用户名: 密码: 验证码:
淡水鱼糜发酵及其凝胶形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼糜具有蛋白质含量高、脂肪含量低、口感嫩爽等特点深受欢迎,但目前鱼糜生产原料多为海水鱼,淡水鱼应用较少。因淡水鱼多属难凝胶化鱼种,凝胶强度较低,易凝胶劣化。本论文根据微生物的发酵性能和鱼糜的基本制作工艺,结合现代食品与发酵技术,旨在研制出具有独特风味,高营养、高安全性、贮藏期长,符合中国人饮食心理等特点的优质发酵鱼糜。本研究对于了解鱼肉在发酵环境下化学成分的变化规律、蛋白质结构变化以及凝胶形成的机理具有重要的学术意义,本研究将为水产加工业建立生物发酵的新加工技术体系提供坚实的理论基础和科学依据,对于促进淡水鱼加工具有重要的应用价值。
     首先研究了7株乳酸杆菌(LC、LS、Lp-1、LP-5、Lp-8、Lp-10、Lp-15)、2株戊糖片球菌(PP和Pp-8)和1株木糖葡萄球菌(Sx-12)的生长、产酸、耐盐、产蛋白和脂肪分解能力、拮抗性、抑菌性等生理学特性。所有菌株在12-18h内都能进入对数生长阶段,具有较好的发酵活力;在24h内的产酸能力与发酵初期相比差异极显著。性能测定表明Lp-5, LC, Sx-12, PP, Lp-8, Lp-15显示出较好的发酵特性。分别以这六株较优的微生物为发酵剂,以鲢鱼肉糜为基质。分析在发酵剂作用下,鲢鱼肉糜理化和食用品质变化的规律和特征。结果表明,鱼肉糜经微生物作用后,pH值迅速由最初的6.6降至60 h时的4.05-4.46。而对照组,则升高到7.12。非蛋白质态氮和氨基态氮含量随发酵时间的增加而增加,但以接种木糖葡萄球菌增加最大,60 h时分别为8.32 mg/g和0.62 %。接种发酵剂的鲢鱼肉浆的TVBN值上升较慢,在发酵60 h后仍在新鲜标准内(15-25 mg/100g),也没有腐败臭味的产生。而未接种发酵剂的对照组在发酵到48 h时已呈现腐败现象。添加发酵剂可显著增加了鲢鱼肉糜的硬度、胶粘性、咀嚼性,提高鱼肉的白度,有效抑制Pseudomonas (假单胞菌属)、Enterobacteriaceae (肠道菌)等的生长繁殖(P<0.05)。除木糖葡萄球菌外,发酵剂的添加可有效抑制发酵过程中生物胺的产生。感官评定(风味、质地、外观、总体接受性)表明,添加发酵剂可显著改善鱼糜的品质,特别是菌株LC、PP、Lp-8显示出较高的感官特性。
     在研究了单一发酵剂的基础上,使用混合微生物发酵剂对鲢鱼肉糜进行发酵。在发酵过程中,乳酸菌大量生长增殖,成为优势菌种,pH值急速下降,48 h时降至4.21-4.36,混合发酵剂也可有效抑制肠道菌和假单胞菌的生长繁殖,降低挥发性盐基氮(TVBN)、TBA和生物胺的累积,并且可提高鲢鱼肉糜的凝胶强度和白度。SDS-PAGE、非蛋白质态氮、游离氨基酸和游离脂肪酸的结果显示接种混合发酵剂加快蛋白质和脂肪的降解,也显著提高了鲢鱼肉糜的感官特性。各混合发酵剂发酵样品在质地和外观方面没有显著性差异,但S-PXC(Lp-8,Lc和Sx-12)样品的风味和总体接受性显著高于S-PXP(Lp-8,Sx-12和PP)和S-XCP(Sx-12,Lc和Pp)样品。采用HS-SPME/GC-MS结合嗅觉监测器对S-PXC的挥发性风味成分进行分析,发酵24 h和48 h的鲢鱼肉鱼糜中分别检出42种和44种挥发性风味物质。对发酵鱼糜风味起贡献主要的挥发性风味物质为:乙酸、己醛、己醇、乙酸乙酯、2,3-戊二酮、2-戊烯-1-醇。
     鲢鱼糜在发酵过程中随发酵时间的增加其凝胶强度显著增加,为揭示凝胶形成机制,综合应用傅立叶变换红外、激光拉曼和圆二色性光谱等方法研究了鱼肉肌纤维蛋白结构的变化规律。在发酵过程中,活性巯基含量逐渐下降,而二硫键的含量和蛋白表面疏水性逐渐增加。FT-IR和Raman光谱分析表明氢键形成的分子间β-折叠结构在蛋白质-蛋白质相互作用形成中发挥着重要的作用。二硫键构象已由对照样品的全旁-旁-反式构象(gauche-gauche-trans)转为旁式(gauche)与反-旁-反式并存的构象。随发酵时间的增加,原来埋藏在蛋白质分子内部的酪氨酸残基逐渐暴露于分子的表面。肌纤维蛋白二级结构分析表明,β-折叠增加、无规卷曲和β-转角降低。发酵鱼糜热力学研究表明肌球蛋白的热变性温度和热焓随着发酵时间的增加而逐渐增加,发酵48 h热变性温度增加了3.28℃,热焓增加了0.176 J/g。而肌动蛋白则相反,48 h内热变性温度降低了1.43℃,热焓降低了0.015J/g。电镜照片揭示微生物发酵后的鱼糜结构从最初的溶胶状态变为凝胶状态,凝胶化后肌动球蛋白呈三维网状结构。鱼糜在发酵过程中凝胶强度的增加主要是S-S键、疏水键及氢键等相互作用的结果。
     鱼糜的发酵伴随着极为复杂的理化和微生物进程,采用不同发酵方法和发酵条件,发酵制品在发酵过程中所伴随着的生化进程将有所不同,导致发酵终产品食用品质各异。为此,在研究了单一因素的基础上,采用中心复合设计(Central Composite Design, CCD) 3×3响应曲面法优化混合发酵剂的发酵工艺条件。结果表明,各因素及其交互作用对响应值凝胶强度存在显著的相关性。在最优工艺条件下,最大凝胶强度达到1192.8 g.cm。
     研究了室温和冷藏(4℃)下,真空和非真空包装发酵鱼肉鱼糜品质的变化规律和特性。在贮藏过程中pH值、TBA、非蛋白氮随着贮藏时间的增加而增加,而白度值,水分含量和凝胶强度则降低,在冷藏条件下贮藏,可有效抑制肠道菌和假单胞菌的生长。通过微生物、理化卫生检测与感官评分进行相关分析,建立TVBN、TBA与贮藏时间、贮藏温度之间的动力学模型,预测鲢鱼肉发酵鱼糜在贮藏过程中货架寿命。试验表明TVBN变化和TBA的变化对一级化学反应和阿仑尼乌斯(Arrhenius)方程具有很高的拟和精度。并求出了TVBN变化反应的En和KA分别为52.433 kJ/mol和1.344×1011,TBA的生成反应的En和KA分别为32.6239 kJ/mol和4.785×108。
Surimi, a high protein content, low fat content, and taste tender, are very popular in the world. But the raw materials of surimi are mainly used marine fish and freshwater fish is seldom used for difficult to form gel, and has lower gel strength and easy gel deterioration. Application of bio-fermentation method to maintain and improve the quality of products or inhibit the growth of bacteria is a good food processing and preservation method which has been widely used in the livestock meat processing, such as fermented ham and sausage. This study, according to the microbial fermentation performance and surimi production of the basic technology and combined with modern food and fermentation technology, will develop fermented surimi with a unique flavor, high-nutrition, high-security, long-term storage. This study has an academic significance for understanding structural changes of fish protein in the context of fermentation and the formation mechnisms of gelation, and establishs a new bio-fermentation processing technology system to provide a solid theoretical and a scientific basis for the aquatic processing industries.
     Determination of the seven Lactobacillus (LC, LS, Lp-1, LP-5, Lp-8, Lp-10. Lp-15), two Pediococcus pentosaceus (PP and Pp-8) and a Staphylococcus xylosus (Sx-12) growth, acid, salt, protein and fat production capacity of decomposition, antagonism, such as antibacterial physiology. The results showed that these strains have good fermentation and growth properties. The acid production for 9 Lactobacillus species in 24 hours was significantly different compared with the 0 h. During 24 h fermentation, the pH of samples with Lp-8 decreased rapidly from around 6.12 to 3.95; pH for Sx-12 decline slowly, and at 48 h pH was 5.0. LS and Lp-1 had more poor salt tolerance than the other bacterial. Performances of a preliminary indication for Lp-5, Lc, Sx, Pp, Lp-8, Lp-15 showed good fermentation characteristics and used them as the starter cultures to make fermented surimi. As fermentation time increased, silver carp sausages inoculated with starter (Lp-5, Lc, Sx-12, PP, Lp-8, Lp-15) showed a lower pH than the control Non-protein nitrogen and aminopeptide nitrogen content increased with fermentation time, Staphylococcus xylosus showed the largest contend during 60 h fermentation. TVBN value of the samples inoculated starter is still fresh standard (15-25 mg/100 g) after 60 h fermentation. In contrast, the control has been corruption after 48 h. Starter cultures exhibited higher texture profiles (hardness, gumminess, springiness and chewiness) and whiteness than the control (P < 0.05), and inhibit the growth and reproduction of Pseudomonas and Enterobacteriaceae(p <0.05). Apart from Sx-12, adding starter effectively suppressed the accumulation of histamine, cadaverine, putrescine, tryptamine and tyramine during fermentation. Sensory evaluation (flavor, texture, appearance and overall acceptability) showed that adding starter significantly improve the quality of surimi,especially strains LC, PP, Lp-8 showed higher sensory characteristics.
     On the basis of the of a single starter, the mixed starter cultures were used in the manufacture of fermented surimi. During the 72 h fermentation at 30°C, silver carp surimi inoculated with mixed starter cultures resulted in a rapid pH decrease, suppression in the growth of Enterobacteriaceae, Pseudomonas, yeasts and molds, and exhibited higher texture profiles (hardness, gumminess, springiness and chewiness) and whiteness than the control (P < 0.05). The changes in non-protein nitrogen (NPN), free amino acid and SDS-PAGE indicated severe hydrolysis of muscle protein occurred during fermentation. Polyunsaturated fatty acids were higher in quantity in sausages with cultures compare to the control. No significant differences for taste, texture, and appearance were found among batches with mixed starters. The sausage inoculated with the combination of lactobacillus plantarum-15, Staphylococcus xylosus-12 and Lactobacillus casei subsp casei-1.001 (S-PXC) gained highest scores for flavor and overall acceptability. Application headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) and olfactory monitors was identified for the determination of flavor-contributing volatiles for silver carp sausages fermented with mixed starter cultures. Fourty-two and fourty-four compounds were identified from the silver carp sausages fermented at 24 h and 48 h, respectively. Acetic acid, hecanal, hexanol, ethyl acetate and 2,3-pentanedione, 2-pentene-1-ol were the main flavor compounds of fermented silver carp sausages inoculated S-PXC.
     The gel strength of silver carp surimi inoculated with mixed starter cultures increased with the time. To reveal the gel formation mechanism, the changes of the structure of myofibrillar proteins was determined by using fourier transform infrared (FT-IR), laser Raman and circular dichroism spectroscopy methods. During the process of fermentation, activity sulfhydryl decreased with the time, and the content of disulfide bonds and hydrophobic surface protein with fermentation time increased. FT-IR and Raman spectroscopy showed the formation of hydrogen bonds between the molecular-folded structure of the protein-protein interaction formation played an important role. Disulfide conformation samples from the control of the whole next-next-trans conformation (gauche-gauche-tran s) adjacent to (the gauche) and anti-next-trans conformations coexist. With the fermentation time, the original buried tyrosine residues gradually exposed to the surface. the two structures of the myofibrillar proteins further analysis showed that fermentation resulted in a decreased proportion of coil structures and increased the proportion ofβ-sheet structures. The thermal denaturation temperature and enthalpy of myosin gradually increased with the fermentation time. During fermentation 48 h, thermal denaturation temperature and enthalpy increased 3.28°C and 0.176J/g than the fresh muscle, respectively. In contrast, the actin decreased 1.43°C for heat denaturation temperature and 0.015J/g for enthalpy. The lower pH significantly affects the muscle fiber protein denaturation temperature and enthalpy. Microstructural study revealed that fermented silver carp sausage had a three-dimensional network. A more void and open structure correlated well with fermentation time and was associated with higher acids. The gel strength of silver carp surimi during fermentation increased with the time mainly was the interactions of S-S bond, hydrogen bonding and hydrophobic bond.
     Surimi during the fermentation accompanied by an extremely complex physico-chemical and microbiological changes. Fermentation, using different methods and fermentation conditions, accompanied by a different biochemical process, which resulted in fermented end-products varying quality. Therefore, on the basis of single factors study, a three-level Central Composite Design (CCD) factorial design was employed combining with response surface methodology (RSM) to optimize the fermentation condition for the production of fermented silver carp surimi. Response surface analysis showed that and the interaction of the factors of response values gel strength and overall acceptability were significantly correlated. The greatest strength gel is 1192.8 g.cm at the optimizing conditions.
     Comparative analysis at room temperature and refrigerated (4℃), vacuum and vacuum-packed meat fermentation characteristics of fermented surimi biochemical changes. The results showed pH, TBA, and the non-protein nitrogen increased with storage time, and the whiteness, moisture content, and the gel strength decrease during storage. Cold storage can effectively inhibit the growth of Enterobacteriaceae and Pseudomonas, but the samples storage at room temperature, these microorganisms increased. The changes of TVBN and TBA of fermented silver carp surimi at different storage temperature of 20℃、25℃、30℃were studied. The kinetics models of TVBN and TBA with respect to storage time and temperature was established so as to predict the quality change and shelf life of fermented silver carp surimi during storage. The changes of TVBN and TBA value with time and temperature showed precision of the first order chemical reaction and Arrhenius equation. EA and K0 of TVBN and TBA change reaction were obtained. These were 52.433 kJ/mol, 1.344×1011 and 32.6239 kJ/mol, 4.785×108, respectively. The kinetics model could provide an important reference for the predication the changes of fermented silver carp surimi during storage. The shelf life of fermented silver carp surimi at different storage temperature was calculated based on the kinetics models.
引文
1. Hammes, W.P., Haller, P., and Ganzle, M.G., Fermented meat. In Handbook of fermented functional foods, Farnworth,W. R.(ed). Boca Raton, FL: CRC Press. 2003. pp: 251-275.
    2. Essien, E., Sausage manufacture principles and practice. Woodhead Publishing Limited, Abington. England. 2003. pp: 6-8.
    3. Ordonez, J.A., Hierro, E.M., Bruna, J.M., et al., Changes in the Components of Dry-Fermented Sausages during Ripening. Critical Reviews in Food Science and Nutrition, 1999. 39(4): 329-367.
    4. Mateo, J. and Zumalacarregui, J., Volatile compounds in chorizo and their changes during ripening. Meat Science, 1996. 44(4): 255-273.
    5. Reddy, G.V., Shahani, K., Friend, B., et al., Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus III. Production and partial purification of bulgaricus from Lactobacillus bulgaricus. Cultured Dairy Prod. J. 1983.18: 15-19.
    6. Sabia, C., de Niederhausern, S., Messi, P., et al., Bacteriocin-producing Enterococcus casseliflavus IM 416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages ("cacciatore"). International Journal of Food Microbiology, 2003. 87(1-2): 173-179.
    7. Aymerich, M.T., Garriga, M., Monfort, J.M., et al., Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: characterization of bacteriocins. Food Microbiology, 2000. 17(1): 33-45.
    8. Mackie, I.M., Hardy, R., and Hobbs, G., Fermented fish products. FAO fisheries report No. 100. Food and Agriculture Organization of the United Nations, Rome. 1971.
    9. Orejana, F.M., Fermented fish products. Handbook of Tropical Foods, H.T. Chan (ed). 1983: Marcel Dekker, New York. NY 225-295.
    10. Steinkraus, K.H., Handbook of Indigenous Fermented Foods. 1983: Marcel Dekker, New York, NY.
    11. Twiddy, D.R., Cross, S.J., and Cooke, R.D., Parameters involved in the production of lactic acid preserved fish-starchy substrate combinations. International Journal of Food Science and Technology, 1987. 22: 115-121.
    12. Beddows, C.G., Fermented fish and fish products. In: B.J. Wood (Ed.) Microbiology of Fermented Foods, Vol. 2. Elsevier Applied Science Pubfishers, London, pp. 1-39. 1985.
    13. Raa, J. and Giidberg, A., Fish silage: a review. Critical Reviews in Food Science and Nutrition, 1982. 16: 383-419.
    14. Fagbenro, O. and Jauncey, K., Chemical and nutritional quality of stored fermented fish (tilapia) silage. Bioresource Technology, 1993. 46(3): 207-211.
    15. Aryanta, R.W., Fleet, G.H., and Buckle, K.A., The occurrence and growth of microorganisms during the fermentation of fish sausage. International Journal of Food Microbiology, 1991. 13(2): 143-155.
    16. Kim, C.R. and Hearnsberger, J.O., Gram negative Bacteria inhibition by lactic acid culture and food preservatives on catfish fillets during refrigerated storage. Journal of Food Science, 1994. 59, 513-516.
    17. YIN, L.J., LU, M.C., PAN, C.L., et al., Effect of Monascus Fermentation on the Characteristics of Mackerel Mince. Journal of Food Science, 2005. 70(1): S66-72
    18. Adams, M.R., Fermented flesh foods :rogress in industrial microbiology. 1986. 23:179-180.
    19. Knochel, S., Processing and properties of North Eurpean pickled fish products .In C.H.Lee,K.H. Steinkraus, and P.j.A.Reilly(ed). Figh fermentation technology. YuRim Publish Co.,Seoul, 1989: P.195-210.
    20. Amano, K., The influence of fermentation on the nutritive value of fish with special reference to fermented fish products of Sourtheast Asia. FAO INtern.symp.on fish in nutrition. Fishing news (Books) Ltd., London. 1962.
    21. Saisithi, P., Traditional fermented fish products with special reference to Thai products. Asian Foodjournal 1987. 3: 3-10.
    22. Rao, S., Fish processing in the INdo-Pacific area. Indo-Pacific Fisheries Council Regional Studies No.4. 1967.
    23. CRISAN, E.U. and SANDS, A., Microflora of Four Fermented Fish Sauces. Applied Microbiology, 1975. 29 pp. 106-108.
    24. Fukami, K., Funatsu, Y., and Kwasaki, K., Improvement of fish - sauce (Moromi) made from frigate mackere. Journal of Food Science, 2004. 69(2): 45-49.
    25. Wu, Y.C. and Kimura, B.F., T, Comparison of three culture methods for the differentiation of Micrococcus and Staphylococcus in fermented squid shiokara. Fisheries Science, 2000. 66 : 142-146.
    26. LILCKe, F.K., Microbiological processes in the manufac Processes in the manufacture of dry dry Sausagee and raw ham. Fleischwirtschaft, 1986. 66: 1507-1518
    27. Caplice, E. and Fitzgerald, G.F., Food fermentation:role of microorganisms in food production and preservation. International fournal of food microbiology, 1999. 50,131-149.
    28. Axelsson, L.T., Chung, T.C., Dobrogosz, W.J., et al., Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbiol. Ecol. Health Dis, 1989. 2: 131-136.
    29. Hansen, E.B., Commerical bacterial starter cultures for fermented food of the future. International Journal of Food Microbiology, 2002. 78: 119-131.
    30.张元生,许益民编译,微生物在肉类加工中的应用[M].北京:中国商业出版社, 1991.
    31. Gelman, A., Drabkin, V., and Glatman, L., Evaluation of lactic acid bacteria, isolated from lightly preserved fish products, as starter cultures for new fish-based food products. Innovative Food Science & Emerging Technologies, 2000. 1(3): 219-226.
    32.张风宽,王立哲,发酵鱼肉香肠的研制[J].肉类研究1999.7
    33. Mura, K., Maeda, H., Tanaka, A., et al., Isolation of protease-productive bacteria from fish sauce collected in Vietnam. Journal of Food Processing and Preservation, 2000. 26: 263-271.
    34. Ijong, F.G., and Ohta, Y., Physicochemical and microbiological changes associated with bakasang processing - a traditional Indonesian fermented fish sauce. Journal of the Science of Food and Agriculture. 1996. 71: 69-74.
    35. Hammes, W.P. and Hertel, C., Selection and improvement of lactic acid bacteria used in meat and sausage fermentation. Lait, 1996. 76: 159-168.
    36. Gonzalez-Fandos, M.E., Sierra, M., Garcia-Lopez, M.L., et al., The influence of manufacturing and drying conditions on the survival and toxinogenesis of Staphylococcus aureus in two Spanish dry sausages (chorizo and salchichon). Meat Science, 1999. 52(4): 411-419.
    37. Stahnke, L.H., Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels -- Part I. Chemical and bacteriological data. Meat Science, 1995. 41(2): 179-191.
    38. Johansson, G., Berdague, J.L., Larsson, M., et al., Lipolysis, proteolysis and formation of volatile components during ripening of a fermented sausage with Pediococcus pentosaceus and Staphylococcus xylosus as starter cultures. Meat Science, 1994. 38(2): 203-218.
    39. Larrouture, C., Ardaillon, V., Pépin, M., et al., Ability of meat starter cultures to catabolize leucine and evaluation of the degradation products by using an HPLC method. Food Microbiology, 2000. 17: 563-570.
    40. Olesen, P.T., Meyer, A.S., and Stahnke, L.H., Generation of flavour compounds in fermented sausages--the influence of curing ingredients, Staphylococcus starter culture and ripening time. Meat Science, 2004. 66(3): 675-687.
    41. Paludan-Muller, C., Madsen, M., Sophanodora, P., et al., Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations. International Journal of Food Microbiology, 2002. 73(1): 61-70.
    42. Sakai, H., Caldo, G.A., and Kozaki, M., Yeast-flora in Red Burong isda, a fermented fish food in the Philippines. Journal of Agricultural Science. (Japan) 1983. 28: 181-185.
    43.张雪花.鲢及其加工废弃物发酵鱼露的比较[J].上海水产大学学报, 2000. 9(3):226-230.
    44.朱莉霞,宁喜斌,郭春玉.速酿鱼露种曲的研制[J].食品科学, 2005. 6: 191-196.
    45. YAMAMOTO, M., SALEH, F., OHTSUKA,A, et al., New fermentation technique to process fish waste. Animal Science Journal, 2005. 76 p. 245-248.
    46. Gohran, M., lactobacillus with the ability of colonization and establishing in the in testinal tracts. Japan patent, 1994. p. 6501624.
    47. Buncic, S.I. and Paunovic, L., Effects of gluconodelta clone and lactobacillus plantarum on the production of histamine and tyramine in fermented sausage. Journal of Food microbiology, 1993. 17(4): 303- 309.
    48. MIZUTANI, T., KIMIZUICA, J.A., and RUDDLE, K., Chemical Components of Fermented Fish Products. Journal of Food Composition and Analisis, 1992. 5: 152-159.
    49. MORZEL, M., NICOLINE, G., FRANSEN, et al., Defined Starter Cultures used for Fermentation of Salmon Fillets. Journal of Food Science, 1997. 62(6): 1214-1218.
    50. Sanni, M.A., Chemical composition and microbiological changes during spontaneous and starter culture fermentation of Enam Ne–Setaakye, a West African fermented fish-carbohydrate product. European Food Research and Technology, 2002. 215: 8-12.
    51. Hughes, M.C., Kerry, J.P., Arendt, E.K., et al., Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Science, 2002. 62(2): 205-216.
    52. Hyun-Kuk, K., Gu-Taek, K., Dae-Kyung, K., et al., Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. Journal of Fermentation and Bioengineering, 1997. 84(4): 307-312.
    53. Visessanguan, W., Benjakul, S., Riebroy, S., et al., Changes in composition and functional properties of proteins and their contributions to Nham characteristics. Meat Science, 2004. 66(3): 579-588.
    54. Garcia de Fernando, G.D. and Fox, F.P., Study of proteolysis during the processing of dry fermented pork sausages. Meat Science, 1991. 30: 367-383.
    55. Ansorena, D., Zapelena, M.J., Astiasaran, I., et al., Simultaneous addition of Palatase M and Protease P to a dry fermented sausage (Chorizo de Pamplona) elaboration: Effect over peptidic and Lipid fractions. Meat Science, 1998. 50(1): 37-44.
    56. Molly, K., Demeyer, D., Johansson, G., et al., The importance of meat enzymes in ripening and flavour generation in dry fermented sausages. First results of a European project. Food Chemistry, 1997. 59(4): 539-545.
    57. Bolumar, T., Sanz, Y., Aristoy, M.C., et al., Purification and properties of an arginyl aminopeptidase from Debaryomyces hansenii. International Journal of Food Microbiology, 2003. 86(1-2): 141-151.
    58. Fadda, S., Oliver, G., and Vignolo, G., Protein degradation by Lactobacillus plantarum and Lactobacillus casei in a sausage model system. Journal of Food Science, 2002. 67(3): 1179-1183.
    59. Bodero, K.O., Pearson, A.M., and Magee, W.T., Evaluation of the contribution of flavor volatiles to the aroma of beef by surface response methodology. Journal of Food Science, 1981. 46(1): 26-31.
    60. Gray, J.I. and Pearson, A.G., Cured meat flavor. Advanced Food Research, 1984. 29(1): 23-33.
    61. Mottram, D.S., Edwards, R.A., and MacFie, H.J.H., A comparison of the flavor volatiles from cooked beef pork meaat systems. Journal of the Science of Food and Agriculture, 1982. 33: 934-944.
    62. El-Sebaiy, L.A. and Metwalli, S.M., Changes in some chemical characteristics and lipid composition of salted fermented Bouri Fish muscle (Mugil cephalus). Food Chemistry, 1989. 31(1): 41-50.
    63. Stahnke, L.H., Aroma components from dried sausages fermented with Staphylococcus xylosus. Meat Science, 1994. 38(1): 39-53.
    64. Fernandez, M., de la Hoz, L., Diaz, O., et al., Effect of the addition of pancreatic lipase on the ripening of dry-fermented sausages -- Part 1. Microbial, physico-chemical and lipolytic changes. Meat Science, 1995. 40(2): 159-170.
    65. Zalacain, I., Zapelena, M.J., De Pena, M.P., et al., Use of lipase from Rhizomucor miehei in dry fermented sausages elaboration: Microbial, chemical and sensory analysis. Meat Science, 1997. 45(1): 99-105.
    66. Doumoto, Process for producing fermented fish food. United States Patent, 2005. 6884455.
    67. Nishimura, T. and Kato, H., Test of free amino acid and peptides. Food Rev. Int, 1988. 4 (2): 175-194.
    68. MacLeod, G. and Ardebile, M.S., Natural and stimulated meat flavors. Critical Reviews in Food Science and Nutrition, 1981. 14(4): 309-437.
    69. EI-Gendy, S.M., Abbel, G.H., Shahin, H.Y., et al., Acetoin and diacetyl production by Lactobacillus casei subsp. plantarum. Journal of Food Protection, 1983. 46: 537-540.
    70.杨华,娄永江,杨文鸽.水产品加工发酵技术的应用研究(下)[J].科学养鱼. 2003 (10): 8-11
    71.毋瑾超,朱碧英,胡锡钢.鱼肉液体制曲的工艺条件[J].湛江海洋大学学报, 2002. 22 (3): 33-37.
    72. Fukami, K., Satomi, M., and Funatsu, Y., Characterization and distribution of Staphylococcus sp1 implicated for improvement of fish sauce odor. Fisheries Science, 2004 70(5): 916-923.
    73.裘迪红,周涛,戴志远等.鲐鱼蛋白质水解液脱苦脱腥的研究[J].食品科学, 2001. 22 (5): 37-39.
    74.邓尚贵,章超桦.双酶法在水产品水解蛋白制作工艺中的应用[J].水产学报, 1998. 22 (4): 354-356.
    75. Cinquina, A.L., Cali, A., Longo, F., et al., Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. Journal of Chromatography, 2004, 1032(1-2): 73-77.
    76. Santos, C., Marin, A., and Rivas, J.C., Changes of tyramine during storage and spoilage of anchovies. Journal of Food Science, 1986 51(3): 512 - 513, 515.
    77.黄梅丽,江小梅.食品化学[M] , 1989.北京:中国人民大学出版社
    78. Shalaby, A.R., Significance of biogenic amines to food safety and human health. Food Research International, 1996. 29(7): 675-690.
    79. Morrow, J.D., R, M.G., and J, R., Evidence that histamine is the causative toxin of scombroid fish poisoning. N Engl J Med, 1991. 324 (11): 716 - 720.
    80. Bodmer, S., Imark, C., and Kneubahl, M., Biogenic amines in foods: histamine and food processing. Inflamation Research. 1999, 48 (2):296 - 300.
    81. Mah, J.-H., Han, H.-K., Oh, Y.J., et al., Biogenic amines in Jeotkals, Korean salted and fermented fish products. Food Chemistry, 2002. 79(2): 239-243.
    82. Bover-Cid, S., Miguelez-Arrizado, M.J., and Vidal-Carou, M.C., Biogenic amine accumulation in ripened sausages affected by the addition of sodium sulphite. Meat Science, 2001, 59(4): 391-396.
    83. Maijala, R., Nurmi, E., and Fischer, A., Influence of processing temperature on the formation of biogenic amines in dry sausages. Meat Science, 1995. 39(1): 9-22.
    84. Halasz, A., Barath, A., Simon-Sarkadi, L., et al., Biogenic amines and their production by microorganisms in food. Trends in Food Science & Technology, 1994. 5(2): 42-49.
    85. Silla, S.M.H., Biogenic amines : their importance in foods. International J Food Microbiology, 1996. 29 (2): 213 -231.
    86. Gêkoglu, N., Changes in biogenic amines during maturation of sardine Sardina pilchardus marinade. Fisheries Science, 2003. 69:823 - 829
    87. Sharp, A. and Offer, G., The mechanism of formation of gels from myosin molecules. Journal of the Science of Food and Agriculture. 1992. 58:6373-5682.
    88. Gimeno, O., Astiasarán, I., and Bello, J., Influence of partial replacement of NaCl with KCl and CaCl2on texture and color of dry fermented sausages. Journal of Agricultural and Food Chemistry, 1999. 47(3): 873-877
    89. Samo, T., Noguchi, S., F, Matsumoto, J.J, et al., Thermal gelation characteristics of myosin subfragments. Journal of Food Science, 1990. 55: 55-58&70.
    90. Stone,A,P and Stanley, D., W, Mechanisms of fish muscle gelation. Food Research International, 1992. 25: 381-388.
    91. Yongsawatdigul, J. and Park, J., W., Effects of alkali and acid solubilization on gelation characteristics of rockfish muscle proteins. Journal of Food Science, 2004. 69: C499-505
    92. Kristinsson, H., G and Hultin, H., O.A., Effect of low and high pH treatment on the functional properties of cod muscle proteins. Journal of Agricultural and Food Chemistry, 2003. 51: 5103-5110.
    93. Kristinsson, H., G and Hultin, H., O. B., Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. Journal of Agricultural and Food Chemistry, 2003. 51: 7187-7196.
    94. Kristinsson, H., G and Liang, Y., Effect of pH-Shift processing and surimi processing on Atlantic Croaker (Micropogonias undulates) muscle proteins. Journal of Food Science, 2006. 71(5): C304-312.
    95. Bozkurt, H. and Erkmen, O., Effects of starter cultures and additives on the quality of Turkish style sausage (sucuk). Meat Science, 2002. 61(2): 149-156.
    96.孔保华,耿欣,刁新平.鲢鱼肉的营养及理化特性的研究[J].渔业现代化2002(4): 33-35
    1. Lucke, F.-K., Utilization of microbes to process and preserve meat. Meat Science, 2000. 56(2): 105-115.
    2. Santos, E.M., Gonzalez-Fernandez, C., Jaime, I., et al., Comparative study of lactic acid bacteria house flora isolated in different varieties of 'chorizo'. International Journal of Food Microbiology, 1998. 39(1-2): 123-128.
    3. Hugas, M., Garriga, M., Pascual, M., et al., Enhancement of sakacin K activity against Listeria monocytogenes in fermented sausages with pepper or manganese as ingredients. Food Microbiology, 2002. 19(5): 519-528.
    4. Yin, L.J., Pan, C.L., and Jiang, S.T., Effect of Lactic Acid Bacterial Fermentation on the Characteristics of Minced Mackerel. Journal of Food Science, 2002. 67(2): 786-792.
    5. Drosinos, E.H., Mataragas, M., Xiraphi, N., et al., Characterization of the microbial flora from a traditional Greek fermented sausage. Meat Science, 2005. 69(2): 307-317.
    6.徐静,金志雄,王海燕等.自然发酵肉制品中干酪乳杆菌的分离和鉴定[J].食品与发酵工业, 2004. 5: 23-26.
    7.王令建,李开雄.发酵香肠菌种的筛选及鉴定[J].肉类工业, 2006. 299(3): 24-28.
    8.王永霞,牛天贵,郝华昆,肉品发酵剂葡萄球菌和微球菌的筛选[J].食品与发酵工业, 2004. 9: 5-10.
    9.马汉军,乳酸发酵中式香肠的菌种及工艺研究[J].食品科学.1997, 18(8):25-28
    10.王海燕.张春江,罗欣,发酵香肠中微生物产生的酶及其作用[J].肉类研究.2001,1: 15-17
    11. Fadda, S., Vignolo, G., Holgado, A.P.R., et al., Proteolytic activity of Lactobacillus strains isolated from dryfermented sausages on muscle sarcoplasmic proteins. Meat Science, 1998. 49(1): 11-18.
    12. Wang, F.S., Effects of three preservative agents on the shelf life of vacuum packaged Chinese-style sausage stored at 20°C. Meat Science, 2000. 56(1): 67-71.
    13. AOAC, Official methods of analysis (17th ed), Association of Official Analytical Chemists,. 2002: International, Inc., Arlington, Virginia, USA
    14. Vasavada, M., Carpenter, C.E., and Cornforth, D.P., Sodium levulinate and sodium lactate effects on microbial growth and stability of fresh pork and turkey sausages. Journal of Muscle Foods, 2003. 14: 119-129.
    15. Cobb, G.F. and Thompson, C.A., Biochemical and microbial studies on shrimp:Volatile nitrogen and amino acid analysis. Journal of Food Science, 1973. 38(3): 431-437.
    16. Dierick, N., Vanderkerckove, V., and Demeyer, D., Changes in non-protein nitrogen compounds during dry sausage ripening. Journal of Food Science, 1974. 39: 301-304.
    17. Lanier, T.C., Hart, K., and Martin, R.E., A manual of standard methods for measuring, specifying the properties of surimi. National Fisheries Institute,Washington, DC, 1991.
    18. Garcia, M.L., Dominguez, R., Galvez, M.D., et al., Utilization of cereal and fruit fibres in low fat dry fermented sausages. Meat Science, 2002. 60(3): 227-236.
    19. Koutsoumanis, K., Lampropoulou, K., and Nychas, G., Biogenic Amines and Sensory Changes Associated with the Microbial Flora of Mediterranean Gilt-head Sea Bream (Sparus aurata) Stored Aerobically at 0, 8, and 15°C. Journal of Food Protection, 1999 62(4): 398-402.
    20. Krishnamurti, C., Heindze, A., and Galzy, G., Application of reversed-phase high-performance liquid chromatography using pre-column derivatization with o-phthaldialdehyde for the quantitative analysis of amino acids in adult and fetal sheep plasma, animal feeds and tissues. Journal of Chromatograpy. Dec 1984. 31(19): 315-321.
    21.张红城,发酵肠的乳酸菌选择[J].食品科学, 1996. 8: 11-17.
    22. Yin, L.J. and Jiang, S.T., Pediococcus pentosaceus L and S Utilization in Fermentation and Storage of Mackerel Sausage. . Journal of Food Science, 2001. 66(5): 742-746.
    23. Kato, A. and Nakai, S., Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins. Biochimica et Biophysica Acta, 1980. 624: 13-20.
    24. Klement, J.T., Cassens, R.G., and Fennema, R., The association. of protein solubility with physical properties in a fermented sausage. Journal of Food Science, 1973. 38: 1128-1131.
    25. Antara, N.S., Sujaya, I.N., Yokota, A., et al., Effects of indigenous starter cultures on the microbial and physicochemical characteristics of Urutan, a balinese fermented sausage. Journal of Bioscience and Bioengineering, 2004. 98(2): 92-98.
    26. Stewart, M., Zipser, M., and Watts, B., The use of reflectance. spectrophotometry for the assay of raw meat pigments. Journal of Food. Science, 1965. 30-38
    27. Bacus, J.N. and Brown, W.L., Use of microbial cultures: Meat products. Food Technology, 1981. 35 (1): 74-78.
    28. Gibbs, P.A., Novel uses of lactic acid fermentation in food preservation. J. Appl. Bacteriol. Sym. Supp, 1987. l: 51S-58S.
    29. Palumbo, S.A., Smith, J.L., Marmer, B.S., et al., Thermal destruction of Listeria monocytogenes during liver sausage processing. Food Microbiology, 1993. 10(3): 243-247.
    30. Nout, M.J.R., Fermented foods and food safety. Food Research International, 1994. 27(3): 291-298.
    1. Molly, K., Demeyer, D., Johansson, G., et al., The importance of meat enzymes in ripening and flavour generation in dry fermented sausages. First results of a European project. Food Chemistry, 1997. 59(4): 539-545.
    2. Larrouture, C., Ardaillon, V., Pépin, M., et al., Ability of meat starter cultures to catabolize leucine and evaluation of the degradation products by using an HPLC method. Food Microbiology, 2000. 17: 563-570.
    3. Fadda, S., Oliver, G., and Vignolo, G., Protein degradation by Lactobacillus plantarum and Lactobacillus casei in a sausage model system. Journal of Food Science, 2002. 67(3): 1179-1183.
    4. Mauriello, G., Casaburi, A., Blaiotta, G., et al., Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science, 2004. 67(1): 149-158.
    5. Annalisa, C., Giuseppe, B., Gianluigi, M., et al., Technological activities of Staphylococcus carnosus and Staphylococcus simulans strains isolated from fermented sausages. Meat Science, 2005. 71(4): 643-650.
    6. Pennacchia, C., Vaughan, E.E., and Villani, F., Potential probiotic Lactobacillus strains from fermented sausages: Further investigations on their probiotic properties. Meat Science, 2006. 73(1): 90-101.
    7. Laemmli, U., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227: 680-685
    8. Barriere, C., Centeno, D., Lebert, A., et al., Roles of superoxide dismutase and catalase of Staphylococcus xylosus in the inhibition of linoleic acid oxidation. FEMS Microbiology Letters, 2001. 201(2): 181-185.
    9. Aryanta, R.W., Fleet, G.H., and Buckle, K.A., The occurrence and growth of microorganisms during the fermentation of fish sausage. International Journal of Food Microbiology, 1991. 13(2): 143-155.
    10. Lin, M.Y. and Yen, C.L., Antioxidation ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry, 1999. 47 p. 1460-1466.
    11. Lucke, S.F.K., Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 1989. 55(8 ): 1901-1906.
    12. Kato, T., Tahara, T., Sugimoto, M., et al., Proteolysis in semi-dry fermented sausage. Nippon Shokuhin Kogyo Gakkaishi, 1990. 37: 715-721.
    13. Tsukamasa, Y., Fukunoto, K., Asai, M., et al., Change in flavor constituents of pork sausage on curing under aseptic and conventional conditions. Nippon Shokuhin Kogyo Gakkaishi, 1989. 36(4): 279-285.
    14. Wardlaw, F.B., R.L, D., and Acton, J.C., Nonprotein nitrogen (NPN) and free amino acid contents of dry, fermented and nonfermented sausages. Meat Science, 1990. 27(1): 1-12.
    15. Theiler, R.F., Sato, K., Aspeland, T.G., et al., Model system studies on N-nitrosamine formation in cured meats: the effect of curing solution ingredients. J. Food Sci, 1981. 46(4): 996-1001.
    16. Demeyer, D., Raemaekers, M., Rizzo, A., et al., Control of bioflavour and safety in fermented sausages: first results of a European project. Food Research International, 2000. 33(3-4): 171-180.
    17. Casaburi, A., Aristoy, M.C., Cavella, S., et al., Biochemical and sensory characteristics of traditionalfermented sausages of Vallo di Diano (Southern Italy) as affected by the use of starter cultures Meat Science 2007. 76(2): 295-307
    18. Fadda, S., Vignolo, G., Holgado, A.P.R., et al., Proteolytic activity of Lactobacillus strains isolated from dryfermented sausages on muscle sarcoplasmic proteins. Meat Science, 1998. 49(1): 11-18.
    19. Garcia de Fernando, G.D. and Fox, F.P., Study of proteolysis during the processing of dry fermented pork sausages. Meat Science, 1991. 30: 367-383.
    20. Diaz, O., Fernandez, M., De Fernando, G.D.G., et al., Proteolysis in dry fermented sausages: The effect of selected exogenous proteases. Meat Science, 1997. 46(1): 115-128.
    21. Toldrà, F., Proteolysis and lipolysis in flavour development of dry-cured meat products. Meat Science 1998. 49: 101-110.
    22. Alford, J.A., Smith, J.L., and Lilly, H.D., Relation of microbial activity to changes in lipids of foods. Journal of Applied Bacteriology 1971. 34: 133-146.
    23. Durlu-Ozkaya, F., Ayhan, K., and Vural, N., Biogenic amines produced by Enterobacteriaceae isolated from meat products. Meat Science, 2001. 58(2): 163-166.
    24. Halasz, A., Barath, A., Simon-Sarkadi, L., et al., Biogenic amines and their production by microorganisms in food. Trends in Food Science & Technology, 1994. 5(2): 42-49.
    25. Shalaby, A.R., Significance of biogenic amines to food safety and human health. Food Research International, 1996. 29(7): 675-690.
    26. Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M., et al., Reduction of Biogenic Amine Formation Using a Negative Amino Acid–Decarboxylase Starter Culture for Fermentation of Fuet Sausages. Journal of Food Protection, 2000. 63(2): 237-243.
    27. Maijala, R., Nurmi, E., and Fischer, A., Influence of processing temperature on the formation of biogenic amines in dry sausages. Meat Science, 1995. 39(1): 9-22.
    28. Hernadez-Jover, T., Izquierdo-Pulido, M., Veciana-Nogues, M., et al., Effect of starter cultures on biogenic amine formation during fermented sausage production. Journal of food protection 1997. 60(77): 825-830.
    29. Klement, J.T., Cassens, R.G., and Fennema, R., The association. of protein solubility with physical properties in a fermented sausage. J. Food Sci, 1973. 38: 1128-1131.
    30. Kang, I.S. and Lanier, T.C., Heat-induced softening of gels. In: Park JW, editor. Surimi and surimi seafood. New York: Marcel Dekker Inc. 2000: p 445-487.
    31. Demeyer, D.I., Vandekerckerckhove, P., and Moermans, R., Compounds determining pH in dry sausage. Meat Sci, 1979. 3(1).
    32. Fadda, S., Sanz, Y., and G, V., Characterization of muscle sarcoplasmic and myofibrillar protein hydrolysis caused by Latobacillus plantarum. Applied and Environmental Microbiology, 1999. 65(8): 3540-3546.
    33. Sanz, Y., Fadda, S., and Vignolo, G., Hydrolytic action of Lactobacillus casei CRL 705 on pork muscle sarcoplasmic and myofibrillar proteins. Journal of Agricultural and Food Chemistry, 1999. 47: 3441-3448.
    34. Sanz, Y. and Toldra, F., Purification and characterization of a tripeptidase from Lactobacillus sake. Journal of Agricultural and Food Chemistry, 1998. 38: 331-352.
    35.徐伟民,周光宏,干发酵香肠发酵剂选择及其工艺研究.南京农业大学硕士论文, 2001. 8.
    36.王俊,周光宏,徐幸莲等,干酪乳杆菌6033蛋白酶降解肌肉蛋白质的作用研究.食品科学, 2005. 26(2): 90-96.
    37. YIN, L.J., LU, M.C., PAN, C.L., et al., Effect of Monascus Fermentation on the Characteristics of Mackerel Mince. Journal of Food Science, 2005. 70(1): S66-72
    38. Beck, H.C., Hansen, A.M., and Lauritsen, F.R., Metabolite production and kinetics of branched-chain aldehyde oxidation in Staphylococcus xylosus. Enzyme and Microbial Technology, 2002. 31: 94-101.
    39. Monica, F., Asuncion, D.M., Aurora, M., et al., Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Science, 2004. 68(3): 439-446.
    40. Josephson, D.B. and Lindsay, R.C., Vatiations in the occurrences of enzymatically derived volatile aroma compounda in salt-and fresh-water fish. Journal of Agricultural and Food Chemistry, 1984, 32: 1344-1347.
    41. Kim, H.R., H.H, B., S.P, M., et al., Crayfish hepatopancreatic extract improves flavour extractability from a crab processing by-product. Journal of Food Science, 1994. 59: 91~96.
    42. Spurvey, S., Pan, B.S., and Shahidi, F., Flavour of shellfish. In: Flavor of meat, meat products and seafoods, 2nd edn., ed. F.S. (Ed.). 1998: Blackie Academic and Professional, London, pp. 159-196.
    43. Berger, R.G., Macku, C., German, J.B., et al., Isolation and identification of dry salami volatiles. Journal of Food Science, 1990. 55: 1239-1242.
    44. Kandler, O., Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek, 1983. 49(3): 209-224.
    45. Herranz, B., de la Hoz, L., Hierro, E., et al., Improvement of the sensory properties of dry-fermented sausages by the addition of free amino acids. Food Chemistry, 2005. 91(4): 673-682.
    46. Stahnke, L.H., Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels -- Part II. Volatile components. Meat Science, 1995. 41(2): 193-209.
    47. Sanceda, N.G., Sanceda, M.F., Encanto, V.S., et al., Sensory evaluation of fish sauces. Food Quality and Preference, 1994. 5(3): 179-184.
    48. Stahnke, L.H., Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels -- Part III. Sensory evaluation. Meat Science, 1995. 41(2): 211-223.
    49. Josephson, D.B., Enzymic hydroperoxide initiated effects in fresh fish. Journal of Food Science, 1985. 52: 596 - 600.
    1. Samo, T., Noguchi, S., F, Matsumoto, J., J, et al., Thermal gelation characteristics of myosin subfragments. Journal of Food Science, 1990, 55: 55-58&70.
    2. Stone,A,P and Stanley, D., W, Mechanisms of fish muscle gelation. Food Research International, 1992, 25: 381-388.
    3. Yongsawatdigul, J. and Park, J., W., Effects of alkali and acid solubilization on gelation characteristics of rockfish muscle proteins. Journal of Food Science, 2004, 69: C499-505.
    4. Kristinsson, H., G and Hultin, H., O.a., Effect of low and high pH treatment on the functional properties of cod muscle proteins. Journal of Agricultural and Food Chemistry, 2003, 51: 5103-5110.
    5. Kristinsson, H., G and Hultin, H., O. b., Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. Journal of Agricultural and Food Chemistry, 2003, 51: 7187-7196.
    6. Kristinsson, H., G and Liang, Y., Effect of pH-Shift processing and surimi processing on Atlantic Croaker (Micropogonias undulates) muscle proteins. Journal of Food Science,2006, 71(5): C304-312.
    7.谢孟峡,刘媛.红外光谱酰胺III带用于蛋白质二级结构的测定研究[J].高等学校化学学报, 2003, 24(2): 226-231.
    8.陶慰孙,李惟,姜涌明.蛋白质分子基础[M].第二版.北京:高等教育出版社, 1995, p: 247-254, 260-263.
    9.赵南明,周海梦.生物物理学[M].北京:高等教育出版社,海德堡:施普林格出版社,2000年
    10. Tu, A.T., Raman spectroscopy in biology: Principles and applications. New York: Wiley, 1982
    11. Frushour, B.G. and Koeing, J.L., Raman Spectroscopy of Protein. Advances in Infrared and Raman Spectroscopy, 1975, 1: 35-97.
    12. Dousseau, F. and Pézolet, M., Determination of the secondary structure of proteins in aqueous solutions from Amide I and Amide II infrared bands. Comparison between classical and partial least-square methods. Biochemistry, 1990, 29: 8771-8779.
    13. Sarver, R.W. and Krueger, W.C., Protein secondary structure from Fourier transform infrared spectroscopy: A data base analysis. Analytical Biochemistry, 1991, 194: 89-100.
    14. Lee, D.C., Haris, P.I., Chapman, D., et al., Determination of protein secondary structure using factor analysis of infrared spectra. Biochemistry, 1990, 29: 9185-9193.
    15. Beveridge, T., Toma, S.J., and Nakai, S., Determination of SH- and SS-groups in some food proteins using Ellman’s reagent. Journal of Food Science, 1974, 39: 49-51.
    16. Ellman, G.L., Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 1959, 82: 70-77.
    17. Kato, A. and Nakai, S., Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins. Biochimica et Biophysica Acta, 1980, 624: 13-20.
    18. Iconomidou, V.A., Chryssikos, D.G., Gionis, et al., Secondary structure of chorion proteins of the teleostean fish Dentex dentex by ATR FT-IR and FT-Raman Spectroscopy. Journal of Structural Biology, 2000, 132: 112-122.
    19. Ni, F. and Scheraga, H.A., Resolution enhancement in spectroscopy by maximum entropy Fourier self-deconvolution, with applications to Raman spectra of peptides and proteins. Journal of Raman Spectroscopy, 1985, 16: 337-349.
    20. Venyaminov, S.Y. and N, K.N., Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers, 1990, 30: 1243-1257.
    21. Surewicz, W.K. and H, M.H., New insight into protein secondary structure from resolution-enhanced infrared spetra. Biochimica et Biophysica Acta, 1988. 952 p.115-130.
    22. Byler, D.M. and Susi, H., Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 1986, 25(3): 469-487.
    23. Griebenow, K., Santos, A.M., and Carrasquillo, K.G., Secondary structure of proteins in the amorphous dehydrated state probed by FTIR spectroscopy. Dehydration-induced structural changes and their prevention. The Internet Journal of Vibrational Spectroscopy, 1999, 31(1): 1-34.
    24. Krimm, S. and Bandekar, J., Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 1986, 38: 181-364.
    25. Haris, P.I. and Chapman, D.T., The conformational analysis of peptides using Fourier transform IR spectroscopy. Biopolymers, 1995, 37: 251-263.
    26. Jackson, M. and Mantsch, H.H.T., The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical Reviews in Biochemistry and Molecular Biology. 1995, 30(2): 95-120.
    27. Yu, N.T. and Liu, C.S., Laser Raman spectra of native and denatured insulin in the solid state. Journal of the American Chemical Society, 1972, 94: 3250-3251.
    28. Tu, A.T., Raman spectroscopy in biology: principles & applications. John Wiley & Sons, Inc. 1982.
    29. Bradford, M.A., Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    30.王镜岩,朱圣庚,徐长法等,生物化学(上册)[M].第三版.北京:高等教育出版社. 2002, p: 297-298.
    31.Yin, L.J., Lu, M.C., Pan, C.L., et al., Effect of Monascus Fermentation on the Characteristics of Mackerel Mince. Journal of Food Science, 2005, 70(1): S66-72
    32.Yin, L.J., Pan, C.L., and Jiang, S.T., New Technology for Producing Paste-like Fish Products using Lactic Acid Bacteria Fermentation. Journal of Food Science, 2002. 67(8): 3114-3118.
    33.Yin, L.J., Pan, C.L., and Jiang, S.T., Effect of Lactic Acid Bacterial Fermentation on the Characteristics of Minced Mackerel. Journal of Food Science, 2002. 67(2): 786-792.
    34.Riebroy, S., Benjakul, S., Visessanguan, W., et al., Physical properties and microstructure of commercial Som-fug, a fermented fish sausage. European Food Research and Technology, 2005. 220: 520-525.
    35.Fretheim, K., Egelandsdal, B., Harbitz, O., et al., Slow lowering of pH induces gel formation of myosin. Food Chemistry, 1985.18: 169-178.
    1.陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社. 2002
    2. Rucka, M., Zarawska, E., L, and I, M., Optimization of growth and hydrolytic enzymes production by Fusarium culmorum using response surface method. Bioprocess and Biosystems Engineerin, 1998. 19: 229-232.
    3.赵思明,李红霞,鱼丸贮藏过程中品质变化动力学模型研究[J].食品科学, 2002. 23(8): 80-82.
    4.王璋,许时婴,江波等译,食品化学(第三版) [M].北京:中国轻工业出版社, 2003: 849-850.
    5. Jessen, B. 1995. Starter cultures for meat fermentations. In“Fermented Meats.”pp. 130-159. Ed. Campbell-Platt, G. and P. E. Cook. Blackie Academic and Professional. London
    6. Bacus. J. N. Meat Fermentation. Food Technology. 1984, 38(6):59-63.
    7. Smith, J. L. and Palumbo, S A. Use of starter cultures in meats. J. Food Proto, 46(11):997-1006
    8. Kim, C.R. and Hearnsberger, J.O., Gram negative Bacteria inhibition by lactic acid culture and food preservatives on catfish fillets during refrigerated storage. Journal of Food Science, 1994. 59, 513-516.
    9. Aryanta, R.W., Fleet, G.H., and Buckle, K.A., The occurrence and growth of microorganisms during the fermentation of fish sausage. International Journal of Food Microbiology, 1991. 13(2): 143-155.
    10. Yin, L.J., Pan, C. L., and Jiang, S. T., New Technology for Producing Paste-like Fish Products using Lactic Acid Bacteria Fermentation. Journal of Food Science, 2002. 67(8): 3114-3118.
    11. Yin, L.J. and Jiang, S.T., Pediococcus pentosaceus L and S Utilization in Fermentation and Storage of Mackerel Sausage. Journal of Food Science, 2001. 66(5): 742-746.
    12. Yin, L.J., Pan, C. L., and Jiang, S. T., Effect of Lactic Acid Bacterial Fermentation on the Characteristics of Minced Mackerel. Journal of Food Science, 2002. 67(2): 786-792.
    13. Paludan-Mu¨ller, C., Madsen, M., Sophanodora, P., and Gram, L. Fermentation and microf lora of plaa-som, a Thai fermented f ish product prepared with different salt concentrations. International Journal of Food Microbiology, 2002, 73: 61-70
    14. YIN, L.J., et al., Effect of Monascus Fermentation on the Characteristics of Mackerel Mince. Journal of Food Science, 2005. 70(1): S66-72
    15. Kato, T., et al., Proteolysis in semi-dry fermented sausage. Nippon Shokuhin Kogyo Gakkaishi, 1990. 37: 715-721.
    16. Hough, G., Langohr, K., and Gomez, G.C., A survival analysis applied to sensory shelf life of foods. Journal of Food Science, 2003. 6(1): 359-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700