用户名: 密码: 验证码:
非晶合金连续制备技术与强磁场处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金具有完全不同于晶体合金的原子排列,这使得非晶合金相比晶体合金具有高的强度、硬度、耐腐蚀性、良好的磁性能、超塑成形和微纳米成形等特点。非晶合金制备及其改性技术的研究对扩大非晶合金的研究和应用范围具有十分重要意义。随着非晶合金研究不断深入,其应用范围也越来越广,高效率低成本的连续制备技术的开发已迫在眉睫。
     本文提出了复合铸型双室差压非晶合金连续铸造方法并建立了连铸装置,以高纯铝验证连铸装置的实用性,并探索出了合理的非晶合金连续铸造工艺。利用金相显微镜、X射线衍射仪、DSC热分析仪、振动样品磁场计、电子探针、透射电镜、ShiMaDzu电液伺服疲劳试验机和MTS实验机对连铸制备的大块非晶合金棒材的组织、热物理性能和力学性能进行了分析。本文还研究了放电等离子烧结制备非晶合金、非晶合金磁性材料强磁场热处理等非晶合金制备和改性技术,对磁性非晶合金的强磁场处理结果进行评价。论文的主要研究结果如下:
     非晶合金连铸时,选用高纯石墨制备熔化坩埚。非晶合金普遍具有较低熔点便于电阻丝加热熔化。非晶合金的低凝固收缩特性可简化铸型锥度设计。
     设计并制作出复合铸型双室差压非晶合金连铸设备。该连铸设备真空腔体由分隔板分成两部分,复合铸型通过隔板相连,并可以实现抽真空和气体压差的控制。复合铸型采用高纯石墨和纯铜复合。复合铸型能够充分发挥石墨的高温润滑性和水冷铜模的大冷却强度特点。
     采用高纯铝对复合铸型双室差压非晶合金连铸装置进行调试并成功制备出高质量的高纯铝杆。表明该设备可以方便的实现连铸工艺参数的有效控制,能够有效避免杂质元素对金属液的污染和控制氢含量,达到了非晶合金连铸所需要基本条件。同时还分析了拉速对连铸高纯铝杆组织和性能的影响。
     研究了非晶合金的连铸工艺,采用复合铸型双室差压非晶合金连铸法成功制备出直径10mm,长度接近400mm的Zr48Cu36Ag8Al8非晶合金棒材,其连铸工艺参数是:浇铸温度950-1000℃,冷却水量15-40L/min,气体压力0.02-0.05Mpa,采用拉停循环模式,拉坯速度为2mm/s,拉坯时间为5s,停留时间为2s。拉停循环方式导致连铸非晶棒材表面出现圆环形痕迹,并且相邻痕迹之间的距离与拉速有直接对应关系,圆环形痕迹不影响样品的非晶性。连铸所制备的非晶合金棒材的力学性能与铜模铸造法制备的非晶合金相当。
     放电等离子烧结法制备出的Fe67Co9.5Nd3Dyo.5B20大块非晶合金磁性材料是各向同性的软磁性材料。烧结过程中Nd1.1Fe4B4相的出现使得材料的矫顽力变大。由于交换耦合作用,样品在650℃下保温10min热处理后可获得较好硬磁性。强磁场热处理恶化了Fe67Co9.5Nd3Dy0.5B20的磁性能,磁场强度越大,所得材料的硬磁性越差。非晶合金Fe56.25Pt18.75B25在783K温度热处理时,强磁场能够提高合金中铁磁性相Fe2B析出的形核率,起到细化晶粒作用。
Glassy alloy has short range order atomic structure, which is different from crystalline alloy. Metallic glasses have lots of special properties, such as high strength, high hardness, high corrosion resistance, good magnetic properties, superplastic forming, micromolding and so on. The research on preparation and modification of metallic glasses are very important for the widely development and applications. Continuous manufacturing techniques of glassy alloys, which have high efficiency and low cost, are strongly demanded for industrial application.
     A Part of the dissertation is about spark plasma sintering of bulk metallic glasses and modification of amorphous alloys by high magnetic field. The key part of the dissertation are about continuous casting of bulk metallic glass, which contain the theoretical analysis of continuous casting technology for metallic glasses, the design, establishment and debugging by high pure aluminum of vacuum multi-mold continuous casting system, and developing of the metallic glasses continuous casting technology. The microstucture and thermal, magnetic and mechanical properties are investigated by MEF-4A Metallographic Microscope, XRD-6000 diffractometer, DSC822/TGA/SDTA851 thermal analyzer, JDM-13 vibrating sample magnetometer, EPMA-1600 Electron Probe microanalyser, TG220S-Twin JEM-100CxⅡTransmission Electron Microscope, SHIMADZU EHF and MTS NEW-810 Materias Test System. The results of the study are showed bellow:
     High pure graphite is adopted to make the crucible for continuous casting of bulk metallic glass. The glassy alloy can be melt by electric resistance heating for its relatively low melting temperature and the mould design can be easy for the low solidification shrinkage of glassy alloy.
     The multi-mold two chamber vacuum pressure continuous casting machine is established. The vacuum chamber is divided into two parts by a panel for the pressure control. The multi-mold is composed of heated graphite mold and water cooling copper mold, which is fixed on that panel. Two different kinds of multi-mold are designed, which could endure high temperature, provide lubrication and large cooling speed.
     High pure aluminum is used to debug the vacuum multi-mold continuous casting system and aluminum rods are also produced. Contamination from impurities and Hydrogen can be effectively controlled by the vacuum pressure multi-mold continuous casting system. The effect of drawing speed on microstructure and properties of high pure aluminum rods are also discussed.
     A Zr48Cu36Ag8Al8 glassy alloy rod with a diameter of 10mm and length of 400mm is produced by the two multi-mold continuous casting method. The suitable parameters for multi-mold continuous casting are 950~1000℃,40L/min,0.02~0.05Mpa,2mm/s,5s and 2s for casting temperature, cooling water, Ar pressure, drawing speed, withdraw period and pausing period, respectively. Annular trace is found on the surface of the glassy alloy rods with intermittent drawing speed mode and the distance between two nearest traces changes with the drawing speeds. The glassy alloy rod produced by the multi-mold continuous casting method nearly has the same mechanical properties as the sample fabricated by copper mold casting technology.
     Fe67Co9.5Nd3Dy0.5B20 bulk metallic glasses produced by spark plasma sintering technique are isotropicaly soft magnetic property. The precipitation of Nd1.1Fe4B4 phase enhanced the coercivity of sintered samples. The good hard magnetic properties for the exchange-coupling effect are obtained when the sample are anneald at 650℃for 15min. The magnetic properties of Fe67Co9.5Nd3Dy0.5B20 glassy alloys are deterioration when the samples are heated in high magnetic field. The crystalline grain size of the Fe56.25Pt18.75B25 amorphous alloy are largely reduced when the sample annealed at temperature above 783K in high magnetic field.
引文
[1]龙卧云,卢安贤.块体非晶合金的应用研究进展[J].材料导报,2009(19):61-66.
    [2]HARADA T, FUJITA M, KUJI T. Laser annealing of an amorphous Nd-Fe-B alloy[J]. Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions with Materials and Atoms,1997,121(1-4):383-386.
    [3]NIELSEN 0 V, NIELSEN H. Magnetic-anisotropy in Co73Mo2S15B10 and (Co0.89Fe0.11)72Mo3Si15B10 metallic glasses, induced by stress-annealing[Z]. AMSTERDAM:1980:22,21-24.
    [4]HE G, BIAN Z, CHEN G. Structure evolution of bulk metallic glass Zr52.5Ni14.6Al10Cu17.9Ti5 during annealing[J]. Journal of Materials Science and Technology,2000,16(4):357-361.
    [5]GAO Y L, SHEN J, SUN J F, et al. Thermal stability of Zr55Al10Ni5Cu30 bulk amorphous alloy during continuous heating and isothermal annealing[J]. Transactions of Nonferrous Metals Society of China,2003,13(3):605-608.
    [6]HIKI Y, TANAHASHI M, TAKEUCHI S. Stabilization of Zr-base metallic glass studied by isochronal and isothermal annealing experiments[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2006,442(1-2Sp. Iss. SI):287-291.
    [7]KUMAR P, SINGH K, YADAV T P, et al. Effect of annealing below crystallization temperature on structural and mechanical properties of Co66Si16B12Fe4Mo2 metallic glass[J]. Journal of Optoelectronics and Advanced Materials,2009,11(8):1082-1087.
    [8]MEHTA N, SINGH K, SAXENA N S. Effect of ionic irradiation on the pre-exponential factor of thermally activated crystallization in Co66Si16B12Fe4Mo2 metallic glass[J]. Journal of Physics and Chemistry of Solids,2009,70(5):811-815.
    [9]WANG Z X, BIN LU J, XI Y J. Effects of quenching under high pressure on crystallization of Cu60Zr20Hfl0Ti10 bulk metallic glass[J]. Materials Science and Engineering A, 2009,499 (1-2Sp. Iss. SI):192-194.
    [10]LI G, DONG Y G, HUANG L, et al. High-pressure annealing effect on glass transformation temperature, of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass[J]. Chinese Physics Letters, 2009,26(0861028):
    [11]YANG C, CHEN W P, LIU R P, et al. Pressure effect on crystallization of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass prepared by shock-wave quenching[J]. Journal of Physics Condensed Matter,2008,20(1).
    [12]SUNOL J J, SAURINA J, BRUNA P. Structural and thermal changes induced by mechanical alloying in a Fe-Ni based amorphous melt-spun alloy[J]. Materials Chemistry and Physics, 2009,114(2-3):996-999.
    [13]LI G H, WANG W M, MA H J, et al. Effect of different annealing atmospheres on crystallization and corrosion resistance of A186Ni9La5 amorphous alloy[J]. Materials Chemistry and Physics,2010.
    [14]SKULKINA N A, STEPANOVA E A, IVANOV O A, et al. Effect of chemically active media on the magnetic properties of rapidly quenched iron-based alloys:Ⅰ. Heat-treatment atmosphere and magnetic properties of ribbons of amorphous soft magnetic alloys[J]. Physics of Metals and Metallography,2001,91(1):15-20.
    [15]GRAHL H, MULLER M, MATTERN N. The influence of the annealing atmosphere on the nanocrystallization behaviour and on the magnetic and mechanical properties of amorphous FeZrBCu-base alloys [M]//ZURICH-UETIKON:TRANS TECH PUBLICATIONS LTD, 2000:377-380.
    [16]NICULA R, ISHIZAKI K, STIR M, et al. Microwave energy absorption driven by dynamic structural and magnetization states in Fe85B15 metallic glass ribbons[J]. Applied Physics Letters,2009,95(17410417).
    [17]齐民,王岩,王轶农,等.强磁场对Fe65Co10Nd8B17非晶合金薄带晶化行为的影响[J].功能材料,2005(1):35-36.
    [18]TANG J C, LI S D, MAO X Y, et al. Effect of electric field on the crystallization process of amorphous Fe(86)Zr(7)B(6)Cu1 alloy [J]. Journal of Physics D-Applied Physics, 2005,38(5):729-732.
    [19]吴文飞,姚可夫.非晶合金纳米晶化的研究进展[J].稀有金属材料与工程,2005(4):505-509.
    [20]惠希东,陈国良.块体非晶合金[M].北京:化学工业出版社,2007.
    [21]KLEMENT W, WILLENS R H, DUWEZ P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature,1960,187(4740):869-870.
    [22]CHEN H S. Glassy metals[J]. Reports On Progress In Physics,1980,43(4):353-432.
    [23]CHEN H S, MILLER C E. Centrifugal spinning of metallic glass filaments[J]. Materials Research Bulletin,1976,11(1):49-54.
    [24]POND R, MADDIN R. A method of producing rapidly solidified filamentary castings[J]. Transactions of the Metallurgical Society of AIME,1969,245(11):2475.
    [25]CHEN H S, MILLER C E. A rapid quenching technique for preparation of thin uniform films of amorphous solids[J]. Review of Scientific Instruments,1970,41(8):1237.
    [26]MASUMOTO T, MADDIN R. Mechanical properties of palladium 20 a/0 silicon alloy quenched from liquid state[J]. Acta Metallurgica,1971,19(7):725.
    [27]SCHWARZ R B, JOHNSON W L. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals[J]. Physical Review Letters,1983,51(5):415-418.
    [28]BUDHANI R, GOEL T, CHOPRA K. Melt-spinning technique for preparation of metallic glasses[J]. Bulletin of Materials Science,1982,4(5):549.
    [29]MASUMOTO T, OHNAKA I, INOUE A, et al. Production of Pd-Cu-Si amorphous wires by melt spinning method using rotating water[J]. Scripta Metallurgica,1981,15(3):293-296.
    [30]INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia,2000,48(1):279-306.
    [31]JOHNSON W L. Bulk glass-forming metallic alloys:science and technology[J]. MRS Bulletin,1999,24(10):42-56.
    [32]WANG W H, DONG C, SHEK C H. Bulk metallic glasses [J]. Materials Science & Engineering R-Reports,2004,44(2-3):45-89.
    [33]SURYANARAYANA C, INOUE A. Bulk metallic glasses[M]. New York:CRC Press,2010.
    [34]PEKER A, JOHNSON W L. A highly processable metallic-glass-Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters,1993,63(17):2342-2344.
    [35]INOUE A, TAKEUCHI A. Recent development and applications of bulk glassy alloys[J]. International Journal of Applied Glass Science,2010,1(3):273-295.
    [36]INOUE A, WANG X M, ZHANG W. Developments and applications of bulk metallic glasses[J]. Reviews On Advanced Materials Science,2008,18(1):1-9.
    [37]HOFMANN D C, KOZACHKOV H, KHALIFA H E, et al. Semi-solid induction forging of metallic glass matrix composites [J]. JOM,2009,61(12):11-17.
    [38]YOKOYAMA Y, FUKAURA K, INOUE A. Cast structure and mechanical properties of Zr-Cu-Ni-Al bulk glassy alloys[J]. Intermetallics,2002,10(11-12):1113-1124.
    [39]STOICA M, BARDOS A, ROTH S, et al. Improved synthesis of bulk metallic glasses by current-assisted copper mold casting[J]. Advanced Engineering Materials, 2010:n/a-n/a.
    [40]MAO J, ZHANG H F, FU H M, et al. A new way to improve glass-forming ability by controlling the preparation conditions of bulk metallic glass [J]. Advanced Engineering Materials, 2010,12 (3):170-175.
    [41]LIU H P, CHEN W Z, CHEN Y Q, et al. Thermal deformation analysis of the rotating roller in planar flow casting process[J]. Isij International,2010,50(10):1431-1440.
    [42]MAKAYA A, TAMURA T, MIWA K. Cooling slope casting process for synthesis of bulk metallic glass based composites with semisolid structure[J]. Metallurgical and Materials Transactions A,2010,41A(7):1646-1657.
    [43]WANG X M, ZHU S L, KIMURA H, et al. Production of bulk glassy alloy parts by a levitation melting-forging method[J]. Materials Transactions,2006,47(8):2072-2075.
    [44]FUKUMURA H, INOUE A, KOSHIBA H, et al. (Fe, Co)-(Hf, Nb)-B glassy thick sheet alloys prepared by a melt clamp forging method [J]. Materials Transactions, 2001,42(8):1820-1822.
    [45]HUANG Y J, SHEN J, SUN J F. Bulk metallic glasses:smaller is softer[J]. Applied Physics Letters,2007,90(0819198).
    [46]KUMAR G, DESAI A, SCHROERS J. Bulk metallic glass:the smaller the better [J]. Advanced Materials,2011,23(4):461-476.
    [47]INOUE A, TAKEUCHI A. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2004,375(Sp. Iss. SI):16-30.
    [48]NISHIYAMA N, TAKENAKA K, TOGASHI N, et al. Glassy alloy composites for information technology applications[J]. Intermetallics,2010,18(lOSp. Iss. SI):1983-1987.
    [49]KUMAR G, TANG H X, SCHROERS J. Nanomoulding with amorphous metals [J]. Nature, 2009,457(7231):868-872.
    [50]ZBERG B, UGGOWITZER P J, LOFFLER J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J]. Nature Materials, 2009,8(11):887-891.
    [51]LUO Q, WANG W H. Rare earth based bulk metallic glasses[J]. Journal of Non-Crystalline Solids,2009,355(13):759-775.
    [52]ZHANG B, ZHAO D Q, PAN M X, et al. Amorphous metallic plastic[J]. Physical Review Letters, 2005,94(20550220).
    [53]JIAO W, ZHAO K, XI X K, et al. Zinc-based bulk metallic glasses[J]. Journal of Non-Crystalline Solids,2010,356(35-36):1867-1870.
    [54]YANG B J, YAO J H, ZHANG J, et al. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength[J]. Scripta Materialia,2009,61(4):423-426.
    [55]ZHUO L C, PANG S J, WANG H, et al. Ductile bulk aluminum-based alloy with good glass-forming ability and high strength [J]. Chinese Physics Letters,2009,26(0664026).
    [56]MU J, FU H M, ZHU Z W, et al. Synthesis and properties of Al-Ni-La bulk metallic glass [J]. Advanced Engineering Materials,2009,11(7):530-532.
    [57]TANG M Q, ZHANG H F, ZHU Z W, et al. TiZr-base bulk metallic glass with over 50 mm in diameter[J]. Journal of Material Science and Technology,2010,26(6):481-486.
    [58]WANG Y M, WANG Q, ZHAO J J,et al. Ni-Ta binary bulk metallic glasses[J]. Scripta Materialia,2010,63(2):178-180.
    [59]LIU L, CHAN K C, YU Y, et al. Bio-activation of Ni-free Zr-based bulk metallic glass by surface modification[J]. Intermetallics,2010,18(10Sp. Iss. SI):1978-1982.
    [60]LIU L, QIU C L, HUANG C Y, et al. Biocompatibility of Ni-free Zr-based bulk metallic glasses[J]. Intermetallics,2009,17(4):235-240.
    [61]ZHANG H F, LI H, A. M W, et al. Synthesis and characteristics of 80vol.% tungsten (W) fibre/Zr based metallic glass composite[J]. Intermetallics,2009,17(12):1070-1077.
    [62]ZONG H T, MA M Z, LIU L, et al. Wf/Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass composites prepared by a new melt infiltrating method[J]. Journal of Alloys and Compounds, 2010,504:S106-S109.
    [63]CHEN X H, ZHANG B Y, CHEN G L,et al. Continuously manufacturing of bulk metallic glass-coated wire composite[J]. Intermetallics,2010,18(11):2034-2038.
    [64]QIAO J W, WANG S, ZHANG Y, et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the bridgman solidification[J]. Applied Physics Letters,2009,94(15190515).
    [65]乔珺威,张勇,陈国良.定向凝固制备内生晶体增塑的锆基非晶复合材料[J].金属学报,2009,45(4):410-414.
    [66]LIU X J, CHEN G L, LI F, et al. Evolution of atomic ordering in metallic glasses[J]. Intermetallics,2010,18(12):2333-2337.
    [67]PENG H L, LI M Z, WANG W H, et al. Effect of local structures and atomic packing on glass forming ability in cuxzr100-x metallic glasses[J]. Applied Physics Letters, 2010,96(0219012):1901.
    [68]ZENG Q S, DING Y, MAO W L, et al. Origin of pressure-induced polyamorphism in Ce75A125 metallic glass[J]. Physical Review Letters,2010,104(10570210).
    [69]LIU B X, LI J H, LAI W S. Interatomic potential to predict the binary metallic glass formation[J]. Journal of Materials Research,2010,25(5):976-981.
    [70]ZHANG L, CHENG Y Q, CAO A J, et al. Bulk metallic glasses with large plasticity: composition design from the structural perspective[J]. Acta Materialia, 2009,57 (4):1154-1164.
    [71]JIANG M Q, LING Z, MENG J X, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage[J]. Philosophical Magazine,2008,88(3):407-426.
    [72]WU Y A, XIAO Y H, CHEN G L, et al. Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Advanced Materials, 2010,22(25):2770.
    [73]YAO K F, ZHANG C Q. Fe-based bulk metallic glass with high plasticity[J]. Applied Physics Letters,2007,90(0619016):
    [74]WU F F, ZHANG Z F, MAO S X. Compressive properties of bulk metallic glass with small aspect ratio[J]. Journal of Materials Research,2007,22(2):501-507.
    [75]CHEN F F, ZHOU S X. Glass forming ability and magnetic property of Fe74Al4Sn20 (PSiB)(20) amorphous alloy[J]. Journal of Iron and Steel Research International, 2004,11(5):41-43.
    [76]FU Y, SHEN B L, KIMURA H, et al. Enhanced glass-forming ability of FeCoBSiNb bulk glassy alloys prepared using commercial raw materials through the optimization of Nb content[J]. Journal of Applied Physics,2010,107(09A3159).
    [77]HUANG J C, CHU J P, JANG J. Recent progress in metallic glasses in taiwan[J]. Intermetallics,2009,17(12):973-987.
    [78]TORRENS-SERRA J, BRUNA P, RODRIGUEZ-VIEJO J, et al. Study of crystallization process of Fe65Nb10B25 and Fe70Nb10B20 glassy metals[J]. Reviews On Advanced Materials Science, 2008,18(5):464-468.
    [79]HAGIWARA M, INOUE A, MASUMOTO T. Mechanical-properties of Fe-Si-B amorphous wires produced by in-rotating-water spinning method[J]. Metallurgical Transactions A, 1982,13(3):373-382.
    [80]LIEBERMANN H H, GRAHAM C D. Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions[J]. IEEE Transactions On Magnetics, 1976,12(6):921-923.
    [81]WIESNER H, SCHNEIDE. J. Magnetic-properties of amorphous Fe-P alloys containing Ga, Ge, and as[J]. Physica Status Solidi A-Applied Research,1974,26(1):71-75.
    [82]RUDKOWSKI P, RUDKOWSKA G, STROMOLSEN J 0. The fabrication of fine metallic fibers by continuous melt-extraction and their magnetic and mechanical-properties [J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,1991,133:158-161.
    [83]LU Z P, GOH T T, LI Y, et al. Glass formation in La-based La-Al-Ni-Cu-(Co) alloys by bridgman solidification and their glass forming ability[J]. Acta Materialia, 1999,47(7):2215-2224.
    [84]LI Y, NG S C, LU Z P, et al. Easy glass formation in La55Ni20Al25 by bridgman solidification[J]. Materials Letters,1998,34(3-6):318-321.
    [85]LI Y, LIU H Y, DAVIES H A, et al. Easy glass-formation in Mg64Ni21Nd15 by bridgman solidification[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,1994,179:628-631.
    [86]YOKOYAMA Y, INOUE A. Solidification condition of bulk glassy Zr60Al10Ni10Cu15Pd5 alloy by unidirectional arc melting[J]. Materials Transactions JIM,1995,36(11):1398-1402.
    [87]INOUE A, YOKOYAMA Y, SHINOHARA Y, et al. Preparation of bulky Zr-based amorphous-alloys by a zone-melting method[J]. Materials Transactions JIM,1994,35(12):923-926.
    [88]ZHANG Y, XU W, TAN H, et al. Microstructure control and ductility improvement of La-Al-(Cu, Ni) composites by bridgman solidification[J]. Acta Materialia, 2005,53 (9):2607-2616.
    [89]ZHANG T, INOUE A. A new method for producing amorphous alloy wires[J]. Materials Transactions JIM,2000,41(11):1463-1466.
    [90]ISHIHARA S, SOEJIMA H, KOMABA S, et al. Production of glassy coil springs by warm coiling of Zr-based glassy alloy wires[J]. Materials Transactions,2004,45(8):2788-2790.
    [91]NAGASE T, UMAKOSHI Y. Formation of dual-layer melt-spun ribbon through liquid phase separation[J]. Intermetallics,2010,18(11):2136-2144.
    [92]KUNDIG A A, OHNUMA M, PING D H, et al. In situ formed two-phase metallic glass with surface fractal microstructure[J]. Acta Materialia,2004,52(8):2441-2448.
    [93]寇生中,高忙忙,赵吉鹏,等.定向凝固法制备非晶基自生复合材料初步研究[J].铸造,2008,57(6):557-560.
    [94]QIAO J W, ZHANG J T, JIANG F, et al. Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2010,527 (29-30):7752-7756.
    [95]CHENG J L, CHEN G, GAO P, et al. The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by bridgman solidification[J]. Intermetallics, 2010,18(1):115-118.
    [96]LEE J G, LEE H, OH Y S, et al. Continuous fabrication of bulk amorphous alloy sheets by twin-roll strip casting[J]. Intermetallics,2006,14(8-9Sp. Iss. SI):987-993.
    [97]LEE J G, LEE D G, LEE S, et al. Effects of crystalline particles on mechanical properties of strip-cast Zr-base bulk amorphous alloy[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2005, 390(1-2):427-436.
    [98]LEE J G, PARK S S, LEE S B, et al. Sheet fabrication of bulk amorphous alloys by twin-roll strip casting[J]. Scripta Materialia,2005,53(6):693-697.
    [99]LEE J G, LEE D G, LEE S, et al. In-situ microfracture observation of strip-cast Zr-Ti-Cu-Ni-Be bulk metallic glass alloys [J]. Metallurgical and Materials Transactions A,2004,35A (12):3753-3761.
    [100]LEE J G, PARK S S, LEE D, et al. Mechanical property and fracture behavior of strip cast Zr-base bmg alloy containing crystalline phase[J]. Intermetallicsbulk Metallic Glasses Iii,2004,12(10-11):1125-1131.
    [101]LEE J G, PARK S S, PARK Y S, et al. Formation of crystalline phase in strip cast Zr-Ti-Cu-Ni-Be bulk amorphous alloy[J]. Metastable, Mechanically Alloyed and Nanocrystalline Materials,2003,15:43-48.
    [102]LEE K A, KIM Y C, KIM J H, et al. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2007,449:181-184.
    [103]URATA A, NISHIYAMA N, AMIYA K, et al. Continuous casting of thick Fe-base glassy plates by twin-roller melt-spinning[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2007,449:269-272.
    [104]NAGASE T, KINOSHITA K, UMAKOSHI Y. Preparation of Zr-based metallic glass wires for biomaterials by are-melting type melt-extraction method [J]. Materials Transactions, 2008,49 (6):1385-1394.
    [105]NAGASE T, KINOSHITA K, NAKANO T, et al. Fabrication of Ti-Zr binary metallic wire by arc-melt-type melt-extraction method[J]. Materials Transactions,2009, 50(4):872-878.
    [106]NAGASE T, UEDA M, UMAKOSHI Y. Preparation of Ni-Nb-based metallic glass wires by arc-melt-type melt-extraction method[J]. Journal of Alloys and Compounds, 2009,485 (1-2):304-312.
    [107]NAGASE T, UMAKOSHI Y. Formation of melt-extracted wire of Fe-Cu-Si-B alloy with core-wire/surface-cover-layer structure by arc-melt-type melt-extraction method[J]. Journal of Alloys and Compounds,2010,495(1):L1-L4.
    [108]简讯.电磁振动连续铸造金属玻璃[J].金属功能材料,2007,14(2):31.
    [109]TAMURA T, AMIYA K, RACHMAT R S, et al. Electromagnetic vibration process for producing bulk metallic glasses[J]. Nature Materials,2005,4(4):289-292.
    [110]ZHUANG Y X, YI S S, WANG W H. Electric-field-enhanced crystallization of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Materials Transactions, 2001,42(4):583-586.
    [111]KORVANEK I, MARCIN J, TURCANOVA J, et al. Improvement of soft magnetic properties in Fe38Co 38Mo8B15Cu amorphous and nanocrystalline alloys by heat treatment in external magnetic field[C]//Journal of Alloys and Compounds,2010, Langford Lane, Kidlington, Oxford,0X5 1GB, United Kingdom.
    [112]ZHANG T, ZHANG X G, WU N N, et al. Effect of high magnetic field on the crystallization of melt-spun Fe-Pt-B amorphous alloy [J]. International Journal of Modern Physics B, 2009,23(6-7):1276-1281.
    [113]Zhou Ying Chun, Chao Yue Sheng. Study on phase transformation kinetic mechanism of nanocrystallization of Fe-based amorphous alloy treated by low frequency pulse magnetic field[J]. Gongneng Cailiao/Journal of Functional Materials,2009, 40(2):216-218.
    [114]YU Y, LIU B, QI M. Crystallization behavior of Fe78Si13B9 metallic glass under high magnetic field[J]. Journal of University of Science and Technology Beijing, 2008,15(5):600-604.
    [115]FUJII H, YARDLEY V A, MATSUZAKI T, et al. Nanocrystallization of Fe73.5Si13.5B 9Nb3Cu, soft-magnetic alloy from amorphous precursor in a magnetic field[J]. Journal of Materials Science,2008,43(11):3837-3847.
    [116]ZHANG Y H, CHAO Y S. Treatment of low-frequency pulsating magnetic field on amorphous alloy Fe78Si9B13[J]. Materials Science and Engineering A,2007,460:251-254.
    [117]KIM C K. Microstructural evolution of amorphous cobalt-rich magnetic alloys during magnetic field annealing[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,1996,38(1-2):194-201.
    [118]Effect of pulsed magnetic field treatment on the magnetic properties for nanocomposite Nd2Fe14B-Fe alloys[J].
    [119]ZHUANG Y X, CHEN J, LIU W J, et al. Effect of high magnetic field on crystallization of Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass[J]. Journal of Alloys and Compounds, 2010,504:S256-S259.
    [120]OGURA A, TARUMI R, SHIMOJO M, et al. Control of nanocrystalline orientation using the application of a stress field in an amorphous alloy[J]. Applied Physics Letters, 2001,79 (7):1042.
    [121]HENITS P, RVSZ, VARGA L K, et al. The evolution of the microstructure in amorphous Al85Ce8Ni5Co2 alloy during heat treatment and severe plastic deformation:a comparative study[J]. Intermetallics, In Press, Corrected Proof.
    [122]CARTER J, FU E G, MARTIN M, et al. Ion irradiation induced nanocrystal formation in amorphous Zr55Cu30Al10Ni5 alloy [J]. Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions with Materials and Atoms,2009,267(17):2827-2831.
    [123]ZHANG S Y, XU H, TAN X H, et al. Effect of pulsed magnetic field treatment on the magnetic properties for nanocomposite Nd2Fe14B/alpha-Fe alloys[J]. Journal of Alloys and Compounds,2008,459(1-2):41-44.
    [124]WANG X D, QI M, YI S H. Crystallization behavior of bulk amorphous alloy Zr62Al8Ni13Cu17 under high magnetic field[J]. Scripta Materialia,2004,51 (11):1047-1050.
    [125]WANG D, LI Y, SUN B B, et al. Bulk metallic glass formation in the binary Cu-Zr system [J]. Applied Physics Letters,2004,84(20):4029.
    [126]INOUE A, ZHANG W. Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods[J]. Materials Transactions,2004,45(2):584-587.
    [127]YAO K F, CHEN N. Pd-Si binary bulk metallic glass [J]. Science In China Series G-Physics Mechanics & Astronomy,2008,51(4):414-420.
    [128]XIA L, LI W H, FANG S S, et al. Binary Ni-Nb bulk metallic glasses [J]. Journal of Applied Physics,2006,99(0261032):
    [129]XU D H, LOHWONGWATANA B, DUAN G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34,36 38.2,40 at.%) and mechanical properties of bulk Cu64Zr36 glass [J]. Acta Materialia,2004,52(9):2621-2624.
    [130]ZHANG Q S, ZHANG W, INOUE A. Unusual glass-forming ability of new Zr-Cu-based bulk glassy alloys containing an immiscible element pair[J]. Materials Transactions, 2008,49(11):2743-2746.
    [131]WANG Y X, YANG H, LIM G, et al. Glass formation enhanced by oxygen in binary Zr-Cu system[J]. Scripta Materialia,2010,62(9):682-685.
    [132]LI H X, GAO J E, JIAO Z B, et al. Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass[J]. Applied Physics Letters, 2009,95(16190516).
    [133]张敬,贺林,孙军.电弧炉坩埚浇铸法制备锆基块体非晶[J].稀有金属材料与工程,2006(6):998-1001.
    [134]HE Y, SHEN T D, SCHWARZ R B. Bulk amorphous metallic alloys:synthesis by fluxing techniques and properties[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,1998,29(7):1795-1804.
    [135]BITOHT, MAKINO A, INOUE A, et al. Large bulk soft magnetic [(Fe0.5Co0.5) (o.75)B0.20Si0.05](96)Nb4 glassy alloy prepared by B2O3 flux melting and water quenching[J]. Applied Physics Letters,2006,88(18251018).
    [136]INOUE A, NISHIYAMA N, KIMURA H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter[J]. Materials Transactions JIM, 1997,38(2):179-183.
    [137]HIRATA A, GUAN P, FUJITA T, et al. Direct observation of local atomic order in a metallic glass[J]. Nature Materials,2010, advance online publication.
    [138]BUSCH R, SCHROERS J, WANG W H. Thermodynamics and kinetics of bulk metallic glass [J]. MRS Bulletin,2007,32(8):620-623.
    [139]INOUE A, TAKEUCHI A. Recent progress in bulk glassy alloys[J]. Materials Transactions, 2002,43(8):1892-1906.
    [140]SCHROERS J, NGUYEN T,O'KEEFFE S, et al. Thermoplastic forming of bulk metallic glass applications for mems and microstructure fabrication[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2007,449:898-902.
    [141]TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005,46(12):2817-2829.
    [142]SCHROERS J. The superplastic forming of bulk metallic glasses[J]. JOM, 2005,57(5):35-39.
    [143]MUKHERJEE S, SCHROERS J, ZHOU Z, et al. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability[J]. Acta Materialia,2004,52(12):3689-3695.
    [144]LOUZGUINE-LUZGIN D V, SAITO T, SAIDA J, et al. Thermal conductivity of metallic glassy alloys and its relationship to the glass forming ability and the observed cooling rates [J]. Journal of Materials Research,2008,23(8):2283-2287.
    [145]LOUZGUINE-LUZGIN D V, SETYAWAN A D, KATO H, et al. Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability[J]. Philosophical Magazine,2007,87 (12):1845-1854.
    [146]HARMS U, SHEN T D, SCHWARZ R B. Thermal conductivity of Pd40Ni40-xCuxP20 metallic glasses[J]. Scripta Materialia,2002,47(6):411-414.
    [147]SENGUPTA J, THOMAS B G, WELLS M A. The use of water cooling during the continuous casting of steel and aluminum alloys[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2005,36A(1):187-204.
    [148]HAO H, MAIJER D M, WELLS M A, et al. Development and validation of a thermal model of the direct chill casting of AZ31 magnesium billets[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2004,35A(12):3843-3854.
    [149]SENGUPTA J, COCKCROFT S L, MAIJER D M, et al. On the development of a three-dimensional transient thermal model to predict ingot cooling behavior during the start-up phase of the direct chill-casting process for an aa5182 aluminum alloy ingot[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2004,35(3):523-540.
    [150]GALLINO I, SCHROERS J, BUSCH R. Kinetic and thermodynamic studies of the fragility of bulk metallic glass forming liquids[J]. Journal of Applied Physics, 2010,108(0635016).
    [151]GLADE S C, BUSCH R, LEE D S, et al. Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys[J]. Journal of Applied Physics,2000,87 (10):7242-7248.
    [152]MUKHERJEE S, ZHOU Z, SCHROERS J, et al. Overheating threshold and its effect on time-temperature-transformation diagrams of zirconium based bulk metallic glasses[J]. Applied Physics Letters,2004,84(24):5010-5012.
    [153]ZHAO Y, KOU S, SUO H, et al. Overheating effects on thermal stability and mechanical properties of Cu36Zr48Ag8Al8 bulk metallic glass[J]. Materials & Design, 2010,31(2):1029-1032.
    [154]MEN H, KIM D H. Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glass-forming ability under air atmosphere[J]. Journal of Materials Research, 2003,18(7):1502-1504.
    [155]LIU C T, CHISHOLM M F, MILLER M K. Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy[J]. Intermetallics,2002,10(11-12):1105-1112.
    [156]梁金余,余柏健.高真空多层绝热低温液体运输半挂车的开发研制[J].深冷技术,2004(2):16-20.
    [157]SAIDA J, SETYAWAN A, KATO H, et al. Cooling process and cast structure of Zr-Al-Ni-Cu-based bulk metallic glasses produced in various atmospheres [J]. Metallurgical and Materials Transactions A,2010:1.
    [158]李建超,王宝峰,曹建刚,等.方圆坯连铸结晶器锥度的测量及分析[J].重型机械,2010(5):25-28.
    [159]王祝堂.话说高纯铝(二)[J].金属世界,2004(4):36-37.
    [160]Leonhard, Ronald, Kapellner Werner,等.高纯铝生产过程的氢含量控制[J]. 铝加 工,2006 (3):11-14.
    [161]范新会,王鑫,严文,等.单晶连铸铝线材的静拉伸性能及其变形特性[J].西安工业学院学报,1997(3).
    [162]ZHANG Q S, ZHANG W, INOUE A. Preparation of Cu36Zn48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting[J]. Materials Transactions, 2007,48(3):629-631.
    [163]KNELLER E F, HAWIG R. The exchange-spring magnet-a new material principle for permanent-magnets[J]. IEEE Transactions On Magnetics,1991,27(4):3588-3600.
    [164]IMAFUKU M, YAOITA K, SATO S, et al. Local atomic structure of Fe-Co-ln-B (In=Sm, Tb or Dy) amorphous alloys with supercooled liquid region [J]. Materials Science and Engineering A,2001,304(Sp. Iss. SI):660-664.
    [165]ZHANG W, MATSUSHITA M, INOUE A. Hard magnetic properties of Fe-Co-Nd-Dy-B nanocrystalline alloys containing residual amorphous phase[J]. Journal of Applied Physics,2001,89(1):492-495.
    [166]ZHANG W, INOUE A. Bulk nanocomposite permanent magnets produced by crystallization of (Fe, Co)-(Nd, Dy)-B bulk glassy alloy[J]. Applied Physics Letters, 2002,80(9):1610-1612.
    [167]KAWAMURA Y, SHIBATA T, INOUE A, et al. Superplastic deformation of Zr65Al10Ni10Cu15 metallic glass[J]. Scripta Materialia,1997,37(4):431-436.
    [168]KAWAMURA Y, NAKAMURA T, INOUE A, et al. High-strain-rate superplasticity due to newtonian viscous flow in La55Al25Ni20 metallic glass [J]. Materials Transactions JIM, 1999,40(8):794-803.
    [169]KAWAMURA Y, INOUE A, MASUMOTO T. Mechanical-properties of amorphous alloy compacts prepared by a closed processing system[J]. Scripta Metallurgica Et Materialia, 1993,29(1):25-30.
    [170]KAWAMURA Y, TAKAGI M, AKAI M, et al. A newly developed warm extrusion technique for compacting amorphous alloy powders[J]. Materials Science and Engineering, 1988,98:449-452.
    [171]ISHIHARA S, ZHANG W, INOUE A. Hot pressing of Fe-Co-Nd-Dy-B glassy powders in supercooled liquid state and hard magnetic properties of the consolidated alloys [J]. Scripta Materialia,2002,47(4):231-235.
    [172]KAWAMURA Y, TAKAGI M, SENOO M, et al. Preparation of bulk amorphous-alloys by high-temperature sintering under a high-pressure[J]. Materials Science and Engineering,1988,98:415-418.
    [173]TAKAGI M, KAWAMURA Y, IMURA T, et al. Structures and mechanical-properties of amorphous alloy compacts prepared in an inert atmosphere[J]. Journal of Materials Science, 1992,27(4):956-962.
    [174]TAKAGI M, KAWAMURA Y, ARAKI M, et al. Preparation of bulk amorphous-alloys by explosive consolidation and properties of the prepared bulk[J]. Materials Science and Engineering,1988,98:457-460.
    [175]KASIRAJ P, KOSTKA D, VREELAND T, et al. Shock-wave consolidation of an amorphous alloy[J]. Journal of Non-Crystalline Solids,1984,61-2(JAN):967-972.
    [176]ISHIHARA S, ZHANG W, KIMURA H, et al. Consolidation of Fe-Co-Nd-Dy-B glassy powders by spark-plasma sintering and magnetic properties of the consolidated alloys[J]. Materials Transactions,2003,44(1):138-143.
    [177]SHEN B L, KIMURA H, INOUE A, et al. Preparation of Fe65Co10Ga5P12C4B4 bulk glassy alloy with good soft magnetic properties by spark-plasma sintering of glassy powder[J]. Materials Transactions,2002,43(8):1961-1965.
    [178]LI Q, WANG G, SONG X, et al. Ti50Cu23Ni20Sn7 bulk metallic glasses prepared by mechanical alloying and spark-plasma sintering[J]. Journal of Materials Processing Technology, 2009,209(7):3285-3288.
    [179]马垚,周张健,姚伟志,等.放电等离子烧结(sps)制备金属材料研究进展[J].材料导报,2008(7):60-64.
    [180]范亮,刘丹敏,张久兴.放电等离子烧结制各铁基大块非晶材料[J].粉末冶金技术,2009(3):193-196.
    [181]张久兴,岳明,宋晓艳,等.放电等离子烧结制备功能材料的最新进展[C]//赵光明.第七届中国功能材料及其应用学术会议,2010-10-17,湖南长沙:西南师范大学电子音像出版社,第七届中国功能材料及其应用学术会议论文集第一卷.
    [182]黄永杰.非晶态磁性物理与材料[M].成都:电子科技大学出版社,1991.
    [183]SHIMA T, TAKANASHI K, TAKAHASHI Y K, et al. Coercivity exceeding 100 koe in epitaxially grown fept sputtered films[J]. Applied Physics Letters,2004,85(13):2571-2573.
    [184]'WANG H Y, MA X K, HE Y J, et al. Enhancement in ordering of fept films by magnetic 'field anneal ing[J]. Applied Physics Letters,2004,85(12):2304.
    [185]WANG H Y, MAO W H, SUN W B, et al. High coercivity and small grains of fept films annealed in high magnetic fields[J]. Journal of Physics D-Applied Physics, 2006,39(9):1749-1753.
    [186]ZHANG W, SHARMA P, SHIN K, et al. New type of gamma 1-fept/Fe2B exchange-coupled spring magnet obtained from Fe56.25Pt18.75B25 amorphous alloy [J]. Scripta Materialia, 2006,54(3):431-435.
    [187]CHANG W C, CHIOU D Y, WU S H, et al. High performance alpha-Fe/Nd2Fe,4B-type nanocomposites[J]. Applied Physics Letters,1998,72(1):121-123.
    [188]BLAZQUEZ J S, CONDE C F, CONDE A. Thermomagnetic detection of recrystallization in feconbbcu nanocrystalline alloys[J]. Applied Physics Letters, 2001,79(18):2898-2900.
    [189]LOUZGUINE D V, INOUE A. Devitrification of Ni-based glassy alloys containing noble metals in relation with the supercooled liquid region [J]. Journal of Non-Crystalline Solids,2004,337(2):161-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700