用户名: 密码: 验证码:
铝基多孔材料的反重力渗流铸造制备及其相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝基多孔材料的独特金属特点和孔隙特性使其兼具了功能材料与结构材料的特征,因而其应用前景广阔。渗流铸造法是目前铝基多孔材料的重要制备方法,但传统工艺难避免“渗流过度”与“渗流不足”等缺陷。为了解决现有渗流铸造中存在的问题,本文结合帕斯卡原理与压力浸渗原理创新性地设计了反重力渗流铸造系统,研究了反重力渗流铸造工艺以及工艺参数的确定原则;采用该系统成功制备出了多孔铝裸材、氧化铝空心球/铝基轻质材料(即Al203k/Al材料)以及多孔铝芯夹芯材料等系列铝基多孔材料,并研究了相关材料的力学、热学与声学性能,分析了导致反重力铸造法与传统工艺所制备多孔铝材料性能方面差异的原因。所获得的主要研究结果如下:
     (1)设计的反重力渗流铸造系统具有上下结构,上面部分为渗流室,下面为加热熔化室,加热熔化室与渗流室之间通过导流部件连通,创新性地采用了石墨纸来保证系统各部分之间的密封;所设计渗流铸造系统中,可包含一个以上不同尺寸的渗流室,从而可实现不同尺寸多孔金属的间歇与半连续渗流生产;渗流室的有效渗流空间可根据渗流产品的尺寸需要来确定。
     (2)反重力渗流铸造制备铝基多孔材料的工艺主要包括基体金属的熔化、造孔材料在渗流室的安装与预热、熔体自下而上加压渗流进入造孔材料的孔隙以及保压结晶等步骤,该工艺所制备铝基多孔材料几乎没有明显的宏观铸造缺陷。反重力渗流法可实现无缺陷铸造的根本原因是:熔体采用了自下而上的运动模式,以及铝基熔体是在可控压力下进行的充型和结晶。
     (3)创新性地开发了一种强度及刚度可满足渗流铸造要求的全新造孔材料MOD,它不仅易溶于水,而且其熔点、沸点均高于氯化钠与氯化钾,更为重要的是该材料对基体金属无腐蚀、价格低廉、对环境无污染。
     (4)系统对比研究了传统渗流铸造法与反重力渗流铸造法所制备开孔多孔铝裸材的声学与热学性能。声学性能研究表明,反重力渗流铸造所得样品在高频段的吸声性能明显优于传统真空渗流法所制备材料,造成这个差别的根本原因是反重力渗流法使试样中相邻孔洞之间的连通空间减小;热学性能研究表明,在使用同一规格造孔粒子时,反重力渗流铸造所制备试样的导热系数明显高于传统真空渗流法所制备样品,这主要由于反重力渗流铸造法所制备样品的空隙度小、以及由于采用了保压等工序使基体金属更加结晶致密的原因。
     (5)采用氧化铝空心球作为造孔材料,通过反重力渗流铸造技术制备出了基本无宏观铸造缺陷的氧化铝/铝基轻质复合材料(即Al203k/Al材料);且还发现,渗流长度随熔体温度和空心球预热温度的提高以及空心球粒径的增大而增加,空隙度随着空心球粒径的增大而降低;增加充型与保压压力、延长保压时间以及添加金属Mg等均是改善渗流效果的有效手段。
     (6)对比研究Al203k/Al材料与多孔铝裸材的准静态压缩性能后发现,两种材料的应力-应变曲线均表现出了包括线弹性阶段、屈服平台阶段和密实化阶段在内的“三阶段”特征,造孔粒子粒径、相对密度与应变速率等都是影响两种材料压缩性能的重要因素,所制备材料的屈服应力和平台应力均随造孔粒子粒径的减小、材料相对密度的增大以及空隙度的减小而增大;但是,Al203k/Al材料的屈服应力和平台应力远大于多孔铝裸材的,密实应变相对多孔铝裸材的略有减小。
     (7)设计并制造出了可制备出大尺寸铝基多孔材料的装备,所制备大尺寸铝基多孔材料几乎没有宏观铸造缺陷;创造性地提出了由小尺寸造孔预制块构成大尺寸预制块、来制备大尺寸铝基多孔材料的方法,该法有效避免了大尺寸预制块在搬运过程中易碎的缺陷。
     (8)对大尺寸Al203k/Al芯夹芯材料进行了三点弯曲测试,同时还研究了该夹芯材料的弯曲破坏过程。研究发现:①夹芯材料表现出了由线弹性阶段、弹塑性阶段与失稳阶段构成的经典多孔铝夹芯板的弯曲特性;②夹芯材料的失稳段较长,且其弯曲载荷高出Al203k/Al材料的一倍,达到了近18kN;夹芯材料的刚度超过了30KN/mm;③夹芯材料的弯曲破坏以芯部材料剪切开裂破坏和表层面板弯曲破坏为主,破坏过程中没有出现面板与芯材界面的拉裂现象。芯材和表层面板之间实现了冶金结合以及采用氧化铝空心球作为造孔材料,是Al203k/Al芯夹芯板抗弯性能优秀、刚度大以及弯曲破坏过程中界面没有出现拉裂的主要原因。
Due to its unique characteristics of metal and pore structure, aluminum based porous materials combine the characteristics of functional materials and structural materials, and has a broad prospect in application. At present, the infiltration casting is the main method of aluminum based porous materials preparation. However the traditional process has many unavoidable defects, such as "excessive infiltration " and "insufficient infiltration". In order to solve these problems, we innovatively designed a counter-gravity infiltration casting system based on the PASCAL principle and the pressure infiltration theory, then studied the counter-gravity infiltration casting process and found the principles to determinate the process parameters. In this paper, porous aluminum naked materials, Al2O3k/Al materials, porous aluminum core sandwich materials and other aluminum based porous materials were successfully prepared by this system. The related materials mechanics, heat and acoustic properties were studied and the explanations for the different properties of aluminum based porous materials prepared by counter-gravity infiltration casting system and the traditional process were analyzed. The main research results are as follows:
     (1) The counter-gravity infiltration casting system has an up and down structure. The above section is an infiltration room while the lower section is a heating and melting room, between which is a diversion part for connection. Graphite paper is used to ensure the seal of system between the parts. There are more than one infiltration rooms with different sizes in the system, which can achieve different size of foam metal intermittent and semi-continuous infiltration productions. The effective infiltration space can be determined by the size of the infiltration products.
     (2) The counter-gravity infiltration casting system mainly consists of the melting of metal matrix, the installing and preheating of porous materials in infiltration room, the process by bottom-up infiltration pressure to make melt into the hole of the porous materials, the holding crystallization steps and so on. Because of bottom-up movement patterns of metal and mould filling and crystallizing of aluminum melt, there is no obvious macro casting defect in the final product.
     (3) A novel material—MOD was exploited as the pore-forming material, which can meet the requirements of strength and stiffness for infiltration casting. This material is not only soluble in water, but also has a higher melting point and boiling point than the sodium chloride and potassium chloride. Furthermore, it is non-corrosive to the based metal, low cost and environmentally friendly.
     (4) Contrastive research was carried out to study the acoustics and thermal properties of the porous aluminum naked materials prepared by counter-gravity infiltration casting system and the traditional process respectively. The acoustics performance study suggested the product prepared by the former method is better than the product prepared by the latter. It was the decrease of connected space between adjacent holes in counter-gravity infiltration casting system that caused this difference. The thermal properties research showed the product prepared by counter-gravity infiltration casting had an obviously higher thermal conductivity, it was largely because the product had a low pore degrees and more dense crystallization of the based metal after some processes, for example the constant pressure process.
     (5) Al2O3k/Al materials with no obvious macro casting defects were produced using alumina bubble brick as pore-forming materials through the counter-gravity infiltration casting system. It was found that along with the increase of the metal temperature and hollow balls preheating temperature and the particle size of hollow balls, the length of infiltration was getting longer. Besides, along with the increase of the particle size of the hollow ball, the pore degrees decreased. Improving the filling and holding pressure, lengthening the holding time and adding metal Mg were the effective measures to improve infiltration process.
     (6) When compared the quasi-static compression performance of the Al2O3k/Al materials and the porous aluminum naked materials, it could be found that their stress-strain curves also had the "three stage" feature, which were linear elastic stage, yield platform stage and close-grained change stage. The particle size of porous materials, the relative density and the strain rate were the key factors for their compression performance, the smaller particle size of porous materials, the bigger of the relative density and the lower of the pore degrees, the greater of their yield stress and platform stress would be; However, compared with the porous aluminum naked materials, the yield stress and platform stress of the Al2O3k/Al materials were much greater, and its close-grained strain stress was only slightly reduced.
     (7) A kind of equipment, which could be used to prepare aluminum based porous materials of large size with no obvious macro casting defects, was designed and manufactured. It was creatively to put forward the method that using the small size porous precast block to prepared large size aluminum based porous materials. This method could effectively avoid of the easily broken defects of large size and precast block during the handling process.
     (8) The three point bending test was taken on the large size Al2O3k/Al core sandwich material, and its bend destructive process was also studied. The results were as follows:(1)The materials showed the classic bend characteristics of porous aluminum sandwich board, which consisted of linear elastic stage, elastic-plastic stage and Instability stage.(5)The materials had a long period of instability, and the bending load was twice as the Al2O3k/Al materials', nearly18KN; The stiffness of the sandwich material was more than30KN/mm;(3)Bending failure of the materials was mainly caused by the shear cracking destruction of the core materials and bending failure of surface panel, and the cracking phenomena did not appear between the interface of panel and core material during the process of destruction. The metallurgical combination between panel and core material and using alumina bubble brick as porous materials were the critical reasons why Al2O3k/Al core sandwich material had good flexural performance, large stiffness and why the cracking phenomena did not appear during the process of destruction.
引文
[1]Zhang C J, Feng Y, Zhang X B. Mechanical properties and absorption of aluminum foam-filled square tubes[J]. Transactions of Nonferrous Metals Society of China,2010,20(8):1380-1386
    [2]Banhart J. Metal foam:production and stability [J]. Adv Eng Mater,2006,8(9): 781-794.
    [3]Banhart J. Manufacture, characterisation and application of cellar metals and metal foams[J]. Progress in Materials Science,2001,46:559-632
    [4]Mori K, Nishikawa H. Cold repeated forming of compact for aluminium foam[J]. Journal of Materials Processing Technology,2010,210(12):1580-1586
    [5]Shiomi M, Imagama S, Osakada K, et al. Fabrication of aluminium foams from powder by hot extrusion and foaming[J]. Journal of Materials Processing Technology,2010,210(9):1203-1208
    [6]Zhou X Y, Liu X Q, Li J, et al. Novel foaming agent used in preparation process of aluminum foams[J]. Journal of University of Science and Technology Beijing. 2008,15(6):735-739.
    [7]Yan Q S, Yu H, Xu Z F, et al. Effect of holding pressure on the microstructure of vacuum counter-pressure casting aluminum alloy [J]. Journal of Alloys and Compounds,2010,501:352-357.
    [8]Eardley E S, Flower H M. Infiltration and solidification of commercial purity aluminum matrix composites[J]. Materials Science and Engineering A, 2003,359:303-312.
    [9]Berchem K, Mohr U, Bleck W. Controlling the degree of pore opening of metal sponges, prepared by the infiltration preparation method[J]. Materials Science and Engineering A,2002,323:52-57.
    [10]Vogt U F, Gorbar M, Dimopoulos E P, etal. Improving the properties of ceramic foams by a vacuum infiltration process [J]. Journal of the European Ceramic Society,2010,30(15):3005-3011.
    [11]Despois J F, Marmottant A, Salvo L, etal. Influence of the infiltration pressure on the structure and properties of replicated aluminum foams [J]. Materials Science and Engineering A,2007,462:68-75.
    [12]Sosnick B. Process for making foaming mass of Metal [P]. US Patent 2434773,1948
    [13]Ellioty J C. Method of producing metal foam [P]. US Patent 2751289,1956.
    [14]戴长松,张亮,王殿龙,等.泡沫材料的最新研究进展[J].稀有金属材料与工程,2005,34(3):337-340.
    [15]韩福生.一种新型的物理功能材料——泡沫铝[J].中外情报技术,1996,6:3-6.
    [16]王磊.粉末冶金法铝基泡沫铝及其夹芯板制备方法的研究[D].沈阳:东北大学博士论文,2010.
    [17]Baumgartner F, Duarte I, Banhart J. Industrialization of powder compact foaming process [J]. Advanced Engineering Materials,2000,2(4):168-174
    [18]Proa F, Paula M, Robin A L. Production of aluminum foams with Ni-coated TiH2 powder[J]. Advanced Engineering Materials.2008,10(9):830-834
    [19]Babcsan N, Leitlmeoer D, Degischer H P. The role of oxidation in blowing particle-stabilised aluminium foams[J]. Anvanced Engineering Materials,2004, 6(6):421-428
    [20]杨东辉,杨上润,何德坪.氢化钛热分解反应动力学及铝合金熔体泡沫化研究.中国科学B辑化学,2004,34(3):195-201
    [21]吴照金,何德坪.泡沫铝凝固过程中孔隙率的变化[J].科学通报,2000,45(8):825-835
    [22]Yu H J, Yao G C, Liu Y H. Tensile property of Al-Si closed-cell aluminium foam[J]. Trans. Nonferrous Met. Soc. China,2006,16(6):1335-1340
    [23]李兵,曹卓坤,王永.熔体发泡法制备泡沫铝过程中无泡层的形成与控制[J].中国有色金属学报,2008,18(7):1268-1273.
    [24]罗洪杰,吉海宾,杨国俊,等.氢化钛的分解行为及其在制备泡沫铝中的应用[J].东北大学学报(自然科学版),2007,28(1):87-89.
    [25]Zhou X Y, Liu X Q, Li J, et al. Novel foaming agent used in preparation process of aluminum foams. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials,2008,15(6):735-739
    [26]Huo D W, Zhou X Y, Zhang T K, et al. Preparation of aluminum foam using a novel gas-generating agent[J]. TMS Annual Meeting,2011, supplemental Proceedings:volume2:Materials Fabrication,Properties, Characterization, and Modeling,185-190
    [27]周向阳,张华,刘习泉,等.泡沫铝两步法制备工艺用新型发泡剂的热分解行为[J].中国有色金属学报2008,18(12):2265-2269
    [28]王永.粉煤灰颗粒增强泡沫铝的制备及性能研究[D].沈阳:东北大学博士论文,2008
    [29]王永,姚广春,李兵,等.陶瓷颗粒增强泡沫铝材料的研究[J].铸造,2006,55(11):1130-1132
    [30]Guo R Q, Rohatgi P K, Ray S. Casting Characteristics of Aluminum-Fly Ash Composites. Trans. Am. Foundrym en's Soc,1996,104:1097-1101.
    [31]Guo R Q, Venugopalan D, Rohatgi P K. Differential thermal analysis to establish the stability of aluminum-fly ash composites during synthesis and reheating. Mater. Sci. Eng,1998, A 241(1-2):184-190.
    [32]Guo R Q, Rohatgi P K. Chemical Reactions between Aluminum and Fly Ash during Synthesis and Reheating of Al-Fly Ash Composite. Metal Mater. Trans,1998, B29 (3):519-525.
    [33]Rohatgi P K, Kim J K, Gupta N, et al. Compressive characteristic of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites:Part A,2006,37:430-437.
    [34]Dorian K B, David C D. Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Materialia,2006,54 (6):1501-1511
    [35]Dorian K B, John G. O, Graham R D, et al. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Materials Science and Engineering A,2005,391(1-2):408-417.
    [36]Daoud A, Abou M T, Shenouda A Y, et al. Microstructure, tensile properties and electrochemical behavior of alloy-45 vol.%fly ash microballoon composites. Materials Science and Engineering:A,2009,526(1-2):104-109.
    [37]Daoud A. Effect of fly ash addition on the structure and compressive of fly ash particle composite foams. Journal of Alloys and Compounds,2009,487: 618-625.
    [38]Mondal D P, Goel M D, Das S. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Materials Science and Engineering:A,2009,507(1):102-109.
    [39]Mondal D P, Goel M D, Das S. Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminum-fly ash composite foam. Materials & Design,2009,30:1268-1274.
    [40]Mondal D P, Jha A K, Das S, et al. Preparation and properties of cast aluminium alloy-sillimanite particle composite. Composites Part A:Applied Science and Manufacturing,2001,32 (6):787-795
    [41]Jon B, Hong C, Rebecca H. Processing of ceramic-metal interpenetrating composites. Journal of the European Ceramic Society,2009,29(5):837-842.
    [42]Hong C, Jon B, Rebecca H. Dry sliding wear behaviour of Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique. Wear,2010,268(1-2):166-171.
    [43]张雄飞,王达健,谢刚,等.铝/飞灰颗粒复合材料液相烧结过程的反应性.中国有色金属学报,2001,11(2):68-71.
    [44]吴林丽, 姚广春.搅拌法制备漂珠增强铝基复合材料的熔体分层与控制.复合材料学报,2005,22(3):126-129.
    [45]Zhao M, Wu G H, Zhang Q, et al. Aging behavior of sub-micron Al2O3P/2024Al composites. Materials Science and Engineering:A,2005,392(1-2):366-372.
    [46]Yu Z Q, Jiang L T. Effect of coating Al2O3 reinforcing particles on the interface and mechanical properties of 6061 alloy aluminium matrix composites. Materials Letters,2005,59(18):2281-2284.
    [47]Zhang Q, Chen G Q, Wu G H, et al. Property characteristics of a AINp/Al composite fabricated by squeeze casting technology. Materials Letters,2003, 57(8):1453-1458.
    [48]Gu J, Wu G H, Zhao X, et al. Damping properties of fly ash/epoxy composites. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2008,15(4):509-513.
    [49]施荣贵.铝合金幕墙板及其加工工艺:中华人民共和国,CN1184144[P],1998.07.01.
    [50]姚广春,张晓明,孙挺,等.泡沫铝幕墙板:中华人民共和国,CN2727289[P],2005.09.21.
    [51]姚广春,张晓明,刘宜汉,等.泡沫铝车厢地板:中华人民共和国,CN2726982[P],2005.09.21.
    [52]Banhart J, Weaire D. On the road again:metal foams find favor[J]. Physics Today,2002,55:37-42
    [53]Harte A M, Fleck N A,Ashby M F. Sandwich panel designusing aluminum alloy foam [J]. A dvanced Engineering,2000,2 (4):219-222.
    [54]Seeliger H W. Aluminium foam sandwich (AFS) ready for market int roduction [J]. A dvanced Engineering Materials,2004,6 (6):448-451.
    [55]Banhart J, Seeliger H W. Aluminium foam sandwich panels:manufacture, metallurgy and applications. Advanced Engineering Materials,2008, 10(9):793-801.
    [56]http://www.alulight.com/de/sandwichpaneele
    [57]张敏,祖国胤,姚广春,等.泡沫铝夹芯板的制备及其界面结合机理的研究[J].功能材料,2006,37(2):281-283.
    [58]张敏,祖国胤,姚广春,等.轧制复合-粉末冶金发泡工艺制备泡沫铝夹芯板[J].过程工程学报,2006,6(6):973-977.
    [59]梁晓军,朱勇刚,陈锋,等.泡沫铝三明治结构的制备[J].江苏冶金,2004,32(1):7-11
    [60]梁晓军,朱勇刚,陈锋,等.泡沫铝芯三明治板的粉末冶金制备及其板/芯界面研究[J].材料科学与工程学报,2005,23(1):77-80
    [61]Song M H, Wu G H, Yang W S, et al. Mechanical Properties of Cf/Mg Composites Fabricated by Pressure Infiltration Method. Journal of Materials Science & Technology,2010,26(10):931-935
    [62]Kim A, Hasan M A, Nahm S H, et al. Evaluation of compressive mechanical properties of Al-foams using electrical conductivity. Composite Structures, Volume 2005,71(2):191-198.
    [63]Nikhil G, Eyassu W, Patrick M. Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. Composites:PartA 2004,35:103-111.
    [64]Gu J, Wu G H, Zhang Q, et al. Effect of porosity on the damping properties of modified epoxy composites filled with fly ash. Scripta Materialia,2007,57(6): 529-532.
    [65]韩福生,朱震刚,石纯义,王月.泡沫Al阻尼性能研究.物理学报,1998,47(7):1161-1170.
    [66]Dou Z Y, Wu G H, Huang X L, et al. Electromagnetic shielding effectiveness of aluminum alloy-fly ash composites. Composites Part A:Applied Science and Manufacturing,2007,38(1):Pages 186-191.
    [67]Wu J J, Li C G, Wang D B, et al. Damping and absorption properties of particle reinforced Al matrix composite foams. Composite Science and Technology, 2003,63:569-574.
    [68]Ambterdam E, Goodall R, Mortemen A, et al. Fracture behavior of low-density relicated aluminum alloy. Materials Science and Engineering,2008,496(1-2): 376-382
    [69]秦福德,童明波,何思渊,等.航空航天返回过程的轻质能量吸收器[J].东南大学学报(自然科学版),2009,39(4):790-794
    [70]Radford D D, Mcshane G J, Desfipande V S, et al.The Response of Clamped Sandwich Plates with Metallic Foam Cores to Simulated Blast Loading[J]. International Journal of Solids and Structures,2006,43:2243-2259.
    [71]王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(3)[J].轻合金加工技术,1999,27(12):125.
    [72]王军,邓艳民,范泽臣.泡沫铝在城市轨道车辆上的应用[J].铁道车辆,2009,47(3)23-24.
    [73]姜玉波.铝合金材料在汽车轻量化中的应用分析[J].试验技术与试验,2004,44(4):31-35.
    [74]曾顺民,王宏雁.泡沫铝材在汽车车门轻量化中的应用[J].上海汽车,2004,11:35-36.
    [76]赵万祥,赵乃勤,郭新权.新型功能材料泡沫铝的研究进展[J].金属热处理,2004,6:7-11.
    [77]周向阳,龙波,刘宏专,等.轻合金泡沫材料制备方法研究进展[J].材料导报,2005,19(9):61-63.
    [78]郑伟,孙悦年.泡沫铝在航天工程中的应用展望[J].航天器工程,2001,10(3):24-29.
    [79]赵增典,张勇.泡沫铝的吸声性能初探.兵器材料科学与工程,1988,21(1):48-51.
    [80]Weise J, Stanzick H, Banhart J. Semi-solid processing of complex-shaped foamable material [C]. Cellular Metals and Metal Foaming Technology. Eds. Banhart J, Fleck N A, Mortensen A:Bremen, MIT-Verlag (2003):169-176
    [81]Wood J. Metal foams. In:Banhart J, Eifert H, editors. Proc. Fraunhofer USA Sympo-sium on Metal Foams, Stanton, USA,7-8October.Bremen:MIT Press-Verlag,1998.p.31
    [82]周向阳,刘希泉,李劫,等.采用新型发泡剂的泡沫铝制备[J].中国有色金属学报,2006,16(11):1983-1987.
    [83]张勇,王有喜,张春明.泡沫铝合金的渗流铸造工艺参数研究[J].铸造技术,2010,(6):770-772.
    [84]杨思一.泡沫铝合金的渗流铸造工艺方法研究[J].粉末冶金技术,2006,24(4):291-294.
    [85]刘荣佩,左孝青,杨晓源,等.泡沫金属渗流铸造工艺及填料的研究[J].昆明理工大学学报,2000,25(4):29-31.
    [86]杜晓明,杨君保,黄秀琦.上压渗流铸造法制备泡沫铝[J].沈阳理工大学学报,2009,,28(1):18-21,25.
    [87]王录才,陈新.熔模铸造法通孔泡沫铝制备工艺研究[J].铸造,1998,(1):8-10.
    [88]Rajan T P D, Pillai R M, Rohatgi P K, et al. Fabrication and characterisation of Al—7Si-0.35Mg/fly ash metal matrix composites processed by different stir casting routes. Composites Science and Technology,2007,67(15-16): 3369-3377.
    [89]Asavavisthchai S, Kennedy A R. The effect of Mg addition on the stability of Al-Al2O3 foams made by a powder metallurgy route. Scripta Materialia,2006, 54:1331-1334.
    [90]Esmaeelzadeh S, Simchi A, Lehmhus D, et al. Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam. Materials Science and Engineering A,2006,424:290-299.
    [91]Crupi V, Montanini R. Aluminium foam sandwiches collapse modes under static and dynamic three-point dending [J], International Journal of Impact Engineering,2007,34(3):509-521.
    [92]Kulkarni N, Mahfuz H, Jeelani S. Fatigue crack growth and life prediction of foam core sandwich composites under flexuar loading [J], Composite Structure, 2003,59(4):499-505.
    [93]Cantwell W J, Compston P, Reyes G. The fatigue properties of novel aluminum foam sandwich structure [J], Journal of Materials Science Letters,2000,19(24):2205-2208.
    [94]伊藤泰永.铝合金钎焊蜂窝板及其应用[J].国外机车车辆工艺,2002(9):21-25.
    [95]Kitazono K. Kitajima A, Sato E. Solid-state diffusion bonding of closed-cell aluminum foams [J], Materials Science and Engineering A,2002,327(2):128-132.
    [96]Christoph B, Hagen K, Guntram W, et.al.. Ultrasonic torsion welding of sheet metals to cellular metallc [J], Advanced Engineering Materials, 2003.5(11):779-786.
    [97]Kathuria Y P. A preliminary study on laser assisted aluminum foaming [J], Journal of Materials Science,2003.38(13):2875-2881.
    [98]Maurer M, Zhao L, Lugscheider E. Surface refinement of metal foams [J], Advanced Engineering Materials,2002.4(10):791-797.
    [99]梁晓军,朱勇刚,陈峰.泡沫铝三明治结构的制备[J],江西冶金,2004,32(1):8-11.
    [100]Peter S, Walter R. Process stability in serial production of aluminium foam panels and 3D parts [J], Advanced Engineering Materials,2004.6(6):452-453.
    [101]Vitaly K, Vitaly S, Andrey S. Stability of the face layer of sandwich beams with sub interface damage in the foam core [J], International Journal of Impact Engineering,2007,34(7):1246-1257.
    [102]张敏,陈长军,姚广春.泡沫铝夹芯板芯材发泡的研究[J].功能材料,2008,39(4):596-599.
    [103]Surace R. Experimental analysis of the effect of control factors on aluminum foam produced by powder metallurgy[J]. Proceedings of the Estonian Academy of Sciences:Engineering,2007,13 (2):156-167.
    [104]Schwingel D, Seeliger H W, Vecchionacci C, etal. Aluminium foam sandwich structures for space applications[J]. Acta Astronautica,2007,61:326-330.
    [105]罗庚生,张志忠,吕有纲,等.低压铸造.北京:国防工业出版社,1989,P3-48.
    [106]衷水平.锌电积用铅基多孔节能阳极的制备、表征与工程化实验:[博士学位论文].长沙:中南大学,2009.
    [107]潘俊杰,洪润洲,罗传彪,等.典型薄壁铸件熔模型壳反重力铸造工艺研究[J].特种铸造及有色合金,2010,30(3):244-245.
    [108]罗庚生,张志忠,吕有纲,等.低压铸造[M].北京:国防工业出版社,1989,P3-48.
    [109]潘增源.低压铸造[M].北京:机械工业出版社,1974,P3-10.
    [110]王英杰.铝合金反重力铸造技术[J].铸造技术,2004,25(5):361-362.
    [111]下游铝市过剩将加剧我国氧化铝行业经营风险,http://www.cnal.com.
    [112]周向阳,李劫,刘宏专,等.一种渗流铸造法制备泡沫金属的渗流装置:中华人民共和国,授权公告号:CN100496812C,2009-6-10.
    [113]周向阳,李劫,刘宏专,等.至少包含一泡沫金属层的层状金属材料及其制备方法:中华人民共和国,授权公告号:CN1962256B,2011-3-23.
    [114]Gyenge E, Jung J, Splinter S, et al. High specific surface area, reticulated current collectors for lead-acid batteries. Journal of Applied Electrochemistry, 2002,32(3):287-295.
    [115]赵祖德.复合材料固-液成形理论与工艺[M].北京:冶金工业出版社,2008:20-26.
    [116]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1983:290.
    [117]刘业翔,李劫.现代铝电解[M].北京:冶金工业出版社,2008:26-28.
    [118]Zhao Y Y, Han Fu S, Thomas F. Optimization of compaction and liquid-state sintering in sintering and dissolution process for manufacturing Al foams. Materials Science and Engineering,2004, A364:117-125.
    [119]Jiang B, Zhao N Q, Shi C S, et al. A novel method for making open cell aluminum foams by powder sintering process. Materials Letters,2005,59: 3333-3336.
    [120]马大猷.噪声与振动控制工程手册[M],北京:机械工业出版社,2002,399
    [121]钱军民,李旭祥.聚氯乙烯基泡沫吸声材料的制备[J],塑料科技,2000,(4):5-6.
    [122]王月,付自来.真空渗流法制备的通孔泡沫铝的吸声性能[J],材料开发与应用,2000,15(3):12-15.
    [123]余欢,方立高,严青松.多孔铝合金的制备及其吸声系数测定[J],南昌大学学报,2000,22(4):10-13.
    [124]Cree D, Pugh M. Production and characterization of a three-dimensional cellular metal-filled ceramic composite. Journal of Materials Processing Technology[J],2010,210:1905-1917.
    [125]Huo D W, Yang J, Zhou X Y, et al. Preparation of open-celled aluminum foams by counter-gravity infiltration casting[J]. Transactions of Nonferrous Metals Society of China, accepted.
    [126]许肖梅.声学基础[M].北京:科学出版社,2003.
    [127]苑改红,王宪成.吸声材料研究现状与展望[J].机械工程师,2006,17(6):17-19.
    [128]李海涛,朱锡,石勇,等.多孔性吸声材料的研究进展[J].材料科学与工程学报,2004,22(6):935-938.
    [129]黄笑梅,薛国宪,程和法.渗流法制备开孔泡沫铝的结构和参数的控制[J].材料与表面处理,2004,(2):43-44.
    [130]Gibson L J, Ashby M F. Cellular Solids:Structure and Properties[M], Cambridge University Press, UK,1997.
    [131]梁李斯.闭孔泡沫铝吸声性能及其吸声结构的研究[D].东北大学博士论文,2011.
    [132]Zhou B, Yang Y, Reuter M A, et al. Modelling of aluminium scrap melting in a rotary furnace[J]. Minerals Engineering 2006(19):299-308.
    [133]弗兰克P.英克鲁佩乐,大卫P.德维(葛新石,叶宏译).传热和传质基本原理[M].北京:化学工业出版社.2007.7:34-52.
    [134]宋锦柱,何四源.多孔铝的传热性能[J].江苏冶金,2008,36(2):38-30.
    [135]凤仪,朱震刚,陶宁,等.闭孔泡沫铝的导热性能[J].金属学报,2003,39(8):817-820.
    [136]杨世铭.传热学基础[M].北京:高等教育出版社,1991.
    [137]何德坪,闻德荪,张勇,等.铝熔体在多孔介质中的渗流过程.材料研究学报,1997,11(2):113-119.
    [138]张勇.铝液在多孔介质中渗流过程的模拟实验研究[J],力学季刊,2006,27(2):233-239.
    [139]刘贯军,李文芳,杜军,等.铝、镁基复合材料的润湿性探究.铸造,2006,55(9):911-915
    [140]张雄飞,王达健,陈书荣,等.液态铝与陶瓷的润湿性改变机理.粉末冶金技术,2003,21(1):42-45.
    [141]吴林丽,姚广春,罗天骄,等.镁对铝与粉煤灰润湿性的影响.中国有色金属学报,2004,14(10):1700-1705.
    [142]于志强,陈剑锋,武高辉,等.铝基复合材料增强体碳、碳化硅和氧化铝表面涂层研究进展.航空材料学报,2002,22(2),54-61.
    [143]张华.采用新型发泡剂的两步法制备泡沫铝材料的研究:[硕士学位论文].长沙:中南大学,2007.
    [144]罗洪杰.熔体发泡法制备泡沫铝材料的研究:[博士学位论文].沈阳:东北大学,2005.
    [145]杨国俊.大尺寸泡沫铝材料制备及其应用的研究:[博士学位论文].沈阳:东北大学,2008.
    [146]刘培生.多孔材料引论[M],北京:清华大学出版社,2004.
    [147]韩福生,朱震刚,刘长松,等.泡沫A1压缩形变及能量吸收特征.物理学报,1998,47(3):520-528.
    [148]Parkash O, Sang H, Embury J D. Structure and properties of Al/SiC foam[J]. Materials Science and Engineering A,1995,199(2):195-203.
    [149]Wu G. H, Dou Z Y, Sun D L, ea al. Compression behaviors of cenosphere-pure Aluminum syntactic foams. Scripta Materialia 2007,56:221-224.
    [150]Ashby M F, Evans, Fleck N A. Metal foams a design[C]. Boston:Butterworld Heinemann.2000:17.
    [151]罗彦茹.泡沫SiCp/ZL104复合材料的制备及性能研究:[博士学位论文].长春:吉林大学,2007.
    [152]刘家安.陶瓷/ZA22复合泡沫的制备及性能研究:[博士学位论文].长春:吉林大学,2007.
    [153]王永刚,王春雷.结构特征参数和应变速率对泡沫铝压缩力学性能的影响[J].兵工学报,2011,32(1):106-111.
    [154]Liu P S, Yu B, Hu A M, et al. Techniques for the preparation of porous metals. Journal of mater science technology,2002,18(4):299-305.
    [155]张林,何德坪.球形孔泡沫铝合金三明治梁的三点弯曲变形[J].材料研究学报,2005,19(4):361-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700