用户名: 密码: 验证码:
纳米级双金属体系对水中氯苯和多氯联苯的催化还原脱氯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用纳米级零价铁(nZVI)或双金属体系对氯代脂肪烃、氯酚、PCBs和含氯杀虫剂等含氯有机污染物进行还原脱氯,使含氯有机物转化为低氯或无氯有机物,以达到低毒、可生物降解的目的,为含氯有机污染物的处理提供了一种全新的降解途径。然而该技术在实际应用中,却存在催化剂表面易钝化、纳米催化剂易团聚等诸多制约因素。为了较为系统的考察纳米级双金属体系对含氯有机污染物的催化还原脱氯降解效果,本文重点研究了纳米级Ni/Fe和Pd/Fe对水中氯苯和PCBs等含氯有机物的催化还原脱氯效果,考察了温度、pH、催化剂用量、初始浓度等因素对纳米级双金属去除水中氯苯和PCBs的影响,初步探讨了纳米级双金属体系去除水中氯苯和PCBs等含氯有机物的机理。结果表明:
     无论是1,3-二氯苯,还是1,2,4-三氯苯,均能在5h左右被纳米级Pd/Fe有效还原脱氯。纳米级Pd/Fe在5h内对1,3-二氯苯和1,2,4-三氯苯的去除效率分别为96.2%和86.7%,之所以1,2,4-三氯苯的去除效率比1,3-二氯苯的低,这一方面是因为相同结构时,苯环上的氯原子个数越多越难发生催化还原脱氯反应;另一方面,主要是因为1,2,4-三氯苯在邻位上存在氯原子,而邻位上的氯原子则比间位上的氯原子更难脱氯。也就是说,在含氯有机污染物的脱氯过程中,氯原子个数较多的含氯有机物比相同结构氯原子个数较少的含氯有机物难进行催化还原脱氯反应。腐植酸(HA)和S042-对纳米级Pd/Fe催化还原1,3-二氯苯和1,2,4-三氯苯脱氯均具有抑制作用,但其作用机理各不相同。尽管HA中的活性基团会促进纳米级Pd/Fe对有机氯污染物的还原脱氯,但是HA在纳米级Pd/Fe表面易被吸附,催还还原受到抑制,而且这种作用占了绝对的主导作用,从而导致HA的存在会抑制纳米级Pd/Fe催化还原脱氯反应的进行。而S042-一方面会攻击零价铁的表面,在Fe的表面形成一层钝化膜,减小Fe的腐蚀速度,进而在一定程度上抑制反应的进行;另一方面S042-中的S会引起双金属催化剂中毒,从而降低其反应性。Cl-、Cu2+以及Ni2+对纳米级Pd/Fe催化还原1,3-二氯苯和1,2,4-三氯苯脱氯均具有促进作用,但其作用机理也有所不同。Cl-主要是进入到铁表面的氧化钝化层中,并分散氧化层增加其渗透性;同时,金属离子水解使Cl-生成HC1,HCI又阻止Fe表面氧化物和氢氧化物钝化层的形成,在一定程度上保持了纳米级Pd/Fe较高的反应性,从而在一定程度上促进纳米级Pd/Fe催化还原1,3-二氯苯和1,2,4-三氯苯脱氯反应的进行。而Cu2+和Ni2+则是与Fe反应,生成良好的加氢催化剂Cu和Ni,促进纳米级Pd/Fe催化还原1,3-二氯苯和1,2,4-三氯苯脱氯反应的进行。此外,较高的纳米级Pd/Fe投加量和较高的钯化率均有利于纳米级Pd/Fe催化还原1,3---氯苯和1,2,4-三氯苯脱氯反应的进行。
     对纳米级Pd/Fe去除水中PCB14的研究同样发现,HA会占据纳米级Pd/Fe表面的活性反应位,从而对纳米级Pd/Fe催化还原脱氯产生抑制作用。随着HA浓度由0,25增加到50mg/L,反应24h纳米级Pd/Fe对PCB14的去除效率分由99.3%,98.8%下降到98.3%。此外,Cl-、HCO3-、CH3COO"的存在对纳米级Pd/Fe对PCB14催化还原脱氯具有一定的促进作用,其作用机理主要是缓解了催化剂表面氢氧化物钝化层的形成,加速了铁的腐蚀,从而促进了脱氯反应的进行。
     纳米级Ni/Fe和纳米级Pd/Fe均能使Aroclor1242在较短的时间内脱氯,反应5h时纳米级Ni/Fe对Aroclor1242的去除效率就达到近80%,之后在10h和24h分别达到95.6%和95.8%。高氯代PCBs同系物逐步脱氯为低氯代PCBs同系物,最后脱氯成为联苯,反应过程中并没有发现C-C化学键的断裂。PCBs的脱氯产物为低氯代PCBs同系物和联苯。此外,研究还发现,高氯代PCBs同系物较低氯代PCBs同系物更难脱氯。高的镍化率和纳米级Ni/Fe投加量均有利于催化还原脱氯反应的进行。Ni/Mg和Mg粉的脱氯性能明显优于纳米级Ni/Fe和纳米级Fe,主要是因为Mg的还原性明显优于Fe。在自然环境中,不同地方PCBs污染的同系物种类以及污染浓度不尽相同,而大多数的研究只关注于某一种特定PCBs同系物的治理,而自然环境中不同PCBs污染往往同时存在,因此研究纳米级Ni/Fe和纳米级Pd/Fe催化还原Aroclor1242具有很好的应用前景。
     含氯有机物在纳米级双金属作用下脱氯过程大致可以分为三个阶段:(1)吸附作用,水中Fe的腐蚀以及H的产生;(2)第2种金属(以Pd为例)表面氢的分离,形成金属氢化物或者可供含氯有机污染物脱氯反应的氢;(3)含氯有机污染物吸附在纳米级Pd/Fe表面形成Pd-RCln,然后一个C-Cl键断裂,C1原子被金属氰化物或者高活性氢取代,形成RHCln-1。此外,含氯有机物在双金属作用下的脱氯是逐步完成的,即含氯有机物苯环上的氯原子被氢逐步代替,最终氯苯脱氯成为苯,而PCBs则脱氯成为低氯代的PCBs同系物及联苯。
     无论是纳米级Ni/Fe还是纳米级Pd/Fe,其催化还原2,4-DCP脱氯均是先将DCP转化为CP,然后进一步脱氯产生P,P和Cl-则是2,4-DCP脱氯的终产物。HA会吸附在纳米级Ni/Fe和Pd/Fe表面,占据其表面的活性反应位,抑制纳米级Ni/Fe以及纳米级Pd/Fe催化还原2,4-DCP脱氯反应的进行。在纳米级Ni/Fe催化还原2,4-DCP脱氯时,20mg/L HA的存在,会使反应2h时2,4-DCP的去除率由不加HA时的99.7%降低到84.1%,P的产率也相应的由85.7%降低62.7%,反应过程中o-CP的最高浓度分别由10min时的0.025mM变为30min时的0.039mM。此外,NO3-对纳米级Pd/Fe催化还原2,4-DCP以及CP脱氯具有明显的抑制作用。随着NO3-的初始浓度由0,10,30增大到50mg/L,反应60min时2,4-DCP的去除率相应由42.9,40.7,38.6降低到37.5%;与此同时,P的产率也由16.5,15.2,14.3降低到13.5%。此外,较高的镍化率(钯化率)、较高的纳米级Ni/Fe (Pd/Fe)投加量均有利于纳米级Ni/Fe(Pd/Fe)双金属颗粒催化还原2,4-DCP脱氯反应的进行。
Zero valent iron and its compounds have been used widely in the remediation of chlorinated organics compounds (COCs), such as chlorinated aliphatic hydrocarbons, chlorophenol, organochlorine pesticides, polychlorinated biphenyls (PCBs), and so on. The reasons were that on the one hand they had low cost and were easy to obtain, and on the other hand, they could convert COCs to lower chlorinated, biodegradable, lower toxicity or non-toxicity organics compounds. This gave a new approach in the remediation of COCs. But their real engineering application has been severely circumscribed since their still existed some indeterminate factors. The catalytic dechlorination of2,4-dichlorophenol, PCBs, chlorobenzenes by Ni/Fe and Pd/Fe bimetallic nanoparticles were investigated in order to understand their applicability for in-situ remediation of groundwater. Moreover, the mechanism and the factors, such as temperature, pH, Ni/Fe dosage and initial concentration, which influenced the catalytic dechlorination reactions were all investigated. The experimental results indicated:
     No matter1,3-dichlorobenene, or1,2,4-trichlorobenzene could be effectively removed by Pd/Fe nanoparticles in water. The removal efficiencies of1,3-dichlorobenene and1,2,4-trichlorobenzene by Pd/Fe nanoparticles were sepatately96.2%and86.7%in5h.1,3-dichlorobenene had higher removal efficiencies than that of1,2,4-trichlorobenzene in the same time at the same experimental conditions, on the one hand for chlorine atoms of1,3-dichlorobenene on benzene ring is smaller, less chlorine atoms on benzene ring are dechlorinated faster than more chlorine atoms on the benzene ring, and the more chlorine atoms on the benzene ring have, the difficult to dechlorinated for the COCs is.On the other hand, Chlorine atoms on para-or meta-positions are dechlorinated faster than those on the ortho-position. The ortho-position Chlorine atoms on1,2,4-trichlorobenzene made it difficulty to dechlorinate than1,3-dichlorobenene.
     Humic Acid (HA) and SO42-all had inhibition role on the dechlorination of1,3-dichlorobenene and1,2,4-trichlorobenzene, but their mechanism is difference. HA on the one hand adsorbed on the surface of Pd/Fe nanoparticles, and competed for reaction sites with COCs, the accumulation of adsorbed HA on Pd/Fe nanoparticles surface would reduce the dechlorination reaciton rate, but on the other hand, the function in HA may act as electron shuttle promoting electron transfer, this would has positive effective enhancing the dechlorination reaciton rate by Pd/Fe nanoparticles, but HA's inhibition role was the dominant role as a whole, leading HA had inhibition role on the dechlorination reaction. On one hand, sulfate could attack Fe surface although it is amild corrosion stimulator which corrodes Fe vigorously, this may be attributed to the thick film formed in presence of sulfates which reduce the corrosion rate, further decreasing the dechlorination reaction rate. On the other hand, sulfate could made the bimetallic catalyst poisoning, which also could decrease the dechlorination reaction rate.
     The dechlorination rate of1,3-dichlorobenene and1,2,4-trichlorobenzene underwent significant enhancement in the presence Cl", Cu2+and Ni2+. Chloride is known to attack the protective Fe(OH)2film locally, causing pitting corrosion. Even small amounts of Cl" are known to break down the film, the corrosion rate increasing rapidly with Cl-concentration. The high solubility of FeCl2further destabilizes the film of insoluble Fe(OH)2allowing Fe to corrode and enter into solution as the chloride, and making the surface active and causing further dissolution of Fe. The consequence was the PCB dechlorination rate increased significantly compared to the control. Ni and Cu are well-known excellent catalysts for the hydrogenolysis. Co-existence of Ni(Cu) and Fe in the particles has been proved to be very effective to accelerate the dechlorination. When Cu2+and Ni2+existed in the aqueous, Cu2+and Ni2+could react with zero valent iron and forming Ni and Cu, enhancing the dechlorination reaction. Besides, high Ni(Cu) content and Ni/Fe(Pd/Fe) nanoparticles dosage favored the catalytic dechlorination of1,3-dichlorobenene and1,2,4-trichlorobenzene.
     HA adsorbed on the surface of Pd/Fe nanoparticles, and competed for reaction sites with PCB14, the accumulation of adsorbed HA on Pd/Fe nanoparticles surface would reduce the dechlorination reaciton rate of PCB14. With HA concentration increasing from0,25to50mg/L, the removal percentages of PCB14by Pd/Fe nanoparticles decreased from99.3%,98.8%to98.3%in24h, respectively. Besides, Cl-、HCO3-、CH3COO-all enhanced the dechlorination rate of PCB14by Pd/Fe nanoparticles. This may be attributed to the extremely high solubility of (CH3COO)2Fe, FeCl2, Fe(HCO3)2, as compared to Fe(OH)2, leading to rapid dissolution of Fe. Further, they also increased conductivity of the solution which meant enhancing Fe corrosion rates at the Pd/Fe galvanic cells.
     Pd/Fe and Ni/Fe nanoparticles could effectively remove Aroclor1242in water. Approximately80.0%Aroclor1242underwent dechlorination within5h by Ni/Fe nanoparticles, then it arrived at95.6%in10h and95.8%in24h, accordingly. The higher chlorinated congeners were gradually dechlorinated to the lower chlorinated congeners. And during the reduction of PCBs, C-C bond cleavage reaction did not appear, the proposed dechlorination products with Ni/Fe nanoparticles here was the low chlorinated PCBs and biphenyl. High Ni/Fe nanoparticle dosage and high Ni content in Ni/Fe nanoparticles favored the catalytic dechlorination reaction. Moreover, a comparison of different types of catalysts on the dechlorination of Aroclor1242indicated that Ni/Mg and Mg powders showed a greater reactivity than Ni/Fe and Fe nanoparticles, respectively.
     The dechlorination mechanism of COCs by Ni/Fe and Pd/Fe nanoparticles is proposed as described as follows:
     (1) Adsorption, hydrogen produced and the corrosion of iron in aqueous.
     (2) The dissociation of H2on the Pd, leading to the formation of metal hydride or hydrogen radicals for the dechlorination.
     (3) The COCs adsorbed on the Pd surface and formation of the complex Pd-CIR, then breaking down of C-Cl, and the production of hydrogen by the active metal hydride or replacement of the chlorine atoms to form phenol by hydrogen radicals.
     No matter Ni/Fe, nor Pd/Fe bimetallic nanoparticles, could effectively remove2,4-DCP in water. And2,4-DCP was first adsorbed by the nanoparticles, then reduced to o-CP and p-CP, and later converted to phenol, phenol was the sole final organic product. No other chlorinated intermediates or final organic products were detected. HA adsorbed on the surface of nanoscale Ni/Fe and Pd/Fe particles, and competed for reaction sites with COCs, the accumulation of adsorbed HA on the nanoscale Ni/Fe and Pd/Fe particles surface would reduce the dechlorination reaciton rate. The concentration of2,4-DCP decreased rapidly and the removal percentage of2,4-DCP and the production rates of P reached99.7%and85.7in120min for Ni/Fe nanoparticles in the absence of HA. In contrast, they reached only about84.1%and62.7%in the presence of20mg/L HA during the same reaction periods, respectively. At the same time, the maximum concentration of o-CP changed from0.025mM in10min in the absence of HA to0.039mM in30min in the presence of20mg/L HA during the reaction periods. Moreover, the existence of NO3-also had a significant inhibition effect on dechlorination efficiency. With initial NO3-concentration increased from0,10,30to50mg/L, the removal percentage of2,4-DCP reached42.9,40.7,38.6and37.5%in60min. Meanwhile, the production rates of P increased from42.9,40.7,38.6to37.5%, respectively. Besides, high Ni(Pd) content and high Ni/Fe(Pd/Fe) nanoparticles dosage favored the catalytic dechlorination of2,4-DCP.
引文
[1]毕新慧,徐晓白.多氯联苯的环境行为[J].化学进展,2000,2:004.
    [2]刘雯.红枫湖水体中持久性有机污染物—多氯联苯含量测定及源解析[D]:贵州师范大学,2009.
    [3]韩刚,王静.多氯联苯在多介质环境中的污染状况[J].能源环境保护,2005,19(3):9-12.
    [4]胡本涛,马丽,刘蕊,等.环境中多氯联苯来源,结构关系与处理方法[J].化学与粘合,2009,(4):44-46.
    [5]施玮,余刚,黄俊.多氯联苯(PCBs)清单调查的国际经验与借鉴[J].环境保护,2005,6:018.
    [6]江艳,金玲仁.国内外多氯联苯处理技术综述[J].中国环境管理干部学院学报,2004,14(4):57-58.
    [7]曹先仲,陈花果,申松梅,等.多氯联苯的性质及其对环境的危害[J].环境科学与工程,2011,2(12):33-37.
    [8]Manirakiza P, Covaci A, Nizigiymana L, et al. Persistent chlorinated pesticides and polychlorinated biphenyls in selected fish species from Lake Tanganyika, Burundi, Africa[J]. Environmental Pollution,2002,117(3):447-455.
    [9]Kidd K, Hesslein R, Ross B, et al. Bioaccumulation of organochlorines through a remote freshwater food web in the Canadian Arctic[J]. Environmental Pollution, 1998,102(1):91-103.
    [10]卢冰,陈荣华,王自磐,等.北极海洋沉积物中持久性有机污染物分布特征及分子地层学记录的研究[J].海洋学报,2005,27(4):167-173.
    [11]刘芡.食品中多氯联苯的污染及其控制[J].职业与健康,2007,23(13):1145-1148.
    [12]屈伟月.广东省特殊人群血液和母乳中多溴联苯醚,有机氯农药和多氯联苯的初步研究[D]:中国科学院研究生院(广州地球化学研究所),2007.
    [13]Cummins JE. Extinction:the p. c. b. threat to marine mammals[J]. Ecologist, 1988,18:193-195.
    [14]马中元,沈丕扬,李玉民.水质污染与人体健康[J].中国给水排水,1992,8(1):55-57.
    [15]张祖麟,周俊良,九龙江口水体中多氯联苯的研究[J].云南环境科学,2000,19(A08):124-126.
    [16]周春宏,柏仇勇,胡冠九,等.江苏省典型饮用水源地多氯联苯污染特性调查[J].化工时刊,2005,19(3):22-25.
    [17]耿存聂丽曼.青岛地区土壤中OCPs和PCBs污染现状研究[J].青岛大学学报:工程技术版,2006,21(2):42-48.
    [18]郭婷,方辉,叶群峰,等.我国水环境中有机氯化物污染状况的调查[J].农业技术与装备,2010,(008):22-24.
    [19]耿存珍,李明伦,杨永亮,等.青岛地区土壤中OCPs和PCBs污染现状研究[J].青岛大学学报:工程技术版,2006,21(2):42-48.
    [20]朱文转,李传红,谭镇,等.惠州市农业土壤中有机氯农药的残留[J].环境化学,2007,26(3):407-408.
    [21]孙怡,徐田芹,邵昌美.临沂市食品中有机磷和有机氯农药残留量分析[J].中国预防医学杂志,2006,7(6):520-522.
    [22]蒋长征,张立军,戎江瑞,等.宁波市鲜活水产品有机氯农药残留现状及对策分析[J].中国预防医学杂志,2008,9(3):215-216.
    [23]孙芳,黄云,刘志刚,等.鄱阳湖康山和湖口水域鱼,贝类体内有机氯农药残留现状[J].环境科学研究,2010,(4):467-472.
    [24]Knerr S, Schrenk D. Carcinogenicity of "non-dioxinlike" polychlorinated biphenyls[J]. CRC Critical Reviews in Toxicology,2006,36(9):663-694.
    [25]徐金敬.Enterobacter sp. LY402对PCBs的选择性降解及联苯双加氧酶基因的克隆与表达[D]:大连理工大学,2009.
    [26]杜欣莉.多氯联苯对生态环境的破坏[J].节能与环保,2003,(6):39-41.
    [27]王贤.环境介质中多氯联苯的检测及光致降解理论研究[D]:山东建筑大学,2011.
    [28]谢武明,胡勇有,刘焕彬,等.持久性有机污染物(POPs)的环境问题与研究进展[J].中国环境监测,2004,20(2):58-61.
    [29]Li Y, Cai D, Singh A. Technical hexachlorocyclohexane use trends in China and their impact on the environment[J]. Archives of Environmental Contamination and Toxicology,1998,35(4):688-697.
    [30]陈经涛,田安祥,李克斌,等.我国含氯农药污染现状研究进展[J].延安大学学报(自然科学版),2007,26(3).
    [31]龚香宜,祁士华,吕春玲,等.洪湖表层沉积物中有机氯农药的含量及组成[J].中国环境科学,2009,29(3):269-273.
    [32]胡雄星,夏德祥,韩中豪,等.苏州河水及沉积物中有机氯农药的分布与归宿[J].中国环境科学,2005,25(1):124-128.
    [33]刘兴健,葛晨东,崔雁玲,等.连云港潮滩表层沉积物中有机氯农药残留特征与风险评估[J].环境化学,2012,31(007):966-972.
    [34]马梅.官厅水库和永定河沉积物中多氯联苯和有机氯农药的污染[J].环境化学,2001,20(3):238-243.
    [35]丘耀文,周俊良.大亚湾海域多氯联苯及有机氯农药研究[J].海洋环境科学,2002,21(1):49-51.
    [36]史双听,周丽,邵丁丁,等.长江下游表层沉积物中有机氯农药的残留状况及风险评价[J].环境科学研究,2010,(001):7-13.
    [37]万译文,康天放.官厅水库沉积物表层中的有机氯农药分布特征及风险评价[J].环境监测管理与技术,2012,24(3):35-40.
    [38]袁旭音,王禹,陈骏,等.太湖沉积物中有机氯农药的残留特征及风险评估[J].环境科学,2003,24(1):121-125.
    [39]赵龙,侯红,郭平毅,等.海河干流及河口地区土壤中有机氯农药的分布特征[J].环境科学,2009,30(2):543-550.
    [40]齐维晓,刘会娟,曲久辉,等.天津主要纳污及入海河流中有机氯农药的污染现状及特征[J].环境科学学报,2010,30(8):1543-1550.
    [41]王志峰,王建春,程凤莲,等.北部湾潮间带沉积物中重金属和多氯联苯的分布特征及生态风险评价[J].环境化学,2012,31(9):1293-1302.
    [42]张泉,楚蕾,曹军.天津郊区土壤与作物中有机氯农药残留现状与来源初析[J].农业环境科学学报,2010,29(012):2346-2350.
    [43]李森,陈家军,孟占利.多氯联苯处理处置方法国内外研究进展[J].中国环保产业,2004,2:23-26.
    [44]阙明学,温青,刘广民,等.多氯联苯在自然水体中的分布现状与处理工艺[J].中国给水排水,2007,22(24):10-14.
    [45]Abramovitch RA, Bangzhou H, Davis M, et al. Decomposition of PCB's and other polychlorinated aromatics in soil using microwave energy[J]. Chemosphere, 1998,37(8):1427-1436.
    [46]章波,肖瑜,张敏,等.多氯联苯污染物的处理技术新进展[J].广西轻工业,2009,25(012):98-99.
    [47]于恩平.用超临界流体萃取方法处理多氯联苯污染物[J].北京化工学院学报,1994,21(4):11-19.
    [48]胡劲召,陈少瑾,吴双桃,等.多氯联苯污染及其处理方法研究进展[J].江西化工,2004,(004):1-5.
    [49]陈宜菲,陈少瑾.光催化氧化法降解含氯有机物的研究进展[J].河北化工,2008,31(1):25-25.
    [50]Arnold WA, Winget P, Cramer CJ. Reductive Dechlorination of 1,1,2, 2-Tetrachloroethane[J]. Environmental Science & Technology,2002,36(16): 3536-3541.
    [51]Hwa K, Wenclawiak BW, Cheng IF, et al. Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water[J]. Environmental Science & Technology,1999,33(8):1307-1310.
    [52]Sayles GD, You G, Wang M, et al. DDT, DDD, and DDE dechlorination by zero-valent iron[J]. Environmental Science & Technology,1997,31(12): 3448-3454.
    [53]Xu J, Lv XS, Li JD, et al. Simultaneous adsorption and dechlorination of 2, 4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotubes support[J]. Journal of Hazardous Materials,2012,225-226:36-45.
    [54]Amir A, Lee W. Enhanced reductive dechlorination of tetrachloroethene by nano-sized zero valent iron with vitamin B12[J]. Chemical Engineering Journal, 2011,170(2):492-497.
    [55]Wu YJ, Zhang JH, Tong YF, et al. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles[J]. Journal of Hazardous Materials, 2009,172(2):1640-1645.
    [56]Sakulchaicharoen N, O'Carroll DM, Herrera JE. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles [J]. Journal of contaminant hydrology,2010,118(3):117-127.
    [57]Geng B, Jin Z, Li T, et al. Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water[J]. Science of the Total Environment, 2009,407(18):4994-5000.
    [58]Lin YH, Tseng HH, Wey MY, et al. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media[J]. Science of the Total Environment,2010,408(10):2260-2267.
    [59]Lin YH, Tseng HH, Wey MY, et al. Characteristics, morphology, and stabilization mechanism of PAA250K-stabilized bimetal nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,349(1):137-144.
    [60]张火云,孙启玲.微生物降解环境中含氯有机化合物的研究进展[J].四川环境,2003,,22(1):23-25.
    [61]吴德光,王铮,王红武,等.含氯有机物非生物降解方法的最新研究进展[J].环境科学与管理,2006,30(6):52-55.
    [62]Boronina TN, Lagadic I, Sergeev GB, et al. Activated and nonactivated forms of zinc powder:Reactivity toward chlorocarbons in water and AFM studies of surface morphologies[J]. Environmental Science & Technology,1998,32(17):2614-2622.
    [63]Chen JL, Al-Abed SR, Ryan JA, et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials, 2001,83(3):243-254.
    [64]张万辉,吕文英,刘国光,等.零价铁降解有机氯化物的研究进展[J].环境与健康杂志,2008,25(9):842-845.
    [65]Song H, Carraway ER. Reduction of chlorinated ethanes by nanosized zero-valent iron:kinetics, pathways, and effects of reaction conditions[J]. Environmental Science & Technology,2005,39(16):6237-6245.
    [66]Doong RA, Wu SC. Reductive dechlorination of chlorinated hydrocarbons in aqueous solutions containing ferrous and sulfide ions[J]. Chemosphere,1992,24(8): 1063-1075.
    [67]Feng J, Lim TT. Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe:Analysis of linear free energy relationship[J]. Chemosphere,2007,66(9):1765-1774.
    [68]Roberts AL, Totten LA, Arnold WA, et al. Reductive elimination of chlorinated ethylenes by zero-valent metals[J]. Environmental Science and Technology, 1996,30(8):2654-2659.
    [69]Pospisil L, Trskova R, Fuoco R, et al. Electrochemistry of s-triazine herbicides: Reduction of atrazine and terbutylazine in aqueous solutions [J]. Journal of Electroanalytical Chemistry,1995,395(1):189-193.
    [70]Dombek T, Dolan E, Schultz J, et al. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions[J]. Environmental Pollution, 2001,111(1):21-27.
    [71]杨凤林,全燮.水中氯代有机化合物处理方法及研究进展[J].环境科学进展,1996,4(006):36-44.
    [72]Muftikian R, Fernando Q, Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J]. Water Research, 1995,29(10):2434-2439.
    [73]全燮,刘会娟,杨凤林,等.二元金属体系对水中多氯有机物的催化还原脱氯特性[J].中国环境科学,1998,18(4):333-336.
    [74]罗斯,王晓栋,高树梅,等.纳米双金属体系催化降解有机氯化物研究进展[J].环境科学与技术,2009,32(2):72-75.
    [75]Cheng IF, Fernando Q, Korte N. Electrochemical dechlorination of 4-chlorophenol to phenol[J]. Environmental Science & Technology,1997,31(4): 1074-1078.
    [76]Chuang FW, Larson RA, Wessman MS. Zero-valent iron-promoted dechlorination of polychlorinated biphenyls[J]. Environmental Science & Technology,1995,29(9):2460-2463.
    [77]Wang CB, Zhang WX. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology,1997,31(7):2154-2156.
    [78]Arbon RE, Mincher BJ, Knighton WB. G-Ray Destruction of Individual PCB Congeners in Neutral 2-propanol[J]. Environmental Science & Technology, 1994,28(12):2191-2196.
    [79]Lowry GV, Johnson KM. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution[J]. Environmental Science & Technology,2004,38(19):5208-5216.
    [80]Varanasi P, Fullana A, Sidhu S. Remediation of PCB contaminated soils using iron nano-particles[J]. Chemosphere,2007,66(6):1031-1038.
    [81]Aristov N, Habekost A. Heterogeneous dehalogenation of PCBs with iron/toluene or iron/quicklime[J]. Chemosphere,2010,80(2):113-115.
    [82]Grittini C, Malcomson M, Fernando Q, et al. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system[J]. Environmental Science & Technology,1995,29(11):2898-2900.
    [83]Korte N, West O, Liang L, et al. The effect of solvent concentration on the use of palladized-iron for the step-wise dechlorination of polychlorinated biphenyls in soil extracts[J]. Waste Management,2002,22(3):343-349.
    [84]He F, Zhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology,2005,39(9):3314-3320.
    [85]He F, Zhao D, Paul C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones[J]. Water Research,2010,44(7):2360-2370.
    [86]Venkatachalam K, Arzuaga X, Chopra N, et al. Reductive dechlorination of 3,3 ,4,4'-tetrachlorobiphenyl (PCB77) using palladium or palladium/iron nanoparticles and assessment of the reduction in toxic potency in vascular endothelial cells[J]. Journal of Hazardous Materials,2008,159(2):483-491.
    [87]Smuleac V, Bachas L, Bhattacharyya D. Aqueous-phase synthesis of PAA in PVDF membrane pores for nanoparticle synthesis and dichlorobiphenyl degradation [J]. Journal of Membrane Science,2010,346(2):310-317.
    [88]Xu J, Bhattacharyya D. Membrane-based bimetallic nanoparticles for environmental remediation:Synthesis and reactive properties[J]. Environmental Progress,2005,24(4):358-366.
    [89]Xu J, Bhattacharyya D. Fe/Pd nanoparticle immobilization in micro filtration membrane pores:Synthesis, characterization, and application in the dechlorination of polychlorinated biphenyls[J]. Industrial & Engineering Chemistry Research, 2007,46(8):2348-2359.
    [90]Xu J, Bhattacharyya D. Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature[J]. The Journal of Physical Chemistry C,2008,112(25):9133-9144.
    [91]He N, Li P, Zhou Y, et al. Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1)[J]. Chemosphere, 2009,76(11):1491-1497.
    [92]He N, Li P, Zhou Y, et al. Catalytic dechlorination of polychlorinated biphenyls in soil by palladium-iron bimetallic catalyst[J]. Journal of Hazardous Materials, 2009,164(1):126-132.
    [93]Fang Y, Al-Abed SR. Correlation of 2-chlorobiphenyl dechlorination by Fe/Pd with iron corrosion at different pH[J]. Environmental Science & Technology, 2008,42(18):6942-6948.
    [94]Fang Y, Al-Abed SR. Dechlorination kinetics of monochlorobiphenyls by Fe/Pd: Effects of solvent, temperature, and PCB concentration[J]. Applied Catalysis B: Environmental,2008,78(3):371-380.
    [95]Zhu N, Zhang FS. Catalytic dechlorination of polychlorinated biphenyls in subcritical water by Ni/Fe nanoparticles[J]. Chemical Engineering Journal, 2011,171(3):919-925.
    [96]Choi H, Agarwal S, Al-Abed SR. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd:mechanistic aspects and reactive capping barrier concept[J]. Environmental Science & Technology,2008,43(2):488-493.
    [97]Choi H, Al-Abed SR. Effect of reaction environments on the reactivity of PCB (2-chlorobiphenyl) over activated carbon impregnated with palladized iron[J]. Journal of Hazardous Materials,2010,179(1):869-874.
    [98]Choi H, Al-Abed SR, Agarwal S. Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl[J]. Environmental Science & Technology,2009,43(11):4137-4142.
    [99]Choi H, Al-Abed SR, Agarwal S. Catalytic role of palladium and relative reactivity of substituted chlorines during adsorption and treatment of PCBs on reactive activated carbon[J]. Environmental Science & Technology,2009,43(19): 7510-7515.
    [100]Choi H, Al-Abed SR, Agarwal S, et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs[J]. Chemistry of Materials,2008,20(11):3649-3655.
    [101]Zhuang Y, Ahn S, Seyfferth AL, et al. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron[J]. Environmental Science & Technology,2011,45(11): 4896-4903.
    [102]Wu BZ, Chen HY, Wang SJ, et al. Reductive dechlorination for remediation of polychlorinated biphenyls[J]. Chemosphere,2012,88(7):757-768.
    [103]Agarwal S, Al-Abed SR, Dionysiou DD. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs[J]. Environmental Science & Technology,2007,41(10):3722-3727.
    [104]DeVor R, Carvalho-Knighton K, Aitken B, et al. Dechlorination comparison of mono-substituted PCBs with Mg/Pd in different solvent systems[J]. Chemosphere,2008,73(6):896-900.
    [105]Agarwal S, Al-Abed SR, Dionysiou DD. Impact of organic solvents and common anions on 2-chlorobiphenyl dechlorination kinetics with Pd/Mg[J]. Applied Catalysis B:Environmental,2009,92(1):17-22.
    [106]Agarwal S, Al-Abed SR, Dionysiou DD. A feasibility study on Pd/Mg application in historically contaminated sediments and PCB spiked substrates[J]. Journal of Hazardous Materials,2009,172(2):1156-1162.
    [107]Agarwal S, Al-Abed SR, Dionysiou DD, et al. Reactivity of substituted chlorines and ensuing dechlorination pathways of select PCB congeners with Pd/Mg bimetallics[J]. Environmental Science & Technology,2008,43(3):915-921.
    [108]Courts JL, Devor RW, Aitken B, et al. The use of mechanical alloying for the preparation of palladized magnesium bimetallic particles for the remediation of PCBs[J]. Journal of Hazardous Materials,2011,192(3):1380-1387.
    [109]Yang B, Deng S, Yu G, et al. Bimetallic Pd/Al particles for highly efficient hydrodechlorination of 2-chlorobiphenyl in acidic aqueous solution[J]. Journal of Hazardous Materials,2011,189(1):76-83.
    [110]Barreto-Rodrigues M, Silva FT, Paiva TCB. Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater[J]. Journal of Hazardous Materials,2009,165(1):1224-1228.
    [111]付丰连.零价铁处理污水的最新研究进展[J].工业水处理,2010,30(6):1-4.
    [112]汤心虎,黄丽莎,莫测辉,等.超声波协同零价铁降解活性艳红X-3B[J].环境科学,2006,27(6):1123-1126.
    [113]Zhang H, Duan L, Zhang Y, et al. The use of ultrasound to enhance the decolorization of the CI Acid Orange 7 by zero-valent iron[J]. Dyes and Pigments, 2005,65(1):39-43.
    [114]程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展[J].化学进展,2006,18(1):93-99.
    [115]Zhang X, Lin Y, Chen Z.2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2009,165(1):923-927.
    [116]Huang Q, Shi X, Pinto RA, et al. Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications[J]. Environmental Science & Technology,2008,42(23):8884-8889.
    [117]张珍.腐殖酸对纳米级双金属去除水中2,4-DCP的影响[D]:杭州:浙江大学,2008:45-68.
    [118]吴德礼,马鲁铭.氯代烷烃在Fe/Cu二相金属体系中的催化还原脱氯研究[J][J].净水技术,2004,23(3):14-17.
    [119]张达政,陈鸿汉,李海明,等.浅层地下水卤代烃污染初步研究[J].中国地质,2002,29(3):326-329.
    [120]徐莉,骆永明,滕应,等.长江三角洲地区土壤环境质量与修复研究--Ⅳ.废旧电子产品拆解场地周边农田土壤酸化和重金属污染特征[J].土壤学报,2009,(005):833-839.
    [121]Gao J, Luo Y, Li Q, et al. Distribution patterns of polychlorinated biphenyls in soils collected from Zhejiang province, east China[J]. Environmental Geochemistry and Health,2006,28(1):79-87.
    [122]储少岗,刘晓星.典型污染地区底泥和土壤中残留多氯联苯(PCBs)的情况调查[J].中国环境科学,1995,15(3):199-203.
    [123]Gillham RW, O'Hannesin SF. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Water,1994,32(6):958-967.
    [124]李静.Ni/Fe及纳米Ni/Fe对多氯联苯的催化脱氯[D]:华北电力大学(河北),2008:37-49.
    [125]Wo J, Zhang Z, Xu X. Dechlorination mechanism of 2,4-dichlorophenol by Ni/Fe nanoparticles in the presence of humic acid[J]. Journal of Zhejiang University-Science A,2009,10(1):121-126.
    [126]Zhang Z, Cissoko N, Wo J, et al. Factors influencing the dechlorination of 2, 4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid[J]. Journal of Hazardous Materials,2009,165(1):78-86.
    [127]赵德明,李敏,徐新华.高分散型纳米级Pd/Fe对4-氯苯酚的还原脱氯研究[J].化工学报,2013,64(3):1091-1098.
    [128]卫建军.纳米级Pd/Fe双金属对水中氯酚的催化脱氯研究[D]:杭州:浙江大学,2004:47-55.
    [129]Doong RA, Lai YJ. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid[J]. Water Research,2005,39(11):2309-2318.
    [130]戴晓莹,陈贻球,刘林斌,等.粉末活性炭去除水中1,4一二氯苯和1,2,4一三氯苯应急处理方法的研究[J].城镇供水,2011,(5):36-39.
    [131]李凡修,梅平,李方敏,等.高级氧化技术在氯苯类废水处理中的应用研究进展[J].长江大学学报:农学卷,2008,5(001):79-84.
    [132]Baril G, Pebere N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions[J]. Corrosion Science,2001,43(3):471-484.
    [133]Kim JS, Shea PJ, Yang JE, et al. Halide salts accelerate degradation of high explosives by zerovalent iron[J]. Environmental Pollution,2007,147(3):634-641.
    [134]张雪莲,骆永明,滕应,等.长江三角洲某电子垃圾拆解区土壤中多氯联苯的残留特征[J].土壤,2009,41(4):588-593.
    [135]徐莉,骆永明,滕应,等.长江三角洲地区土壤环境质量与修复研究——V.废旧电子产品拆解场周边农田土壤含氯有机污染物残留特征[J].土壤学报,2009,(006):1013-1018.
    [136]Cwiertny DM, Stephen J, Livi KJT, et al. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction[J]. Environmental Science & Technology,2006,40(21):6837-6843.
    [137]贾汉忠,宋存义,李晖.纳米零价铁处理地下水污染技术研究进展[J].化工进展,2009,28(011):2028-2034.
    [138]Liu Y, Schwartz J, Cavallaro CL. Catalytic dechlorination of polychlorinated biphenyls[J]. Environmental Science & Technology,1995,29(3):836-840.
    [139]Zhang W, Quan X, Zhang Z. Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles[J]. Journal of Environmental Sciences,2007,19(3):362-366.
    [140]Liu Y, Yang F, Yue PL, et al. Catalytic dechlorination of chlorophenols in water by palladium/iron [J]. Water Research,2001,35(8):1887-1890.
    [141]Noubactep C. A critical review on the process of contaminant removal in FeO-H20 systems[J]. Environmental Technology,2008,29(8):909-920.
    [142]Xie L, Shang C. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron[J]. Environmental Science & Technology, 2005,39(4):1092-1100.
    [143]王尚琛.钯铁双金属还原脱氯反应活性的改进研究[D]:浙江工业大学,2010:15-24.
    [144]Ahn S, Oh J, Sohn K. Mechanistic aspects of nitrate reduction by Fe (0) in water[J]. Journal-Korean Chemical Society,2001,45(4):395-398.
    [145]Cheng IF, Muftikian R, Fernando Q, et al. Reduction of nitrate to ammonia by zero-valent iron[J]. Chemosphere,1997,35(11):2689-2695.
    [146]Ginner JL, Alvarez PJJ, Smith SL, et al. Nitrate and Nitrite Reduction by FeO: Influence of Mass Transport, Temperature, and Denitrifying Microbes[J]. Environmental Engineering Science,2004,21(2):219-229.
    [147]Hu HY, Goto N, Fujie K. Effect of pH on the reduction of nitrite in water by metallic iron[J]. Water Research,2001,35(11):2789-2793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700