用户名: 密码: 验证码:
纳米微粒埋植薄膜材料制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在较为全面的分析纳米材料、纳米薄膜材料的研究现状和趋势的基础上,提出并研究了多项基于纳米胶体的纳米微粒埋植薄膜制备新方法,形成了一批专有技术,申请并获得了“电场沉积制备薄膜的方法”、“一种制备纳米薄膜的方法”、“一种有色金属用变质剂及其制备方法”、“高纯碳酸锶制备方法”等发明专利。
     ①研究了纳米胶体的稳定性,动力学、热力学研究及实验研究结果表明:纳米胶体中的分散相存在离析倾向。在影响离析速度的微粒粒径、分散相与分散介质密度差、分散介质粘度等因素中,微粒粒径的影响较大,其他因素的影响相对较小。常见纳米胶体的离析速度较慢,尤其是小尺寸的纳米微粒的胶体,其离析过程十分缓慢,处于动力学上的“亚稳定”状态。纳米胶体的分散相浓度不均匀时,有通过扩散以使其浓度均匀化的趋势,纳米微粒可不借助外力而在液相中自分散成为纳米胶体。纳米胶体中,分散相的扩散过程与离析过程是纳米胶体中两个同时存在但结果相反的过程,在离析与扩散达到平衡时,胶体的浓度分布为c_2/c_1=e~(-(4/3)πr~3N_Ag/RT(ρ_p-ρ_1)(h_2-h_1))。在影响浓度分布的因素中,微粒粒径的影响甚大,粒径较小时(小于10nm),浓度随高度的变化较小,粒径较大时,浓度随高度的变化较大,粒径较大时(大于100nm),浓度随高度的变化十分显著;分散相与分散介质的密度差对浓度分布有影响,但影响较小;温度对浓度分布的影响通常小到可忽略不计。在调控纳米胶体稳定性的措施中,最为有效的措施是控制胶体中分散相微粒的粒径及其衍变过程,其他措施包括:调整分散相与分散介质的密度差、调整分散介质的粘度、调整异电性离子的电性及浓度、使用高分子稳定剂或絮凝剂等。
     ②研究了超声波在液相中的传播机制、超声波在液相中的微区域瞬时高能效应、超声波在纳米胶体制备中的分散、能量转化、工艺促进等作用。研究并获得了纳米胶体超声制备方法。结果表明,采用超声波制备纳米胶体具有胶体微粒粒径细小、均匀,工艺效率高等显著优点。同时,超声波设备结构简单,运行稳定性好,振动及噪音较低,易于实现纳米胶体的高质量、高效率、低能耗、低成本、批量化生产。
     ③研究了电沉积的共同特征,结果表明,实现电沉积的基本条件应当包括:微粒荷电、微粒处于方向性外电场中、微粒能在电场力作用下定向移动等;普通的液相电沉积中,沉积电路通常为封闭的电流回路,常存在电极反应,并可能危害沉积过程的进行和沉积膜的质量,采用低电压沉积可在一定程度上减缓不良电极反应的危害,但会使沉积速度变得十分缓慢。
     ④创新性地提出并研究了电场沉积制备薄膜的方法,该方法通过在开放的沉积电路中进行电场沉积,在实现电场力作用下的微粒沉积成膜的同时,从根本上防止了不良电极反应对沉积过程和沉积膜质量的危害。研究结果表明:该方法能采用高电压快速沉积纳米微粒薄膜,沉积速度和沉积膜质量明显优于普通电沉积;该方法不但可以在导电基材上沉积薄膜,而且可在非导电基材上沉积薄膜;电场沉积的电极可采用普通电导体制作;电场沉积除用于制备沉积膜外,还可与电镀、化学镀等工艺联合使用,在电镀、化学镀等工艺过程中,通过单独设置沉积电场,将分散体系中的微粒沉积到镀层中,获得复合镀层,不同于普通复合镀,新方法可通过调整沉积电场强度和沉积时间,使复合镀层中微粒含量和分布的控制成为可能。
     ⑤创新性地提出并研究了以逐层叠加法为核心的制备纳米薄膜的方法。该方法有机结合了埋植技术和插层技术的优点,在保证制品技术性的同时,兼顾了工艺成本和工艺效率。
     ⑥创新性的提出并研究了有色金属用变质剂及其制备方法。该方法通过变质元素的化合物的溶液及胶体的制备、分散/埋植—隔离、后处理等工艺过程,实现了化合物类变质剂的纳米化。
     ⑦通过对纳米微粒SrCl_2、SrO埋植多层膜变质剂及其制备、应用技术的理论及实验研究,发现:相对于普通Sr化合物变质剂和Sr合金变质剂,金属熔体中的纳米Sr化合物微粒埋植多层膜变质剂在热量传输、质量传输上有其独特优势,纳米多层膜能快速吸热升温并快速与金属熔体间进行质量传输,变质起效快、Sr的利用更为充分;纳米微粒埋植Sr化合物变质剂实现了新生态的Sr在金属熔体中的高度弥散,待变质金属熔体中,只需极少量的Sr即可获得良好的变质效果,而且不会出现含锶过高造成的过变质及孔洞问题,合金综合性能优良;采用纳米Sr化合物微粒埋植多层膜变质剂对ZL101A进行变质处理时,ZL101A的含锶量只需0.005%以上即可达到优良的变质效果,仅为常规Sr化合物变质剂和Sr合金变质剂所需的适宜Sr含量的1/3-1/4,开创了ZL101A合金Sr变质中Sr含量的新低;纳米Sr化合物微粒埋植多层膜变质剂具有变质作用起效快、变质效果保持时间长,变质操作方便等优点,并具备Kg级及KKg级规模化制备与应用可行性,技术经济性好,工业化生产和应用前景好。
Analyzed the present situation of nano materials and nano-films, a series of new preparation methods, which were associated by nano colloid, were invented and researched. Some proprietary methods were obtained and some of them were applied and authorized for patents of invention, which include Manufacture of Films by Electric Field Deposition Method and A method for the Manufacture of Films and A Alterative Used to Nonferrous Metal Melting and its Manufacture Method and Manufacture of high pur High-purity SrCO_3 and so on.
     1) Separating trend always exist in nano colloid. The diameter of the dispersed phase influences the separating velocity seriously. Normal nano colloids have very small separating velocity. When the diameters of the dispersed phase in nano colloid are very small, the colloid can be metastability in kinetics. Diffusing process will appear when the dispersed phase concentration is not symmetrical in colloid. The centralized nano particles in colloid have the self-diffusing ability. Normally, separating process and diffusing process exist in colloid synchronously and can be balanced each other. The concentration distributing of the dispersed phase in nano colloid can be estimated asc_2/c_1 = e(-4/3πr~3(N_Ag)/(RT)(ρ_p-ρ_1)(h_2-h_1)). To control the stability of colloid, the adjusting and controllingof the diameter of the dispersed phase can be the most effective method. Secondary methods include that adjusting the difference between the densities of disperse medium and dispersed phase and adjusting the viscosity of disperse medium and adjusting properties and concentration of the contra-ions in disperse medium and using stabilizersor flocculating agents.
     2) The instantaneous high-energy effects in microsize can be created by ultrasonicin liquid and can be used to expedite the manufacture process of colloid and advance the quality of the product. The manufacture of colloid using ultrasonic should be an industrial method with advantages such as high quality and high efficiency and low energy consumption and low cost and so on.
     3) The essential conditions to achieve the electric deposition include that the particles was carrying charges and placed in electric field and can be moved to one direct drove by electric field force. In normal electric deposition, the electric current is close and some electrode reactions will occur and destroy the deposition process and the quality of the deposited film. Lower deposition voltage can weaken some of the harms but decrease the deposition velocity badly.
     4) A new method for the manufacture of nano-film, which was called electric field deposition, was invented and investigated to avoid the harmful electrode reactions such as gas evolving, electrolysis and plating which disturb the deposition process and deposited film in manufacture of nano-films by normal electric deposition. The electric field deposition equipment was designed, in which the soleplate and the deposited film will not form a close current loop with the deposition electrocircuit. The new method was applied to deposit the CdS film. Smooth and compact films composed with particles, which diameter was a little more than 30nm, were manufactured. It was shown that the new method has some benefits such as high-grade nano-films can be obtained and no expensive electrode materials are needed. The new method can also be associated with electro plating or chemical plating to obtain composite deposite, in which, the content and distributing of the particles may be controlled easily.
     5) Another new method for the manufacture of nano-film, in which the advantages of heeling-in and intercalation are congregated, was invented and investigated to make large mass nano films with low cost and high efficiency.
     6) A new modifier for the non-ferrous metal and its manufacture method were invented and investigated, in which the compounds including modifier elements were made as nano particles multi-layer films by the technics which include the preparation of the solution or colloid of the compound with alterative elements and the deconcentration / heeling-in - isolation and post treatment and so on.
     7) The manufacture and application technologies of the modifier with SrCl_2 and SrO nano particles multi-layer films, which was called nano Sr-Compound modifier, were investigated theoretically and experimentally. It was shown that:
     The nano Sr-Compound modifier can display alterative effects fleetly as the heat and mass transformations between the modifier and molten metal.
     Compared with the normal Sr-compound modifiers and Sr-alloy modifiers, nano Sr-compound modifier can release nascent state elementary Sr all over the molten metal and offer more chances for the modification of more crystal gains and increase the integrated mechanical properties by very low concentration of Sr in molten metal. The concentration of Sr in ZL101A could as low as be 0.005% which is a new record of low limit of the concentration of Sr in Al-alloy to achieve favorable modification by Sr.
     Using the new method for the manufacture and application of the nano Sr-Compound modifier, it is possible that Kg rank and KKg rank nano modifier can be manufactured and applied industrially and good technical economy may be obtained.
引文
[1]中华人民共和国国家标准化管理委员会.GB/T 19619-2004.纳米材料术语[S].北京:中华人民共和国国家标准化管理委员会,2005年,1-4.
    [2]李景新,黄因慧.纳来材料及其技术研究进展[J].材料导报.2001,8:28-31.
    [3]曹茂盛,曹传宝,徐甲强.纳米材料学[M].哈尔滨:哈尔滨工程大学出版社.2002,8:91-110.
    [4]谢卫东,彭晓东.重庆市新材料科技发展战略思考[J].科学咨询.2006,04S:22-23.
    [5]陈光华,邓金祥.纳米薄膜技术与应用[M],北京:化学工业出版社,2004,1:11-12.
    [6]邱成军,曹茂盛,朱晶等.纳米薄膜材料的研究进展[J].材料科学与工程.2001,19(4):132-137.
    [7]Christopher Johnson,Randall Gemmen and Nina Orlovskaya.Nano-structured self-assembled LaCrO_3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material[J].Composites Part B:Engineering.2004,35(2):167-172.
    [8]G.V.Kornich G.,Betz V.,Zaporojtchenko,etal.Molecular dynamics simulations of low energy ion sputtering of copper nano-dimensional clusters on graphite substrates[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2005,227(3):261-270.
    [9]肖兆娟,程晓农,严学华.磁控溅射法制备钨酸锆薄膜[J].硅酸盐学报.2006,34(3):314-317.
    [10]James E.Krzanowski,Jonathan Wormwood.Microstructure and mechanical properties of Mo-Si-C and Zr-Si-C thin films:Compositional routes for film densification and hardness enhancement[J].Surface and Coatings Technology.2006,201(6):2942-2952.
    [11]李铸国,俞海良,吴毅雄等.低能量离子束辐照磁控溅射沉积超硬质nc-TiN/nc-Cu纳米复合膜[J].金属学报.2006,42(9):993-997.
    [12]马捷,张好东,毕安园等.化学气相沉积法制取异型钨制品研究[J].兵工学报.2006,27(2):315-319.
    [13]王积森,温红,孙金全.纳米材料在复合电沉积中的应用[J].电镀与涂饰.2006,25(1):59-62.
    [14]H.-J.Muffler,M.B(a|¨)r,I.Lauermann,etal.Colloid attachment by ILGAR-layers:Creating fluorescing layers to increase quantum efficiency of solar cells[J].Solar Energy Materials and Solar Cells.90(18-19).2006:3143-3150.
    [15]Lernor,Ivan Source.Nanofilm market slated for strong growth[J].Chemical Market Reporter, 2004,266(1):16.
    [16]李明轩,柳利,柳士忠.2,5-双(乙炔基二茂铁)噻吩/钨磷杂多酸纳米杂化LB膜的制备与光电性质研究[J].化学学报.2005,23(18):1676-1680.
    [17]郝彦忠,王伟.量子点PbS修饰纳米结构TiO2复合膜的光电化学研究[J].无机化学学报.2006.22(11):2070-2074.
    [18]冯则坤,何华辉.纳米磁性颗粒膜研究进展[J].磁性材料及器件.2005,32(4):17-21.
    [19]Jedrasik P,Hanson M.A.lication of floatable oxide for nanometer magnetic particle fabrication[J].Microelectronic Engineering.2002,61(2):811-817.
    [20]Goto K,Ono T,Kim YJ.Evanescent light enhancement in a nanometer aperture surrounded by corrugated metal thin film for a terabyte optical disk head[J].IEEE Transactions on Magnetics.2005,41(2):1037-1041.
    [21]黄晓东,白守礼,李殿卿等.ZnO-SnO2纳米复合氧化物的制备、表征及其气敏性质的研究[J].无机化学学报.2005,21(8):1143-1148.
    [22]Manoj Kumar Ram,(O|¨)zlem Yavuz,Vitawat Lahsangah et al.CO gas sensing from ultrathin nano-composite conducting polymer film[J].Sensors and Actuators B:Chemical.2005.106(2):750-757.
    [23]G.S.Fox-Rabinovich,K.Yamamoto,S.C.Veldhuis,et al.Self-adaptive wear behavior of nano-multilayered TiAlCrN/WN coatings under severe machining conditions[J].Surface and Coatings Technology.2006,201(3-4):1852-1860.
    [24]雒建斌,钱林茂,刘姗.纳米级润滑膜失效实验研究[J].自然科学进展.2000,10(1):89-94.
    [25]黄周健儿,吴建青,汪永清.纳米TiO2涂层对Al2O3微滤膜的改性研究[J].无机材料学报.2006,21(3):725-730.
    [26]Jill R.Pan,Chihpin Huang,W.Jiang,et al.Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration:evaluation of pretreatment methods[J].Desalination.2005,179(1-3):31-40.
    [27]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社。1996年:1-5.
    [28]郑忠.胶体科学导论[M].北京:高等教育出版社,1989年:2-5.
    [29]江龙,胶体化学概论[M].北京:科学出版社,2002年:10-30.
    [30]王果庭,胶体稳定性[M].北京:科学出版社,1990年:8-10.
    [31]罗惕乾,流体力学[M].北京:机械工业出版社,2002年:86-98.
    [32]王箴,化工词典(3)[M].北京:化学工业出版社,1993年:18-136.
    [33]龙思远,彭晓东,谢卫东等.传输原理[M].重庆:重庆大学,2002年:333-339.
    [34]林智信,安从俊,刘义等.物理化学:动力学·电化学·表面及胶体化学[M].武汉:武汉大 学出版社.2003年:408-441.
    [35]陈宗淇,戴闽光.胶体化学[M].北京.高等教育出版社.1984年:209-2119.
    [36]P.Fredriksson and P.Gudmundson.Size-dependent yield strength of thin films[J].International Journal of Plasticity.2005,21(9):1834-1854.
    [37]R.G.Ispasoiu,J.Lee,and F.Papadimitrakopoulos etc.Surface effects in the fluorescence ultra-fast dynamics from CdSe nano-crystals[J].Chemical Physics Letters.2001,340(1):7-12.
    [38]谢卫东,彭晓东,刘相果等.纳米胶体动力学稳定性分析[J].重庆大学学报 自然科学版,2004,27(5):9-11,16.
    [39]Adamczyk,Zbigniew,Weronski etal.A.lication of the DLVO theory for particle deposition problems[J].Advances in Colloid and Interface Science.1999,83(1-3):137-226.
    [40]Churaev,N.V.DLVO theory in Russian colloid science.Advances in Colloid and Interface Science[J].1999,83(1-3):19-32.
    [41]郑忠,李宁.分子力与胶体的稳定和聚沉[M].北京:高等教育出版社,1995年:92-106.
    [42]Durant,Alex;Delplancke,Jean-Luc;Winand,Rene;Reisse,Jacques.A New Procedure for the Production of Highly Reactive Metal Powders by Pulsed Sonoelectrochemical Reduction[J].Tetrahedron Letters.1995,36(24):4257-4260.
    [43]姜立萍,张剑荣,王骏,朱俊杰.超声电化学制备PbSe纳米枝晶[J].无机化学学报.2002,18(11):1161-1164.
    [44]廖学红,朱俊杰,邱晓峰,赵小宁,陈洪渊.类球形和树枝状纳米银的超声电化学制备[J].南京大学学报.2002,38(1):119-123.
    [45]F Trabeisi et al.Oxidation of phenol in wastewater by sonoeletrochemistry[J].Chem.Engng.Sci.,1996,51(10):1857-1865.
    [46]李东升.史振民.王文亮.张祝莲.孙雪花等.超声沉淀法制备CuO-Fe2O3纳米粉体催化剂[J].延安大学学报.2001,20(1):56-58.
    [47]E.Manova,T.Tsoncheva,D.Paneva et al.Mechanochemically synthesized nano-dimensional iron-cobalt spinel oxides as catalysts for methanol decomposition[J].Applied Catalysis A:General,2004,277(1-2):119-127.
    [48]梁新义,白正辰,马智等.超声共沉淀法制备纳米结构LaNiO3及其性质[J].化学物理学报.2002,18(6):567-571.
    [49]王建.李敦钫.管洪涛等.超声波—溶胶—凝胶法制备纳米二氧化锡粉末[J].云南冶金.2002,31(4):42-44.
    [50]李革胜.李华基.彭晓东.超声雾化制备超细氧化铝陶瓷粉体技术[J].重庆大学学报.1999,22(2):50-53.
    [51]Chattopadhyay,Pratibhash,Gupta,Ram B.Production of griseofulvin nanoparticles using supercritical CO_2 antisolvent with enhanced mass transfer[J].International Journal of Pharmaceutics.2001.228(1):19-31.
    [52]Atanassova Dora,Kefalas Panagiotis,Petrakis Christos,et al.Sonochemical reduction of the antioxidant activity of olive mill wastewater[J].Environment International.2005,31(2):281-287.
    [53]Wu G.S.,Yuan X.Y.,Xie T.,et al.A simple synthesis route to CdS nanomaterials with different morphologies by sonochemical reduction[J].Materials Letters.2004.58(5):794-797.
    [54]Zhang Jun-ping,Chen Ping,Sun Cheng-hua,et al.Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system[J].A lied Catalysis A.General.2004,266(1):49-54.
    [55]王文亮,李东升,王继武等.一种新的制备纳米γ-MnO2的方法—超声辐射氧化还原法[J].化学学报.2004,63(16):1557-1560.
    [56]李炎,俞宏英,孙冬柏等.超声场辅助增强化学还原法制备纳米铜粉及影响因素[J].中国有色金属学报.2004,14(11):1746-1752.
    [57]龚晓钟,汤皎宁.联氨还原法制备金属Co纳米微粒[J].广州化工.2004,32(2).28-32.
    [58]武辉,阎立峰,徐瑜等.无乳化剂条件下超声波引发苯乙烯乳液聚合[J].中国科学技术大学学报.2003,33(2):243-246.
    [59]廖勇勤,王棋,王良文等.超声辐照引发MMA微乳液聚合[J].高等学校化学学报.2001,22(7):1237-1241.
    [60]张光明,常爱敏,张盼月.超声波水处理技术[M].北京:中国建筑工业出版社.2006年:1-6.
    [61]Miller Morton W.,Miller Douglas L.,Brayman Andrew A.A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective[J].Ultrasound in Medicine &Biology.1996,22(9):1131-1154.
    [62]李廷盛,尹其光.超声化学[M].北京:科学出版社,1995年:32-40.
    [63]马亚鲁,孙小兵,王彦起等.应用电泳沉积技术制备钛酸钡铁电陶瓷薄膜[J].硅酸盐通报.2002,6:13-16,26.
    [64]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社.2002年:25-36.
    [65]侯猛.粉末静电喷涂工艺[J].现代涂料与涂装.2004,2:32-34.
    [66]谢广润,陈慈萱.高压静电除尘[M]].北京:水利电力出版社.1993年:3-10.
    [67]赵江平,常军素.影响静电除尘性能因素的分析[J].河北煤炭.2006,4:50-51.
    [68]翁棣,唐先进,赵新景等.高压静电除尘实验研究[J].实验技术与管理.2006,23(7):17-20.
    [69]王时英.静电植绒织物的性能研究与产品开发[M],上海:东华大学出版社;2004年:6-7.
    [70]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社.2004年:1-33.
    [71]杨春晖,张志梅,杨兆明等.多晶薄膜的电共沉积制备及其半导体性能研究[J].硅酸盐学报.1999,27(6):721-726.
    [72]吴继勋,张海冬,卢燕平等.后处理对Zn-SiO2复合沉积膜结构与耐蚀性的影响[J].材料保护.1995,28(11):10-14.
    [73]黄令,许书楷,汤皎宁等.Ni-Mo-PTFE复合电极的制备及其对甲醇电氧化的催化性能[J].应用化学.1997,4:21-24.
    [74]周义编.电泳涂装新工艺[M].北京:地质出版社,1999年:68.
    [75]赵文珍.材料表面工程导论[M].西安交通大学出版社.2002年:292-293.
    [76]杨建明,朱狄,雷卫宁:电沉积法制备纳米晶材料的研究进展[J].材料保护.2003,36(4):1-4.
    [77]王桂林.电沉积技术在合成纳米材料中的应用研究[J].煤矿机械.2003,11:27-28.
    [78]Y Ono Masaki,Shimanoe Kengo,Miura Norio,et al.Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry[J].Sensors and Actuators B.Chemical.2001,77(1-2):78-82.
    [79]黄勇,张宗涛,张立民等。SiC/TZP陶瓷复合材料电泳沉积电极反应动力学研究[J].硅酸盐学报.1995,23(2):121-127.
    [80]谢卫东,彭晓东,李玉兰 刘方.电场沉积制备纳米薄膜的方法[P].中国,发明专利.ZL200410021685.4.20040114:1-2.
    [81]谢卫东,彭晓东,李玉兰等.无电流电场沉积CdS纳米薄膜.功能材料.2006,37(10):1657-1659.1662.
    [82]杨学恒,陈安,何贵宏.扫描隧道显微镜系统[J].重庆大学学报(自然科学版).2001,24(3):137-140.
    [83]平其能等.现代药剂学[M].北京:中国医药科技出版社.1998年:671-672.
    [84]王玲.动态心电图在埋植心脏起搏器患者随访中的应用价值[J].齐齐哈尔医学院学报.2004,25(11):1245.
    [85]昝佳,朱德权,谭丰苹等.聚羟基丁酸酯缓释微粒作用下的埋植给药系统[J].清华大学学报(自然科学版).2005,45(9):1258-1262.
    [86]王新超,范健.埋植剂治疗恶性肿瘤的研究进展[J].医师进修杂志:外科版.2004,27(11):51-53.
    [87]朱家桥,张海容,李发弟等.褪黑素埋植对绵羊体重和发情的影响[J].甘肃农业大学学 报.2005,40(4):448-45.
    [88]Hwang D.D.,Schaumont,P.,Tiri,K.;Verbauwhede,etc.Securing embedded systems[J].IEEE Security and Privacy.2006,4(2):40-49.
    [89]崔小明.淀粉包埋法增强碳纳米管水溶性[J].石化技术,2003,10(4):10-10.
    [90]陈国民,刘岚.柠檬酸包埋的四氧化三铁纳米颗粒的安全性研究[J].江苏药学与临床研究,2003,11(6):4-6.
    [91]Menezes Marion,Robertson I.M.,Birnbaum H.K.Novel technique to improve adhesion between metal-polymer interfaces[J].Materials Research Society Symposium-Proceedings,v445,Electronic Packaging Materials Science Ⅸ,1997:269-274.
    [92]E.Ziambaras,P.Hyldgaard.Thermal transport in SiC nanostructures[J].Materials Science and Engineering:C.2005,25(5-8):635-640.
    [93]Matgorzata Lewandowska,Krzysztof J.Thermal stability of a nanostructured aluminium alloy[J].Materials Characterization,.2005,55(4-5):395-401.
    [94]段菁华,王柯敏.有机荧光染料纳米颗粒的制备及其包埋机制的研究[J].化学传感器.2002,22(3):14-20.
    [95]Imanaka Yoshihiko,Akedo Jun.Embedded ceramic passive on FR-4 using aerosol deposition[J].Ceramic Transactions,v 174,Advances in Dielectric Materials and Electronic Devices-Proceedings of the 107th Annual Meeting of The American Ceramic Society,2006:27-38.
    [96]龚继来,蒋健晖.一种新型包埋染料的核壳纳米颗粒表面增强共振拉曼探针的研制及其在免疫分析中的应用[J].化学传感器.2005,25(2):29-29.
    [97]Tao Y.,Fasching R.J.,Prinz,F.B.Ultra-sharp high-aspect-ratio probe array for SECM and AFM analysis.Proceedings of SPIE-The International Society for Optical Engineering[J],v 5389,Smart Structures and Materials 2004-Smart Electronics,MEMS,BioMEMS,and Nanotechnology,2004:431-442.
    [98]刘津平,贾轶.包埋前ABC法和纳米金—银加强法双重标记技术在免疫电镜中的应用[J].中国神经科学杂志,2002,18(4):728-731.
    [99]林琳,吴锦雷.埋藏于BaO介质中的Ag纳米粒子可见光波段的光致荧光增强现象研究[J].真空科学与技术,2000,20(1):5-8.
    [100]苗鸿雁,罗宏杰.新型陶瓷材料制备技术(上)[M].西安:陕西科学技术出版社.2004年:122-129.
    [101]董敏,蒲永平,谈国强.纳米陶瓷的烧结研究[J].陶瓷科学与艺术.2005,39(1):35-39.
    [102]秦秀娟.纳米氧化锌常压/超高压下的烧结及其结构与性能[D].河北:燕山大学.2005年.6-51.
    [103]孔明,魏仑,董云杉等.TiN/Al2O3纳米多层膜的共格外延生长及超硬效应[J].物理学报.2006,55(2):770-775.
    [104]曹为民,胡滢,印仁和等.电结晶铜/钴纳米多层膜结构与磁性能研究[J].化学学报.2006,64(1):32-36.
    [105]郭诗玫,孙勇,王闸.溅射法制备Al/Pb金属多层膜[J].电镀与装饰.2006,25(9):20-22.
    [106]刘艳,董云杉,岳建岭.反应磁控溅射ZrN/AlON纳米多层膜的晶体生长和超硬效应[J].物理学报.2006,55(11):6013-6019.
    [107]赵文济,岳建岭,鸟晓燕.VN/SiO2纳米多层膜的微结构特征与超硬效应[J].电子显微学报.2006,25(B08):91-92.
    [108]杨会静,孙立萍,刘长虹.纳米多层膜的制备方法及比较[J].唐山师范学院学报.2006,28(5):61-63.
    [109]谢卫东,彭晓东,李玉兰等.一种制备纳米薄膜的方法[P].中国发明专利.ZL200410021825.20040212:1-2.
    [110]刘相法,边秀房,李辉等.AlTiB中间合金细化效果的组织遗传效应[J].金属学报.1996,32(2):149-153.
    [111]Wei-dong XIE,Xiao-dong PENG,Qun-yi WEI,etc.Preparation of Mg-Sr Alloys Using Vacuum Reduction:A Thermodynamics Approach[J].Materials Science Forum.2007,546-549:463-466.
    [112]谢卫东,李玉兰,刘方,彭晓东.真空热还原制备Mg-Sr合金的方法[P].中国,发明专利(申请),200610054216.1,20060417:1-3.
    [113]谢卫东,李玉兰,刘方,魏群义,彭晓东.金属熔炼中添加元素的装置及方法[P].中国,发明专利(申请),200510057482.5,20051230:1-4.
    [114]谢卫东,刘年春,彭晓东.一种电解锶化合物制备含锶镁合金的方法[P].中国,发明专利(申请),200710078629.8,20070615:14.
    [115]谢卫东,汗守铖,彭晓东.一种同槽电解MgO和SrO制备镁锶合金的方法[P].中国,发明专利(申请),200710078628.3,20070615:1-4.
    [116]谢卫东,汤燕,彭晓东.一种电解还原氧化锰制备Mg-Mn合金的方法[P].中国,发明专利(申请),200710078626.4,20070615:1-3.
    [117]彭晓东,李蕾,谢卫东.一种电解MgCl_2和MnO制备Mg-Mn合金的方法[P].中国,发明专利(申请),200710078630.0,20070615:1-4.
    [118]彭晓东,杨艳,谢卫东.Mg—Li—Sr合金及其电解制备方法[P].中国,发明专利(申请),200710078627.9.20070615:1-3.
    [119]王吉岱,闫承俊,孙静等.铝合金变质处理的现状和发展趋势[J].铸造.2005,54(9):844-836.
    [120]刘相果,彭晓东,谢卫东.高纯碳酸锶制备方法,中国,发明专利,ZL200510057057.6,20050511:1-5.
    [121]谢卫东,彭晓东,杨大壮等.一种有色金属用变质剂及其制备方法[P].中国发明专利.ZL200510057082.4.2005.1-3.
    [122]刘相果,彭晓东,谢卫东等.高纯碳酸锶制备方法[P].中国发明专利.ZL200510057057.6.20050524:1-3.
    [123]刘相果,彭晓东,谢卫东,魏群义.SrCO3的热分解动力学及其影响因素[J].材料研究学报.2005,19(3):287-292.
    [124]王永锋,夏天东,赵文军.AlTiC晶粒细化剂的制备工艺及研究现状[J].材料导报.2005,19(10):73-76.
    [125]谢卫东.植物油砂复用性[J].铸造技术.2000,5:16-18.
    [126]谢卫东,彭晓东,刘江等.型芯热气流硬化工艺研究[J].中国铸造装备与技术.2003,1:28-30.
    [127]刘相果,彭晓东,谢卫东等.Sr(OH)_2·8H_2O非等温热分解动力学分析[J].中国有色金属学报.2004,14(4):686-690.
    [128]谢卫东,彭晓东,刘江,刘相果.涂层强度冲砂测试法[J].铸造设备研究.2003(1).16-18
    [129]聂华,谢卫东,徐溢,彭晓东等.锶的分析技术进展[J].冶金分析.2006,26(6):32-35.
    [130]于丽娜,王海梅.微量TiC、TiB_2引起铝熔体粘度的突变现象[J].铸造.2002,51(11):686-689.
    [131]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社.2002(9):3-29.
    [132]于金,吴三械,董岩等.真空铝热还原法制备金属锶的反应机理[J].东南大学学报.2006,36(6):951-955.
    [133]于金,蒋建清,方峰等.真空铝热还原法制备金属Sr的热力学分析及实验研究[J].金属学报.2005,41(8):824-828.
    [134]薛永强,赵红,杜建平.纳米氧化铜的粒度对多相反应动力学参数的影响[J].无机化学学报.2006,22(11):1952-1956.
    [135]G.Le Saux,P.Krüger,B.Domenichini,et al.Dynamics of molybdenum nano structure formation on the TiO2(110) surface:A kinetic Monte Carlo approach[J].Applied Surface Science.2006,252(15):5399-5402.
    [136]Matsumoto R,Nakagaki M.Estimation of the mechanical properties of amorphous metal with a dispersed nano-crystalline particle by molecular dynamics simulation[J].Cmes-Computer Modeling in Engineering & Sciences.2005,10(3):187-197.
    [137]J.M.Barandiaran,I.Telleria,J.S.Garitaonandia,et al.Kinetic aspects of nano-crystallization in Finemet-like alloys[J].Journal of Non-Crystalline Solids,2003.329(1-3):57-62.
    [138]董光明,孙国雄,廖恒成.锶在铸造铝硅合金中的变质行为[J].特种铸造及有色合金.2005,25(3):146-159.
    [139]S.G.Shabestari and S.Ghodrat.Assessment of modification and formation of intermetallic compounds in aluminum alloy using thermal analysis[J].Materials Science and Engineering:A.2007,467(1-2):150-158.
    [140]S.S.Sreeja Kumari,R.M.Pillai,T.P.D.Rajan et al.Effects of individual and combined additions of Be,Mn,Ca and Sr on the solidification behaviour,structure and mechanical properties of Al-7Si-0.3Mg-0.8Fe alloy[J].Materials Science and Engineering:A,,2007,460-461(15):561-573.
    [141]冯鹏发,唐靖林,李双寿等.中间合金及其状态对A356合金半固态浆料组织的影响[J].铸造.2006,55(10):1020-1024,1028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700