用户名: 密码: 验证码:
电动车轮构型分析与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车作为唯一能达到零排放的机动车越来越受到人们的欢迎,电动车轮也称为电动轮技术作为电动汽车的一个重要的发展方向,特别是由外转子轮毂电机直接驱动车轮行驶的电动车轮,将动力传递机构最大程度的进行了简化,动力得到了高效的传递;将整车的动力系统转移到车轮空间内,大大提高了车内可利用空间;永磁同步电机技术的发展为电动车轮车辆提供了高功率密度的轮毂电机;通过线控技术对电动车轮内电机的控制,可以使车轮对控制的响应更为迅速,也为实现四轮独立控制策略提供了更多的可能。但是将整车动力系统从车身移至车轮内,不仅存在轮内结构布置空间紧张的问题,而且动力系统的安装使车轮部分质量增加,车身与车轮的质量比降低,将造成车辆平顺性降低、车轮动载荷变大、道路友好性和行车安全性降低等车辆垂向负效应问题,这也正是当前电动车轮驱动车辆研究需要解决的关键问题。为了实现电动车轮内驱动、制动、传动及连接装置在电动车轮内合理布置,有效利用轮内空间,设计出能够驱动车辆高速、稳定、安全且轻量化的电动车轮,本文结合电动车轮驱动的电动车辆悬架构型的分析,深入的研究了电动车轮结构。
     分析轮毂电机不同安装方式得到的电动车轮车辆动力学构型,证明了轮内悬浮电机是解决电动车轮驱动车辆垂向振动恶化问题的最佳动力学构型。研究轮毂电机质量增加对车辆平顺性造成的影响,系统的分析并对比由电动车轮不同安装方式得到的车辆悬架构型及其动力学微分方程。根据轮毂电机作为动力吸振器,对整车起减振作用时受到轮内空间限制这一实际情况,提出相对车轮的垂向运动量作为不同悬架构型参数优化的约束条件,得到将轮毂电机和制动器在车轮内悬浮的电动车轮最优的悬架构型,并通过对比验证:本文优化计算得到的采用最优构型的电动车轮车辆不仅可以解决轮毂电机引入造成的簧下负效应问题,而且可以得到比原车的更优的平顺性和安全性。
     提出基于最优控制算法的轮内主动减振系统来减小电机和车轮之间相对位移。综合考虑轮毂内部空间限制、车辆行驶工况变化以及车身簧上簧下质量比不固定等因素,发现在有限的轮内空间中,轮毂电机所占空间与其相对车轮垂向运动位移相互制约,本文又以保持车辆的平顺性性能不降低为基本要求,以减小轮毂电机相对车轮的垂向位移为目标,对轮内主动减振系统进行了研究,目的是降低电动车轮内结构对空间的要求。经过验证:电动车轮在主动减振系统的作用下,不仅保证了车辆的平顺性,而且大大降低了减振过程中轮毂电机相对车轮的位移,即降低了轮内减振系统结构对轮内空间的要求,另外因主动减振系统结构简便可以减小轮内减振系统所占空间,并可以通过控制算法的调整适应电机、车轮及车身质量变化,避免因刚度、阻尼设计需求变化造成减振系统结构重新设计匹配。
     发明了一种新型高速电动车轮。根据最佳动力学构型将轮内电机由簧下质量转化为轮内动力吸振器来提高车辆平顺性的原理,采用弹簧阻尼机构将环形电机和制动器悬浮在车轮内,采用十字滑块传动装置实现电机与轮毂间的等速传动,解决了轮内悬浮电机的结构实现问题,满足高速行驶要求的同时,改善整车平顺性和操稳性。根据电动车轮车辆对轮毂电机的需求和对不同特点电机的比较,确定外转子永磁同步电机作为电动车轮驱动电机,并根据汽车理论计算与车辆动力型匹配的电机性能,采用场路结合的方法分析了轮毂电机关键参数,通过对电机进行仿真分析和试验台验证,电机的转矩和转速满足车辆的动力性需求。
     对电动车轮的轻量化设计从三个方面进行了研究,首先利用电机设计分析软件,经过分析和对比优化出满足车辆动力性,质量减小9kg的轮毂电机电磁方案;然后根据现有电机壳体、制动盘和传动机构结构有限元分析结果,采用铝合金材料来对电机壳体和传动机构进行重新设计,可使质量降低约23kg;最后又通过对轮内减振系统的弹簧、导向杆和液压阻尼减振器集成一体化的碟片弹簧液压减振装置,在提高车辆平顺性的同时减轻了电动车轮质量。
Electric vehicle becomes more and more popular because that it is the only kind ofvehicle which creates no pollution. As an important developing aspect of electric cars,the electric wheel especially which is driven directly by external rotor in-wheel motor,can extensively simplify the power transmission system, making power transmissionwith a high efficiency. The electric car’s power system lies in the wheels, providingmore inner space available for users. Meanwhile, the permanent magnet synchronousmotor can provide in-wheel motor with high power-density. Through the wire control tothe in-wheel motor, the wheels response quicker to the control, providing moreprobabilities to achieve independent control policy for the wheels. However, moving thepower system from the body to the wheels brings a problem to the placement in thewheel; further more, the wheel mass will increase, the mass ratio of the body to wheelwill decrease by the mounting of power system, thus decreasing the car smoothness,increasing dynamic load of wheels, decreasing road friendly and driving security,causing vertical negative effect problems to the car. Above are the key problems thatneed to be solved by in wheel motor driven cars today. Involving with the analysis onsuspension structure of in-wheel motor driven car, this study gives a deep research onin-wheel motor’s structure, in order to place the driven system, braking system,transmission system and connection system right in the wheel, make full use ofin-wheel space, design electric wheels that can drive the car speedily, stably, safely andlightly.
     The in-wheel motor driven car’s kinetic structure elicited by analyzing differentmounting modes of in-wheel motor proves that the suspension motor in the wheel is theoptimized kinetic structure, which can solve the exacerbating problem of verticalvibration. In this essay, we studies the affection to the smoothness caused by the massincrease of in-wheel motor, systematically analyze and compare the vehicle suspensionstructure and its kinetics differential equation by different mounting modes of theelectric wheel. Applying the in-wheel motor as the vibration absorber will be limited inthe spaces of the wheel in a damping action. In this situation, we put the verticalmovement as an restriction to optimize parameters of different suspension structures,work out the optimized suspension structure of electric wheel where the in-wheel motorand arrester are suspended to the axis. We conclud after comparison that electric car with optimized structure can not only solve the negtive unsprung affection of thein-wheel motor, but also obtain smoothness and safty better than the one without thatoptimized structure.
     In-wheel initiative damping system basing on optimized control algorithm canreduce the relative displacement between the motor and the wheel. Taking the spacelimit of the wheel, driving road differences, and the unfixed ratio of body’ssprung/unsprung mass into account, we found that the space required by in-wheel motorwould interact with the vertical relative displacement of the wheel in limited space.Meanwhile, this essay uses keeping the vehicle smoothness as basic condition, reducingthe vertical relative displacement between in-wheel motor and the wheel as the target,studies on the in-wheel initiative damping system, for reducing the space requirement ofthe in-wheel motor. By way of simulation, this study validates that in-wheel initiativedamping system can not only insure the smoothness, but also greatly reduce the relativedisplacement between the in-wheel motor and the wheel during shock absorption, whichmeans reducing the space requirement of the damping system. In addition, the initiativedamping system can reduce the space requirement; also can avoid the re-design matchof the damping system structure by way of adapting changes of the motor, wheel andbody mass through a controller.
     This study introduces a new high speed electric wheel. Based on the theory thattransforming in-wheel motor’s unsprung mass to vibration absorber will improve thesmoothness according to optimized kinetic structure, we use a sprung damper tosuspend the annular motor and the arrester in the wheel, and a crisscross slidertransmission system to achieve the transmission between the motor and wheel at aneven speed. In this way, we can resolve the problem of the suspension motor structure inthe wheel, meeting the demand of a high driving speed, improving the smoothness andstability at the same time. By comparing different motors according to the claim of theelectric vehicle to in-wheel motor, we fix on the external rotor permanent magnetsynchronous motor as the motor of electric wheels. Also, according to the calculationabout the motor performance matching the vehicle’s kinetic performance, we analyzethe key parameters of in-wheel motor through the method of field circuit combination.By the simulation analysis and test-bed validation, we conclude that the torque andspeed of the motor can meet the requirement of vehicle’s kinetics performance.
     The lightness design of electric wheel is researched from below three aspects.Firstly, shape the electromagnetism scenario of in-wheel motor with a9kg mass reduce which satisfies the vehicle kinetics performance by using the motor design and analyzesoftware; secondly, based on the Finite Element Analysis result about the structure ofmotor shell, brake disc and transmission system, redesign the motor shell andtransmission system with aluminum alloy material, reducing the mass by23kg alike;thirdly, by integrating disc spring hydraulic damping device with the sprung of thedamping system, oriented pole and hydraulic damper, improving smoothness andreducing wheel mass at one time.
引文
[1]陈勇,张建荣,张大明.电动轮技术在电动汽车中的应用及发展趋势[J].机械设计与制造.2006(10):169-171.
    [2]王晶晶等.轮毂式电动汽车驱动系统综述.第十届沈阳科学学术年会.2013.中国辽宁沈阳.
    [3]褚文强,辜承林.电动车用轮毂电机研究现状与发展趋势[J].电机与控制应用,2007,34(4):1-5.
    [4]陈勇,电动轮电动汽车动力学与控制策略研究.北京理工大学[D].北京:2002
    [5]李宝华.电动轮汽车主动控制技术[M].天津汽车.2008.7
    [6] Farzad Tahami,Shahrokh Farhangi, Reza Kezami. A Fuzzy Logic Direct Yaw-Moment controlsystem for ALL-wheel-Drive Electric Vehicle[J], Vehicle SystemDynamics.2004,41(3):203~221
    [7] Sinclair Gair, Andrew Cruden, J. McDonald, Branislav Hredzak. Electronic Differential withSliding Mode Controller for a Direct Wheel Drive Electric Vehicle[J]. IEEE InternationalConference on Mechatronics2004Technical Program.
    [8] Rafal Setlak.HAULAGE TRUCKS MODEL with Four Electric Separate wheelDrives[J].TRANSPORT-2005,Vol XX,No1,51~54.
    [9] Yoichi Hori. Future Vehicle Driven by Electricity and Control-Reasearch on4WheelMotored’UOT March II’[J], Proc. of AMC, Maribor,2002
    [10]张德长,高立杰.电动汽车发展现状及前景浅析.自主创新、学术交流——河南省汽车工程学会第八届科技学术研讨会.2011.中国河南驻马店.
    [11]汤双清,王娇菊,曾虎彪.电动轮驱动技术研究[J].机械工程与自动化,2009,4:196-197.
    [12]杨邦鼎,杨雷.减速驱动方式在电动车中的应用[J].电器工业,2002(6):7~8.
    [13]王成,张立军,缪维佳,余卓平.电动汽车轮毂电机系统研究进展[J].清洁汽车技术创新发展论坛.2008.01.
    [14]天津一汽夏利股份有限公司.威乐混合动力轿车技术报告[内部资料],2008.
    [15]胡骅,宋慧.电动汽车[M].北京:人民交通出版社,2006:16-18
    [16] Harnefors L., Nee H. P. Model-based current control of AC machines using the internal modelcontrol method. IEEE Trans. on Ind. Application.1998,34(1):133-141
    [17] Faajeng Lin, Senglyin Chiu and Kuokai shyu. Novel sliding mode controller forsynchronous motor drive,IEEE Trans on Aeros and Electronic System.1998,34(2):532-542
    [18] Sakai S., Sado H. and Hors Y. Motion control in an electric vehicle with four independentlydriven in-wheel motors.IEEE/ASME Trans. on Mechatronics.1999,4(1):9-16
    [19] Gair S. Hredzak B. and Eastham J. F. Design of advanced electric drives and torquemethodologies for electric vehicles.EWS~14
    [20] Mehrdad Ehsani, Khwaja M. and Hamid A. Toliyat. Propulsion system design of electric andhybrid vehicles.IEEE Trans. Ind. Electronics.1997,44(1):19-27
    [21] B. J. Chalmers. L. Musaba and D. F Gosden. Variable-frequency synchronous motor drives forelectric vehicles.IEEE Trans. Ind. Application.1996.32(4):898-903
    [22]陈桂明,张明照,戚红雨,张宝俊.应用MATLAB建模与仿真,科学出版社,2001
    [23]王玲珑,黄妙华.轮毂式电动汽车驱动系统的研究与开发.武汉:武汉理工大学汽车工程学院.
    [24]靳立强,王庆年,岳巍强,宋传学.基于四轮独立驱动电动汽车的动力学仿真模型[J].系统仿真学报,2005,17
    [25]李友善,李军.模糊控制理论及其在过程控制中的应用[M].北京:国防工业出版社,1993
    [26] Kimihisa Furukawa and Yoichi Hori. Recent Development of Road Condition EstimationTechniques for Electric Vehicle and their Experimental Evaluationusing the Test EV "UOTMarch I and II",IEEE IECON-2003, Roanoke
    [27] Kimihisa Furukawa and Yoichi Hori. Advanced Estimation Techniques of RoadSurfaceCondition and Their Experimental Evaluation using Test Electric Vehicle"UOT March I andII", EVS-20,2003.11.15-19, Long Beach
    [28] Lianbing Li, Kodama Shinya and Yoichi Hori. Anti-Skid Control for EV UsingDynamic ModelError based on Back-EMF Observer, IECON2004, Pusan
    [29]杨孝纶.电动汽车技术发展趋势及前景(下).汽车技术,2008,(1):7-9.
    [30] Gair S, Cruden A, McDonald J, et al. Electronic differential with sliding mode controller for adirect wheel drive electric vehicle[C]//IEEE International Conference on Mechatronics2004Technical Program,2004.
    [31]葛英辉,倪光正.新型电动车电子差速控制策略研究[J].浙江大学学报:工学版,2005,39(12);1973-1978.
    [32]沈勇,吴新文.基于复合神经网络模型的四轮独立驱动电动车控制.汽车工程,2004,26(4):458-460
    [33]靳立强,王庆年.电动轮驱动汽车电子差速控制策略及仿真.吉林大学学报(工学版).2008,38:(增刊)1-6.
    [34]靳立强,王庆年,张缓缓,王军年.电动轮驱动电动汽车差速技术研究[J].汽车工程,2007(Vol.29)No.8,700-704.
    [35] SHINO M, MIYAMOTO N, WANG Y Q, NAGAI M. Traction control of electric vehiclesconsidering vehicle stability[J]. Advanced Motion Control,2000(6):311-316.
    [36] SADO H, SAKAI S, HORI Y. Road condition estimation for traction control in electricvehicle[J]. Proceedings of the IEEE International Symposium on Industrial Electronics.1999(1):973-978.
    [37] Lovatt H C, Ramsden V S. Design of an in-wheel motor for a solar-powered electricvehicle[J].IEE Proc–Electr Power Appl,1998,145(5):402-408.
    [38]宁国宝,万钢.轮边驱动系统对车辆垂向性能影响的研究现状[J].汽车技术,2007,(3):2l-25.
    [39]夏存良,宁国宝.轮边驱动电动车大质量电动轮垂向振动负效应主动控制[J].中国工程机械学报,2006.4(1):31-34.
    [40] Purdy D J.A Brief Investigation Into the Effect on Suspension Motions of High UnsprungMass.Battlefield Technology,2004,7(1).
    [41] Hrovat D.Influence of Unsprung Weight on Vehicle Ride Quality, Journal of Sound andVibration.1988,124(3):497-516.
    [42] Siddiqui. Dynamic Analysis of a Modern Urban Bus for Assessment of Ride Quality andDynamic Wheel Loads. Master Abstracts International,2000.
    [43] Van Schalkwyk D J. Kamper M J.Effect of hub motor mass on stability and comfort ofelectric vehicles [A].Vehicle Power and Propulslon Conference[C].2006.VPPC06.IEEE,2006.
    [44] Eastham J F.Disc Motor Reduced Unsprung Mass for Direct EV Wheel Drive[J]. IEEE CatalogNumber:95TH8081.
    [45] HROVAT D.Influence of unsprung weight on vehicle ride quality [J]. Journal of Sound andVibration.1988,124(3):497-516.
    [46]余志生.汽车理论[M],第五版,北京:机械工业出社,2009.3,202-236.
    [47] GO Nagya, Development of an in-wheel drive with advanced dynamic-damper mechanism[J],JSAE Review.2003,24(4):477-481.
    [48]梁锐,余卓平,宁国宝.基于吸振原理的轮边驱动电动车垂向振动负效应的抑制[J].机械设计,2008,1(25):28-30.
    [49]张孝祖,武鹏.装有动力吸振器的汽车悬架性能分析[J].江苏大学学报.2004,25(5):389-392.
    [50] Yang Y P. Design and Control of Axial-Flux Brushless DC Wheel Motors for ElectricVehicles-Part I: Multi–Objective Optimal Design and Analysis,IEEE Transactions onMagnetics.2004,40(4).
    [51] Patterson D.The Design and Development of an Axial Flux Permanent Magnet Brushless DCMotor for Wheel Drive in a Solar Powered Vehicle.IEEE Transactions on IndustryApplications.1995,31(5).
    [52]赵艳娥,张建武,韩旭.轮毂电机独立驱动电动汽车减振机构设计与研究[J].机械科技与技术,2008,(3):395-404.
    [53] Jin Li-qiang, Song Chuan-xue, Wang Qing-nian. Evaluation of Influence of Motorized Wheelson Contact Force and Comfort for Electric Vehicle[J]. Journal of Computers, Vol.6, No.3,2011(3),497-505.
    [54]白丙旭.一种高功率密度永磁同步电机的设计[J].科技信息,2013(4),256-257.
    [55]沈启平,车用高功率密度永磁同步电机的研究[D],沈阳工业大学:博士论文,2012.
    [56] Rmsden V S R. Design of an in-Wheel Motor for a Solar-Powered Electric Vehicle[J].Journals&Magazines,1998,145(5):402-408..
    [57]王琳,动力吸振器的参数设计和动力学分析,2012,石家庄铁道大学.
    [58]莫旭辉,赵宇航,钟志华,张义.基于6σ稳健性方法的汽车行驶平顺性优化[J].中南大学学报(自然科学版),2012,43(11):4286-4292.
    [59]万松,陈辛波.轮边驱动电动车质量比对车辆性能的影响[J],机械设计与研究,2011,增刊,36-39.
    [60]江浩斌,王波,黄炯.考虑道路友好性的载货汽车悬架参数优化仿真[J].计算机仿真,2009,1(5):291-295.
    [61] A.G. THOMPSON. Design of active suspensions[J], Proceedings of the Institution ofMechanical Engineers185(1970-1971)553–563.
    [62] M. YAMASHITA, K. FUINMORI, K. HAYAKAWA, H. KIMURA. Application of H∞controlto active suspension systems[J], Automatic30(1994)1717–1729.
    [63] D. KAMOPP. Active and semi-active vibration isolation[J], Transactions of the ASME, J.Mechanical Design117B (1995)177–185.
    [64]来飞.基于电磁作动器的车辆主动悬架研究[D].重庆大学:博士学位论文.2010.
    [65]张璐.电动轮车操纵稳定性和平顺性的分析与优化[D].武汉:武汉理工大学,2009.
    [66]柴陆路.电动轮驱动汽车悬架系统的性能研究[D].武汉:武汉理工大学,2009.
    [67]李晏.微型电动汽车用轮边驱动系统的设计与研究[D].上海:同济大学,2009.
    [68]崔希海,李进兰,宋若峰.十字滑块联轴器的运动及动力特性分析[J],机械设计与制造2006(11):8-9.
    [69]王忠, Shailendra K. sharan.十字滑块联轴器工作效率及自锁理论的研究[J],机械工程师2003(10):51-53.
    [70]陈清泉.环境保护和电动车的开发江苏机械制造与自动化.2000(1):3-7
    [71]陈静,轮毂盘式永磁同步电动机的设计与分析[D],天津:天津大学,2010,6.
    [72] Yee-Pien Yang,Yih-Ping Luh, Cheng-Huei Cheung. Design and control of axial-flux brushlessdo wheel motors for electric vehicles-Part I Multi objective optimal design and analysis. IEEETransactions on Magnetics,2004(4):1873-1882.
    [73] Yee-Pien Yang, Jui-Ping Wang, Shang-Wei Wu, Yih-Ping Luh. Design and control of axial-fluxbrushless do wheel motors for electric vehicles-Part II Optimal current waveforms andperformance test. IEEE Transactions on Magnetics,2004(4):1883-1891
    [74] Lovatt, H.C., Ramsden, V.S., Mecrow, B.C. Design of an in-wheel motor for a solar-poweredelectric vehicle Proceedings Electric Power Applications,1998(5):402-408
    [75]吴畏,许锦兴,林金铭.盘式永磁同步电动机及其发展.电工技术,1990(2):10~13.
    [76] Brian J. Chalmers,Lawrence M. and David F. G. Variable frequency synchronous motor drivesfor electric vehicle. IEEE Trans. On Industry Applications.1996,Vol32(4):896-903
    [77] M. Azizur Rahman and Ruifeng Qin.A Permanent magnet hysteresis hybrid synchronous motorfor electric vehiele. IEEE Trans. on Industrial Electronics.1997,Vol44(1):46-53.
    [78] C.C.Chan,Ruoju Z.and K.T.Chou. A novel permanent magnet hybrid motor for electricvehiele. Proe. Of CICEM,95. Hangzhou China,1995.552-556.
    [79] Kawamura A.,Hoshi N. Tao Weong Hin and et al. Analysis of anti-dircetional-twin-rotarymotor drive characteristics for electric vehicle. IEEE Trans. on Industrlal Electronics1997,vol44(1):64-67.
    [80] Federico C.,Fabio C. Multi-stage axial-flux PM machine for wheel direct drive. IEEET rans.On Industry Applications.1996,Vol32(4):882-888.
    [81] J. Lindstrom,J. Hellsing and J.Luomi. Design of high-efficiency electrical motors for a hybridelectric vehicle. Proc. of EVS-13. Osaka Japan,1996.64-69.
    [82] D. Platt,B. H. Smith. Twin rotor drive for an electric vehicle. Proc. IEE Pt-B.1992,140(6):497-506.
    [83]袁琼,江建中.横向磁场永磁电机.微特电机.2002(3):3-7.
    [84]王凤翔.Halbach阵列及其在永磁电机设计中的应用.微特电机.1999(4):22-24.
    [85]孙明冲,电动汽车的轮毂电机设计及其弱磁控制[D],哈尔滨:哈尔滨工业大学.2009,6.
    [86]秦忆.永磁同步电动机的矢量控制.微特电机[J],1988(2):8-16.
    [87]朱震莲等.新型永磁同步电动机的参数设计和矢量控制.微特电机,1993(5):17-20.
    [88] Zeng Zhaohui, Chen Zhijie, and Zhou E. Current Control for Interior Permanent MagnetSynchronous Motors. Proceedings of CICEM’95:104-108.
    [89] Tomy Sebastian and Gordon R.Slemon. Operating Limits of Inverter-Driven Permanent MagnetMotor Drives. IEEE Trans. on Industry Appl.,1987,23(2):327-333.
    [90] Shigeo Morimoto, et al. Expansion of Operating Limits for PMSM by Current Vector ControlConsidering Inverter Capability. IEEE Trans. on Industry Appl.,1990,26(5):866-871.
    [91] Shigeo Morimoto et al. Servo Drive System and Control Characteristics of Salient PolePermanent Magnet Motor Drives. IEEE Trans. on Industry Appl.,1993,29(2):338-343.
    [92]余俊,周济主编.优化方法程序库OPB-1原理及使用说明[M].北京:机械工业出版社,1998.
    [93]陈天富,冯贤贵编著.材料力学(修订版)[M].重庆:重庆大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700