
     Secondly, it was confirmed that the FG-DVC model can be used to describe pyrolysis course of bituminous coal from China, since TG-FTIR data agree with FG-DVC modeling results well. The model was used to simulate the volatile components and yields. These data were used to GRI 3.0 chemical reaction mechanism combined with PFR reaction model to calculate transformation proportion (CR), which refers to Fuel-N converted into NO, at different equivalence ratios (ER). CR decreases with the increase of ER. The reaction time for stable Fuel-N conversion is about 0.2s by comparison with the experimental results. It is concluded that the suitable residence time for the fuel from primary combustion zone to the over-fire air zone should be 0.32 s at least. The parameters for the stereo-staged combustion technology can be established from this conclusion.
     Thirdly, the industry experimental investigations were carried out on 50 MW and 200 MW units, NO_x emission was decreased remarkably. In the 50MW units, it is no more than 450 mg/m~3 by adopting stereo-staged combustion technology, and the result is 350 mg/m~3 in the 200 MW units, with the minimum NO_x emission being 250 mg/m~3, and enormous economic and social benifit are attained. The reliability of former mechanism is therefore validated in different utility boilers.
     At last, combustion and NO_x emission were simulated by using the models and computation method validated as above. It is shown that when NO emission was simulated on the FLUENT platform with pyrolysis data from FG-DVC model, NO_x emission agrees better with experimental results than using the pyrolysis data from FLUENT.
     This work provides theoretical and technical foundation for reducing NO_x emission from utility boiler, while improving combustion efficiency and saving energy consumption.
引文
1庄永茂,施惠邦.燃烧与污染控制.同济大学出版社, 1998:47, 78
    2 H. B. Palmer, D. J. Seery. Chemistry of Pollutant Formation in Flames. Annual Review of Physical Chemistry. 1973,24:235~262
    3 L. D. Smoot, P. J. Smith. Coal Combustion and Gasification. NewYork: Plenum, 1985:375
    4 M. U. Ghani, J. O. L. Wendt. Early evolution of coal nitrogen in opposed flow combustion configurations. Twenty-third Symposium(International)on Combustion, Pittsburgh, PA, 1991,23(1):1281~1288
    5 R. E. Peck, P. Glarborg, Johnson JE. Kinetic Modeling of Fuel-Nitrogen Conversion in One-Dimensional Pulverized-Coal Flames. Combustion Science and Technology, 1991,76:81~109
    6 B. W. Brown, L. D. Smoot, P. O. Hedman. Effect of Coal Type on Entrained Gasification. Fuel. 1986,65(5):673~678
    7 M. P. Heap, T J Tyson, G. R. Cichanowicz, et al. Environmental Aspects of Low BTU Gas Combustion. Fifteenth Symposium(International)on Combustion, The Combustion Institute, Pittsburgh, 1977,535~542
    8 S. L. Chen, M. P. Heap, D. W. Pershing, G. B. Martin. Fate of Coal Nitrogen during Combustion. Fuel. 1982,61(12):1218~1224
    9 C. P. Fenimore. Reactions of Fuel-nitrogen in Rich Flame Gases. Combustion and Flame. 1976,26:249~256
    10 D. P. Rees, L. D. Smoot, P. O. Hedman. Nitrogen Oxide Formation inside a Laboratory Pulverized Coal Combustor. Eighteenth Symposium(International)on Combustion, Pittsburgh, PA, 1981,18(1):1305~1311
    11 S. C. Hill, L. D. Smoot. Modeling of Nitrogen Oxides Formation and Destruction in Combustion System. Progress in Energy and Combustion Science. 2000,26(4-6):417-458
    12 S. C. Hill, L. D. Smoot, P. J. Smith. Prediction of Nitrogen Oxide Formation in Turbulent Coal Flames. Twentieth Symposium(International)on Combustion, The Combustion Institute, Pittsburgh, PA, 1985,20(1):1391~1400
    13 Y. H. Song, J. H. Pohl, J. M. Beer, A. F. Sarofim. Nitric Oxide Formation during Pulverized Coal Combustion. Combustion Science and Technology 1982,28(1-2):31~40
    14 T. Kolb, P. Jansohn, W. Leuckel. Reduction of NOx emission in turbulent combustion by fuel-staging/effects of mixing and stoichiometry in the reduction zone. Twenty-second Symposium(International)on Combustion, The Combustion Institute, Pittsburgh, PA, 1988,22(1):1193~1203
    15 M. Ostberg, P. Glarborg, A. Jensen, et al. A Model of the Coal Reburning Process. Twenty-seventh Symposium(International)on Combustion, The Combustion Institute, Pittsburgh, PA, 1998,27(2):3027~3035
    16 T. Shimizu, Y. Sazawa, T. Adschiri. Conversion of Char-bound Nitrogen to Nitric Oxide during Combustion. Fuel. 1992,71(4):361~365
    17范耀国,徐明厚,袁建伟.燃料NO生成的总包反应速率.环境科学. 1997,18(4):49~52
    18谭厚章,廖晓伟,徐通模,等.煤燃烧过程中吡啶型氮迁徙规律的试验研究.西安交通大学学报. 2004,38(3): 251~257
    19刘银河,车得福,徐通模.煤质特性对快速热解中HCN释放的影响.燃烧科学与技术. 2004,10(6): 539~543
    20郭兴明,惠世恩,车得福等.挥发份燃烧生成NO的试验研究.动力工程. 2003,23(1):2164~2167
    21钟北京,Л.В.Росляков.火焰中形成的二氧化氮和氧化亚氮.热能动力工程. 1996,11(3): 147~153
    22周昊,邱坤赞,王智化等.煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响.燃料化学学报. 2004,32(2):146~150
    23谢克昌.煤的结构与反应性.科学出版社, 2002
    24曾汉才.燃烧与污染.华中理工大学出版社, 1992
    25吴少华,刘辉,姜秀民等.采用超细煤粉再燃技术降低氮氧化物排放.中国电力. 2003,36(2):1~4
    26韩才元,徐明厚,周怀春,等.煤粉燃烧.科学出版社, 2001
    27张惠娟,宋洪鹏,惠世恩.四角切圆空气分级燃烧技术及应用.热能动力工程. 2003,18(3):224~228
    28孙绍增.水平浓淡煤粉燃烧过程的研究.哈尔滨工业大学博士学位论文, 1995
    29 Solomon, P. R., Hamblen, D. G., Carangelo, R. M., Serio, M. A., and Deshpande, G. V., General model of coal devolatilization. Energy & Fuels. 1988,2(4):405~422
    30 P. R. Solomon, D. G. Hamblen, Z. Z. Yu, M. A. Serio. Network Models of Coal Thermal Decomposition. Fuel. 1990,69(6):754~763
    31 P. R. Solomon, D. G. Hamblen, M. A. Serio, Z. Z. Yu, S. C. Charpenay. A Characterization Method and Model for Predicting Coal Conversion Behaviour. Fuel. 1993,72(4):469~488
    32 D. M. Grant, R. J. Pugmire, T. H. Fletcher, A. R. Kerstein. Chemical Model of Coal Devolatilization using Percolation Lattice Statistics. Energy & Fuels. 1989, 3(2):175~186
    33 S. Niksa, A. R. Kerstein. FLASHCHAIN Theory for Rapid Coal Devolatilization Kinetics.1. Formulation. Energy & Fuels. 1991,5(5):647~665
    34 S. Niksa. FLASHCHAIN Theory for Rapid Coal Devolatilization Kinetics. 3. Modeling the Behavior of Various Coals. Energy & Fuels. 1991,5(5):673~683
    35 K. G. Glen., D. M. Sanchez, W. A. Peters, J. B. Howard. Correlations for Effects of Coal Type and Pressure on Tar Yields from Rapid Devolatilization. Twenty-Second Symposium( International ) on Combustion, The Combustion Institute, Pittsburgh, 1988,22(1):115~124
    36 R. C. Neavel, S. E. Smith, E. J. Hippo, R. N. Miller. Interrelationships between Coal Compositional Parameters. Fuel. 1986,65(3):312~320
    37 M. A. Serio, W. A. Peters, J. B. Howard. Kinetics of Vapor-phase Secondary Reactions of Prompt Coal Pyrolysis Tars. Ind. Eng. Chem. Res. 1987,26(9):1831~1838
    38 E. M. Suuberg, W. A. Peters, J. B. Howard. Product Compositions and Formation Kinetics in Rapid Pyrolysis of Pulverized Coal - Implications for Combustion. Seventeenth Symposium ( International ) on Combustion, The Combustion Institute, Pittsburgh, 1979,117~130
    39 A. R. Kerstein, S. Niksa. Polymer Scission with Irreversible Reattachment: a Kinetic Model of Pyrolysis with Char Formation. Macromolecules. 1987,20(8):1811~1818
    40 A. R. Kerstein, S. Niksa. Fragmentation during carbon conversion: Predictions and measurements. Twentieth Symposium(International)on Combustion, The Combustion Institute, Pittsburgh. 1985,20(1):941~949
    41 Y. X. Zhao, M. A. Serio, R. Bassilakis, P. R. Solomon. A Method of Prediction Coal Devolatilization Behavior Based on the Elemental Composition. Twenty-Fifth Symposium(International)on Combustion/The Combustion Institute, 1994, 553~560
    42 S. T. Perry. A Global Free-radical Mechanism for Nitrogen Release during Coal Devolation Based on Chemical Structure. Dissertation of Brigham Young University. 1999:83
    43刘旭光,李保庆.煤热解模型的研究方向.煤炭转化. 1998,21(3):42~46
    44 K. L. Smith, L. D. Smoot, T. H. Fletcher. The Structure and Reaction Processes of Coal. New York and London: Plenum, 1994
    45 GRI MECH 3.0. http://www.me.berkeley.edu/gri-mech
    46 P. Dagaut, M. Cathonnet. A Comparative Study of the Kinetics of Benzene Formation from Unsaturated C2 to C4 Hydrocarbons. Combustion and Flame. 1998,113(4):620~623
    47 A. Goldaniga, T. Faravelli, E. Ranzi, P. Dagaut, M. Cathonnet. Oxidation of Oxygenated Octane Improvers: MTBE, ETBE, DIPE, and TAME. Twenty-seventh Symposium(International)on Combustion, 1998,27(1):353-360
    48 P. Dagaut, C. Daly, J. M. Simmie, M. Cathonnet. The Oxidation and Ignition of Dimethylether from Low to High Temperature(500~1600 K): Experiments and Kinetic Modeling. Twenty-seventh Symposium ( International ) on Combustion, 1998,27(1):361-369
    49 P. Dagaut, M. Cathonnet, M. McGuinness, J. M. Simmie. The Ignition of Oxetane in Shock Waves and Oxidation in a Jet-stirred Reactor: An Experimental and Kinetic Modeling Study. Combustion and Flame. 1997,10(4):409~417
    50 P. Dagaut, D. Voisin, M. Cathonnet, M. Mcguinness, J. M. Simmie. The Oxidation of Ethylene Oxide in a Jet-stirred Reactor and its Ignition in Shock Waves. Combustion and Flame. 1996,106(1-2):62~68
    51 H. Curran, J. M. Simmie, P. Dagaut, D. Voisin, M. Cathonnet. The Ignition and Oxidation of Allene and Propyne: Experiments and Kinetic Modeling. Twenty-sixth Symposium(International)on Combustion, 1996,26(1):613~620
    52 Y. Tan, P. Dagaut, M. Cathonnet, et al. Natural Gas and Blends Oxidation and Ignition: Experiments and Modeling. Twenty-fourth Symposium(International)on Combustion, 1994,25(1):1563~1569
    53 G. Dayma, K. H. Ali, P. Dagaut. Experimental and Detailed Kinetic Modeling Study of the High Pressure Oxidation of Methanol Sensitized by Nitric Oxide and Nitrogen dioxide. Proceedings of the Combustion Institute. 2007,31(1):411~418
    54 A. Dubreuil, F. Foucher, C. M. Rousselle, et al. HCCI Combustion: Effect of NO in EGR. Proceedings of the Combustion Institute. 2007,31(2):2879~2886
    55 A. Nicolle, P. Dagaut.Occurrence of NO-reburning in MILD Combustion Evidenced via Chemical Kinetic Modeling. Fuel. 2006,85(17-18):2469~2478
    56 G. Moréac, P. Dagaut, J. F. Roesler, M. Cathonnet. Nitric Oxide Interactions with Hydrocarbon Oxidation in a Jet-stirred Reactor at 10 atm. Combustion and Flame. 2006,145(3):512~520
    57 P. Glaborg, S. Hadvin. Reactions Kinetisk Database/Den kemisk Kinetiske Model(Reaction Database/ The Chemical Kinetic Model)(in Danish with an English abstract); NGC-Report NGC89/FM/1-01,Nordic Gas Technology Centre: Horsholm, Denmark, 1989
    58 J. A. Miller, C. T. Bowman. Mechanism and Modeling of Nitrogen Chemistry in Combustion. Prof. Energy Combust. Sci. 1989,15(4):287~338
    59 P. Glarborg, P. G. Kristensen, K. Dam-Johansen. Nitric Oxide Reduction by Non-hydrocarbon Fuels. Implications for Reburning with Gasification Gases. Energy & Fuels. 2000,14:828~838
    60 J. O. L. Wendt, C. V. Sterling, M. A. Matovich. Reduction of Sulfur Trioxide and Nitrogen Oxides by Secondary Fuel Injection. Fourteenth Symposium ( International ) on Combustion. 1973,14(1):897~904
    61 A. C. Bose, J. O. L. Wendt. Pulverized Coal Combustion: Fuel Nitrogen Mechanisms in the Rich Post-Flame. Twenty-second Symposium(International)on Combustion. 1989,22(1):1127~1134
    62徐晓,吴奇虎.煤利用化学.化学工业出版社, 1991
    63 W. Wanzl.Techniques for Studying and Modeling Coal Prolysis and their Relevance to Biomass and Wastes. Biomass and Bioenergy. 1994,7:131~144
    64颜涌捷,王杰,从大伟.两种褐煤快速脱挥发分行为.华东化工学院学报. 1992,18(1):21~25
    65 T. P. Grifin, J. B. Howard, W. A. Peters. An Experimental and Modeling Study of Heating Rate and Particle Size Effects in Bituminous Coal Pyrolysis. Energy & Fuels. 1997,7(2):297~305
    66 M. A. Hastaoglu, M. S. Hassam. Application of a General Gas-solid Reaction Pyrolysis of Wood in a Circulating Fluidizaed Bed. Fuel. 1995,74(5):697~703
    67杨正权,胡荣祖,梁燕军,李向东.用单一非等温DSC曲线确定2,6-二硝基苯酚热分解反应的最可几机理函数和动力学参数.物理化学学报. 1986,2(1):13~21
    68 S. E. Smith, R. C. Neavel, E. J. Hippo, R. N. Miller, et al. DTGA Combustion of Coals in the Exxon Coal Library. Fuel. 1981,60(6):458~462
    69 J. W. Cumming. Reactivity Assessment of Coals via a Weighted Mean Activation Energy. Fuel. 1984,63(10):1436~1440
    70 A. T. Knight, G. D. Sergeant. Reactivity of Australian Coal Derived Chars to Carbon Dioxide. Fuel. 1982,61(2):145~149
    71 P. C. David. Chemical Reactivity of Canadian Coal Chars. Fuel. 1984, 63(9):1197~1201
    72胡荣祖,史启祯.热分析动力学.科学出版社, 2001
    73 R. Z. Hu, Z. Q. Yang, Y. J. Ling. The Determination of the most Probable Mechanism Function and Three Kinetic Parameters of Exothermic Decomposition Reaction of Energetic Material by a Single Non-Isothermal DSC Curve. Thermochimica Acta. 1988, 123:135~151
    74杨正权,胡荣祖.含能材料放热分解反应动力学参数的数值算法.计算机与化学应用, 1986,3(4):326~332
    75 D. A. Frank-Kameneskii, Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press, 1955
    76 A. W. Coats, J. P. Redfern. Kinetic Parameters from Thermogravimetric Data Nature. 1964,201(4914):68~69
    77 B. N. Achar, G. W. Brindley, J. H. Sharp. Thermal Decomposition Kinetics of Some New Unsaturated Polyesters. Proceedings of the International Clay Conference. 1966,1:67~73
    78 J. H. Sharp, S. A. Wendworth. Kinetic Analysis of Thermogravimetric Data. Analysis Chemical. 1969,41(14):2060~2062
    79 E. S. Freeman, B. Carrol. The Application of Thermoanalytical Techniques to ReactionKinetics. Journal of Physical Chemistry. 1958,62:394~397
    80 T. Ozawa. Bull. A New Method of Analyzing Thermogravimetric Data. Chem. Soc. Jpn., 1965, 38(11): 1881~1886
    81 J. H. Flynn, L. A. Wall, J. Polym. A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data. Sci. Part B, 1966,4(3): 323~328
    82郑明东,白大勇.东胜煤非等温热解特性与动力学参数确定.煤化工. 2006,123(2):13~16
    83 H. Depnerl, A. Jess. Kinetics of Nickel-catalyzed Purification of Tarry Fuel Gases from Gasfication and Pyrolysis of Solid Fuels. Fuel. 1999,78(12):1369~1377
    84 A. Arenillas, F. Rubiera, C. Pevida, et al. A Comparison of Different Methods for Predicting Coal Devolatilisation Kinetics. Journal of Analytical and Applied Pyrolysis. 2001,58-59: 685~701
    85张妮,曾凡桂,降文萍.中国典型动力煤种热解动力学分析.太原理工大学学报. 2005,36(5):549~552
    86王俊琪,方梦祥,骆仲泱,岑可法.煤的快速热解动力学研究.中国电机工程学报. 2007,27(17):18~22
    87翁诗甫.傅里叶变换红外光谱仪.化学工业出版社, 2005
    88吴国光,王祖讷.低阶煤的热重—傅里叶变换红外光谱的研究.中国矿业大学学报. 1998,27(2):181~184
    89何启林,王德明. TG-DTA-FTIR技术对煤氧化过程的规律性研究.煤炭学报. 2005,30(1):53~57
    90徐朝芬,胡松,孙学信,陈刚.热重—红外联用技术在煤燃烧特性研究中的应用.热力发电. 2005,3:39~42
    91 J. A. MacPhee, L. Giroux, J. P. Charland, J. F. Gransden, J. T. Price. Detection of Natural Oxidation of Coking Coal by TG-FTIR—mechanistic implications. Fuel. 2004,83(13):1855~1860
    92程定海.红外定量分析的准确度及灵敏度.四川师范学院学报(自然科学版). 1998,19(3):296~299
    93张秀萍,何书美.红外光谱在定量分析中的应用.分析科学学报. 2007,23(4):484~487.
    94谭厚章,廖晓伟,赵科.傅立叶红外光谱法对煤中吡咯型氮的热解规律研究.动力工程. 2004,24(1):121~124.
    95樊俊杰,金晶,张建民.超细煤粉热解时轻质烃的析出规律.燃烧科学与技术. 2006,12(40):308~311
    96苏桂秋,崔畅林,卢洪波.煤热解燃烧气体产物的热重—红外联用分析.工业锅炉. 2004,(2):23~26
    97吕太,张翠珍,吴超.粒径和升温速率对煤热分解影响的研究.煤炭转化. 2005,28(1):17~20
    98魏砾宏,姜秀民,张超群,李润东.超细化煤粉在热解条件下氮的迁移特性试验研究.中国电机工程学报. 2006,26(7):62~66
    99 M. J. Aho, J. P. H?m?l?inen, J. L. Tummavuori. Conversion of Peat and Coal Nitrogen Through HCN and NH3 to Nitrogen Oxides at 800℃. Fuel. 1993,72(6):837~841
    100 J. P. H?m?l?inen, M. J. Aho. Conversion of Fuel Nitrogen through HCN and NH3 to Nitrogen Oxides at Elevated Pressure. Fuel. 1996,75(12):1377~1386.
    101 W. D. jong, G. D. Nola, B. C. H. Venneker. TG-FTIR Pyrolysis of Coal and Secondary Biomass Fuels: Determination of Pyrolysis Kinetic Parameters for Main Speciesand NOx Precursors. Fuel. 2007,86(15):2367~2376
    102 P. R. Solomon, M. A. Serio, E. M. Suuberg. Coal Pyrolysis: Experiments, Kinetic Rates and Mechanisms. Progress in Energy and Combustion Science. 1992,18(2):133~220
    103 W. R. Ladner. The Products of Coal Pyrolysis: Properties, Conversion and Reactivity. Fuel Processing Technology. 1988,20:207~222
    104 J. V. Ibarra, R. Moliner. Coal characterization using pyrolysis-FTIR. Journal of Analytical and Applied Pyrolysis. 1991,20:171~184
    105 R. Bassilakis, Y. Zhao, P. R. Solomon, M. A. Serio. Sulfur and Nitrogen Evolution in the Argonne Coals: Experiment and Modeling. Energy & Fuels. 1993,7(6):710~720
    106 P. R. Solomon, D. G. Hamblen, R. M. Carangelo, et al. Models of Tar Formation during Coal Devolatilization. Combustion and Flame. 1988,71(2):137~146
    107 D. Stauffer, A. Aharony. Introduction to Percolation Theory, Taylor & Francis, London, UK, 1991
    108 T. H. Fletcher, A. R. Kerstein, R. J. Pugmire, M. S. Solum, D. M. Grant. Chemical Percolation Model for Devolatilization. 3. Direct Use of Carbon-13 NMR Data to Predict Effects of Coal Type. Energy & Fuels. 1992,6(4):414~431
    109 K. S. Vorres. The Argonne Premium Coal Sample Program. Energy & Fuels. 1990,4(5):420~426
    110 D. W. van Krevelen. Coal. Elsevier Publishing Company, Amsterdam, 1993
    111 M. A. Serio, D. G. Hamblen, J. R. markham, P. R. Solomon. Kinetics of Volatile Product Wvolution in Coal Pyrolysis: Experiment and Theory. Energy & Fuels. 1987,1(2):138~152
    112 J. D. Freihaut, W. M. Proscia, D. J. Seery, Chemical Characteristics of Tars Produced in a Novel Low-severity, Entrained-flow reactor. Energy & Fuels. 1989,3(6): 692~703
    113 P. Arendt, K. H. van Heek. Comparative Investigations of Coal Pyrolysis under Inert Gas and H2 at Low and High Heating Rates and Pressures up to 10 MPa. Fuel. 1981,60(9):779~787
    114 E. M. Suuberg, P. E. Unger, J. W. Larsen. Relation between Tar and Extractables Formation and Crosslinking during Coal Pyrolysis. Energy & Fuels 1987,1(3):305~308
    115 E. M. Suuberg, D. Lee, J. W. Larsen. Temperature Dependence of Crosslinking Processes in Pyrolysing Coals. Fuel. 1985,64(12):1668~1671
    116 H. Y. Cai, A. J. Giiell, D. R. Dugwell, R. Kandiyoti. Heteroatom Distribution in Pyrolysis Products as a Function of Heating Rate and Pressure. Fuel. 1993,72(3):321~327
    117 J. R. Gibbins, R. Kandiyoti. The Effect of Variations in Time-temperature History on Product Distribution from Coal Pyrolysis. Fuel. 1989,68(7):895~903
    118 Reitzen, T. R., "Effects of Pyrolysis Conditions onProducts of Interests in Formed Coke Production,"Master's Thesis, Massachusetts Institute of Technology,Cambridge, MA, 1978.
    119 C. K. Man, J. R. Gibbins, J. G. Witkamp, J. Zhang. Coal Characterization for NOx Prediction in Air-staged Combustion of Pulverized Coals. Fuel. 2005,84(17):2190~2195
    120 http://www.me.berkeley.edu/gri-mech/releases.html
    121 S. T. Perry, T. H. Fletcher, M. S. Solum, R. J. Pugmuire. Modeling Nitrogen Evolution during Coal Pyrolysis Based on a Global Free-Radical Mechanism. Energy & Fuels. 2000,14(5):1094~1102
    122 E. B. Ledesma, P. F. Nelson, J. C. Mackie. The Formation of Nitrogen Species and Oxygenated PAH during the Combustion of Coal Volatiles. Twenty-Seventh Symposium( International ) on Combustion, The Combustion Institute, Pittsburgh, 1998,27(2):1687~1693
    123 C. Z. Li, P. F. Nelson, E. B. Ledesma, J. C. Mackie. A Experimental of the Release of Nitrogen from Coals Pyrolyzed on Fluided-bed Reactors. Twenty-sixth Symposium( International ) on Combustion, The Combustion Institute, Pittsburgh, 1996,26(2):3205~3211
    124 C. Z. Li, L. L. Tan. Formation of NOx and SOx Precursors during the Pyrolysis of Coal and Biomass. Part III. Further Discussion on the Formation of HCN and NH3 during Pyrolysis. Fuel. 2000,79(15):1899~1906
    125冯俊凯,沈幼庭,杨瑞昌.第三版.锅炉原理及计算.北京:科学出版社, 2003, 201
    126 G. G. De Soete. Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen. The
    15th Symposium ( International ) on Combustion, the Combustion Institute, 1975,1093~1102
    127 D. W. Pershing, J. O. L. Wendt. Pulverlized Coal Combustion:The Influence of Flame Temperature and Coal Composition on Thermal and Fuel NOx. Sixteenth symposium(international)on combustion. The Combustion Institute, Pittsburgh, 1976,389~399
    128 B. Coda, F. Kluger, D. Fortsch, et al. Coal-Nitrogen Release and NOx Evolution in Air-Staged Combustion. Energy and Fuels. 1998,12(6),1322~1327
    129毕大鹏,李争起,赵振奇,等.燃用褐煤六角切圆670 t/h炉低NOx煤粉燃烧技术的研究.热能动力工程. 2005,20(3):306~309
    130张惠娟,惠世恩,周屈兰,等. 300MW煤粉锅炉低NOx正反切同轴燃烧试验研究.中国电机工程学报. 2005,25(15):116~120
    131何佩鏊,赵仲琥,秦裕琨.煤粉燃烧器设计及运行.机械工业出版社, 1987
    132孙锐,孙绍增,李争起,等.煤粉浓缩器内气固两相流动特性的数值模拟.机械工程学报. 2004,40(3):35~39
    133 T. Masayuki, Y. Kenji, K. Hironobu, et al. A Reduced NOx Reaction Model for Pulverized Coal Combustion under Fuel-rich Conditions. Fuel. 2002,81(3):363~371
    134曹红加,唐必光,许洪波.煤粉浓淡燃烧方式对电站锅炉NOx排放影响的试验研究.中国电机工程学报. 2004,24(8):229~232
    135樊越胜,邹峥,高巨宝,等.煤粉在富氧条件下燃烧特性的试验研究.中国电机工程学报. 2005,25(24):118-121
    136张政译.传热与流体流动的数值计算.北京:科学出版社, 1984:61~63
    137 S. Jakirlic, J. Volkert. DNS, Experimental and Modeling Study of Axially Compressed In-cylinder Swirling Flow. Int. J. Heat and Fluid Flow. 2000,21:627~639
    138 M. Manhart, R. Friedrich. DNS of a Turbulent Boundary Layer with Separation. Int. J. Heat and Fluid Flow. 2002,23:572~581
    139 B. J. Boersma, T. Gerz. Large-Eddy Simulation of Turbulence Flow in a Cured Pipe. ASME. J. Fluids Engineering. 1996,118:248~253
    140 Q. Z. Wang, K. D. Squires. Large Eddy Simulation of Turbulence Gas-Solid Flows in a Vertical Channel and Evaluation of Second-Order Models. Int. J. Heat and Fluid Flow. 1998,19:505~511
    141 P. Givi. Spectral and Random Vortex Methods. In: Libby P A, Williams F A. Turbulent Reacting Flows. San Diego: Academic Press. 1993,475~572
    142孙锐,李争起,孙绍增,等.四角切圆锅炉炉内煤粉燃烧过程数值模拟.机械工程学报. 2006,42(8):107~113
    143 H. Marmanis. Analogy Between the Navier-Stokes Equation and Maxwells Equation: Application to Turbulence. Physics of Fluids. 1998,10(6):1428~1437
    144 D. B. Spalding. Mathematical Models of Continuous Combustion and Emissions From Continuous Combustion System. Plenum Press. 1972
    145潘维,池作和,李戈,等.四角切圆燃烧锅炉燃烧和污染物排放的数值模拟.浙江大学学报. 2004,38(6):761~764
    146詹祥,陈善年,邵国桢,等.四角切向燃烧煤粉锅炉炉内气固两相流动的数值模拟.锅炉技术. 1997,(6):1~5
    147 T. H. Shah, W. W. Liou. A New k-εEddy Viscosity Model for High Reynolds Number Turbulent Flows Model Development and Validation. Computers Fluids. 1995,24(3):227~238
    148 FLUENT Inc. FLUENT Help Users Guide. 2001
    149王金枝,肖明.四角切向燃烧锅炉燃烧器区流动工况的数值模拟.华东电力. 2004,32(9):31~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700