用户名: 密码: 验证码:
新型高分散纳米铜基催化剂的制备及其催化1,4-环己烷二甲酸二甲酯加氢反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,4-环己烷二甲醇(CHDM)是工业上重要的聚酯生产原料,以其生产的聚酯纤维具有更高的热稳定性、光透过率和机械强度。因此,CHDM代替乙二醇(EG)成为生产高端聚酯纤维的主力将是大势所趋。到目前为止,仅有1,4-环己烷二甲酸二甲酯(DMCD)加氢制备CHDM的路线实现了工业化,但是该工艺采用亚铬酸铜作为催化剂会来带严重的铬污染。因此,开发新一代用于DMCD加氢的高性能无铬催化剂是CHDM产业发展的重要挑战。铜基催化剂以其较高的催化活性和选择性被广泛应用于各种有机反应中,并且与贵金属相比具有价格低廉的先天优势,仍然是新型DMCD加氢催化剂开发的不二之选。以传统的沉淀沉积、湿式浸渍等方法制备的铜基催化剂,存在铜粒子分散不均或者负载量有限等缺点,很难得到具有高性能的铜基催化剂。此外铜基催化剂在反应过程中会因铜原子的迁移而逐渐长大,导致催化剂逐渐失活。
     本论文通过在铜基催化剂中添加具有不同性质的高性能助剂与通过形成层状前驱体的方法分别制备出了高分散的铜基催化剂,并在DMCD加氢制备CHDM的反应得到了很好的催化性能。同时通过对催化剂的系统表征揭示了催化剂的结构性质与催化性能的关系。
     (一)采用成核晶化隔离法制备出具有不同ZrO_2含量的Cu/ZnO/ZrO_2催化剂,并用于催化DMCD加氢制备CHDM的反应中。通过表征和催化评价发现锆的加入对催化剂的结构和催化性能具有显著的影响。在所合成的催化剂中ZrO_2含量为35%的催化剂表现出了优秀的催化性能,其CHDM的产率达到96.8%。这可以归结为适量的ZrO_2的加入可以使铜基催化剂的分散度显著提高,进而形成了大量的Cu~0和Cu~+催化活性中心。
     (二)通过Cu~-Zn-Al水滑石单源前驱体经过焙烧和还原制备出高分散的铜基催化剂,并用于催化DMCD加氢制备CHDM的反应中。采用XRD、TG-MS、TPR、SEM、TEM、XPS和XAES等方法对催化剂前驱体及催化剂进行了系统的表征。由表征结果发现层状前驱体经过不同焙烧温度处理后所得催化剂的组成,结构和性质具有非常大的变化。从DMCD加氢评价结果发现,层状前驱体在600oC下焙烧所得催化剂表现出了最优秀的催化性能,其CHDM的收率达到了95.6%,不仅高于其它温度焙烧所得的催化剂,还高于经典的铜铬催化剂。这是因为该催化剂具有最高的铜分散度,最大的铜表面积,最发达的孔结构和适合的表面化学性质促进了酯基的反应的进行,并提出了Cu~0与Cu~+在DMCD加氢反应中的作用机理。
     (三)通过Cu~-Mg-Al水滑石单源前驱体经过焙烧和还原制备出具有Lewis碱增强的高分散铜基催化剂,并用于催化DMCD加氢制备CHDM的反应中。通过XRD、TPR、SEM、TEM和CO~(2-)TPD等方法对催化剂前驱体及催化剂进行表征发现镁的加入对催化剂的结构、铜的分散性和表面碱性都有非常显著的影响。从催化结果上发现Cu:Mg:Al为6:6:6的样品其CHDM的产率高达99.8%,并在200小时内不失活。该结果超越了所有经过报道的催化剂的性能。这是因为在镁的加入后不仅提高了催化剂的分散性还增加了催化剂的碱性。在铜表面积相近的条件下具有更高碱性的催化剂将表现出更优秀的催化性能。此外,结合XAES和in situ FT-IR的表征结果提出了DMCD在Cu~0与Lewis碱两种活性位上的协同加氢机理。
1,4-cyclohexane dimethanol (CHDM), which is one of the mostimportant chemical intermediates, has been preferred over ethylene glycol as astepping stone in the production of polyester fibers having excellent thermalresistance, transparency, and physical strength. To date, on an industrial scale,the only reported feasible route to CHDM is the catalytic hydrogenation ofdimethyl1,4-cyclohexane dicarboxylate (DMCD) by using Cr2O3promotedcopper-based heterogeneous catalysts. The toxicity of such type ofCr-containing catalysts, however, can cause a severe environmental pollution,and thus limits their practical applications, in addition to the high yield ofdesired product. Therefore, it has always been a challenge or a hot issue todevelop Cr-free catalysts with high activity and selectivity in thehydrogenation of DMCD. In addition, the Cu-based catalysts have been ofgreat interest due to their good activities and selectivities in a wide range ofreactions of various organic compounds. The most widely used preparation techniques for supported Cu~-based catalysts are deposition-precipitation andincipient wetness impregnation, which easily lead to the formation of copperparticles with large diameters and low metal loading amounts. In additional,the copper particle is easily sintered to large copper size during long termreaction, which inevitably leads to deactivation of copper-based catalyst.
     Therefore, different promoters and layered double hydroxides precursorare used to obtain highly dispersed copper-based catalyst, which exhibitexcellent performance in the catalytic hydrogenation of DMCD. Through aseries characterization, the relationship between the structure and catalyticperformance has been disclosed.
     (1) The gas-phase hydrogenation of DMCD to CHDM was conducted onwell-dispersed supported Cu/ZnO/ZrO_2catalysts. The results indicated that thestructure and catalytic performance of resulting copper-based catalysts wereprofoundly affected by the addition of zirconium. Moreover, theas-synthesized catalyst with35.0wt.%ZrO_2component was found to exhibitsuperior catalytic performance with a high CHDM yield of96.8%to othercatalysts, which should be mainly attributed to the significant dispersion effectof ZrO_2on the copper-containing species resulting in the higher metalliccopper surface area as well as the larger number of Cu~+species.
     (2) Copper-based catalysts for gas-phase hydrogenation of DMCD toCHDM were prepared from a single-source Cu-Zn-Al layered doublehydroxide (LDH) precursor. The materials were characterized by powder X-ray diffraction (XRD), thermogravimetry analysis coupled with massspectrometry (TG-MS), temperature programmed reduction (TPR), scanningelectron microscopy (SEM), transmission electron microscopy (TEM), andX-ray photoelectron spectroscopy (XPS). The results revealed that thecomposition, texture, and structure of copper-based catalysts weresignificantly affected by the calcination temperature for LDH precursor.Moreover, the as-synthesized catalyst calcined at600°C was found to exhibitsuperior catalytic hydrogenation performance with the high CHDM yield of95.6%to the catalysts calcined at other temperatures and the traditional one,which should be attributed to the presence of the highly-dispersed activemetallic copper species, as well as reasonable surface chemical state overmetal oxide-based matrix thus facilitating the activation of ester groups ofreactants.
     (3) Lewis base promoted copper-based catalysts for gas-phasehydrogenation of DMCD to CHDM were prepared from Cu-Mg-Al layereddouble hydroxide (LDH) precursor with different Cu/Mg ratios. The materialswere characterized by XRD, TPR, SEM, TEM and CO~(2-)TPD. The resultsrevealed that the structure, dispersion and surface base property ofcopper-based catalysts were significantly affected by the addition ofmagnesium. Moreover, the as-synthesized catalyst with Cu~:Mg:Al=6:6:6achieved a lasting100%conversion with99.8%selectivity up to200hours.The unprecedented catalytic performance is ascribed to the synergistic effect between surface active Cu~0sites and Lewis base sites.
引文
[1]吕绍洁,邱发礼,赵明英.乙炔加氢制乙烯高选择性催化剂的研究[J].天然气化工,1996,21:31–34
    [2] Abelló S, Verboekend D, Bridier B, Pérez-Ramírez J. Activated takovite catalysts forpartial hydrogenation of ethyne, propyne, and propadiene[J]. J. Catal.,2008,259:85–95
    [3] García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbonmonoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium[J]. J.Catal.,2010,273:92–102
    [4]刘仲毅,孙海杰,王栋斌,郭伟,周小莉,刘寿长,李中军.纳米ZrO2作分散剂的Ru-Zn催化剂上苯选择加氢制环己烯[J].催化学报,2010,31:150–152
    [5] Zaera F, Somorjai GA. Hydrogenation of ethylene over platinum (111) single-crystalsurfaces[J]. J. Am. Chem. Soc.,1984,106:2288–2293
    [6] Beebe TP, Yates JT. An in situ infrared spectroscopic investigation of the role ofethylidyne in the ethylene hydrogenation reaction on palladium/alumina[J]. J Am ChemSoc,1986,108:663–671
    [7]袁鹏,刘仲毅,张万庆,孙海杰,刘寿长.温和条件下Cu-Zn/Al2O3催化剂上酯加氢制醇[J].催化学报,2010,31:769–775
    [8] Cairns GR, Cross RJ, Stirling D. Hydrogenation of Cinnamaldehyde Using CatalystsPrepared from Supported Palladium Phosphine Complexes[J]. J. Catal.,1997,166:89–97
    [9] Coq B, Tichit D, Ribet S. Co/Ni/Mg/Al layered double hydroxides as precursors ofcatalysts for the hydrogenation of nitriles: hydrogenation of acetonitrile[J]. J. Catal.,2000,189:117–128
    [10] Rode CV, Arai M, Shirai M, Nishiyama Y. Gas-phase hydrogenation of nitriles by nickelon various supports[J]. Appl. Catal. A,1997,148:405–413
    [11] Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ. Low-pressure hydrogenolysis ofglycerol to propylene glycol[J]. Appl. Catal. A,2005,281:225–231
    [12] Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C. Glycerolhydrogenolysis on heterogeneous catalysts[J]. Green Chem.,2004,6:359–361
    [13]靳广洲,朱建华,樊秀菊,孙桂大,高俊斌.镍助剂对碳化钼催化剂的二苯并噻吩加氢脱硫性能的影响[J].催化学报,2006,27:899–903
    [14] Pecoraro TA, Chianelli RR. Hydrodesulfurization catalysis by transition metal sulfides[J].J. Catal.,1981,67:430–445
    [15]宋华,于洪坤,武显春,郭云涛. TiO2-Al2O3载体的制备及Ni2P/TiO2-Al2O3催化剂上的同时加氢脱硫和加氢脱氮反应[J].催化学报,2010,31:447–453
    [16] Ranhotra GS, Bell AT, Reimer JA. Catalysis over molybdenum carbides and nitrides: II.Studies of CO hydrogenation and C2H6hydrogenolysis[J]. J. Catal.,1987,108:40–49
    [17]林莉,张玉川.1,4-环己烷二甲醇[J].精细与专用化学品,1999,12:17–18
    [18]石勇,季丛立,赵国勇.1,4-环己烷二甲醇的展望[J].精细化工原料及中间体,2008,5:8–9
    [19]李琰,张茵,李慧文.1,4-环己烷二甲醇专利生产技术进展[J].石化技术与应用,2003,21:51–54
    [20] Richard TS. Development of amorphous copolyesters based on1,4-cyclohexanedimethanol[J]. J. Polym. Sci. part A,2004,42:5847–5852
    [21]魏文德.有机化工原料大全[M].北京:化学工业出版社,1999年
    [22] Dupaix RB, Boyce MC. Finite strain behavior of poly (ethylene terephthalate)(PET) andpoly (ethylene terephthalate)-glycol (PETG)[J]. Polymer,2005,46:4827–4838
    [23] Kibler C, Bell A, Smith JG, Tenn K. Linear polyesters and polyester-amides from1,4-cyclohexanedimethanol[P]. US patent, US2901466.1959
    [24] Applenton. Process[P]. US patent, US5414159.1995
    [25]陈颖,邹妍,马城华,丁强,孙秀艳.聚对苯二甲酸乙二醇-1,4-环己烷二甲醇酯的合成研究[J].石化技术与应用,2007,25:412–416
    [26] Schulken RM, Boy RE, Cox RH. Differential thermal analysis of linear polyesters[J]. J.Polym. Sci. part C: Polym Symp,1964,6:17–25
    [27] Ellis TS. Phase behaviour of blends of polyesters and polycarbonates[J]. Polymer,1998,39:4741–4749
    [28] Ki HC, Park OO. Synthesis, characterization and biodegradability of the biodegradablealiphatic–aromatic random copolyesters[J]. Polymer,2001,42:1849–1861
    [29] Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. High-performancenanocatalysts for single–step hydrogenations[J]. Acc. Chem. Res.,2003,36:20–30
    [30] Foobey WL, Grove P. Process for preparing dimethyl1,4-cyclohexanedicarboxylate[P].US patent, US3027398.1962
    [31] George AA, Marl, Harrell JL, Toy FR, Tenn. Plural stage hydrogenation of dialkylterephthalate using palladium and then copper chromite[P]. US patent, US3334149.1967
    [32] Wilbur AL, Marshallton. Catalytic hydrogenation of hydroaromatic carboxylic acids andtheir esters[P]. US patent, US2105664.1938
    [33] Tsuji H, Okazaki T, Azuma. Preparation of1,4-cyclohexanedimethanol[P]. JP patent, JP06228028.1994
    [34]朱志庆,吕自红,霍鑫,郭世卓.对苯二甲酸二甲酯加氢合成1,4-环己烷二甲醇[J].精细石油化工,2004,6:7–9
    [35] Louis SK, Oak P, Ill. Hydrogenation of benzene to cyclohexane[P]. US patent, US2755317.1956
    [36] Appleton P, Wood MA. Process for the production of cyclohexanedimethanol[P]. EUpatent, EP0656341B1.1998
    [37] Fuhrmann W, Bub G, Zur Hausen M. Method of producing aliphatic and cycloaliphaticdiols by catalytic hydrogenation of dicarboxylic acid esters[P]. US patent, US5030771.1991
    [38]林培滋,段大勇,丁云杰,王开林,秦日金,张立群.一种用于1,4-环己烷二甲酸二甲酯加氢生产1,4-环己烷二甲醇的催化剂及其制备方法[P].中国专利, CN1164548C.2004
    [39] Zhang F, Chen J, Chen P, Sun Z, Xu S. Pd nanoparticles supported onhydrotalcite-modified porous alumina spheres as selective hydrogenation catalyst[J].AIChE J,2012,58:1853-1861
    [40] Arakawa Chemcal industry Co Ltd. Production of1,4-cyclohexanedimethanol[P]. JPpatent, JP6228028.1993
    [41] Raja R, Khimyak T, Thomas JM, Hermans S, Johnson BFG. Single-Step, Highly Active,and Highly Selective Nanoparticle Catalysts for the Hydrogenation of Key OrganicCompounds[J]. Angew. Chem. Int. Ed.,2001,113:4774–4778
    [42] Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA. High-performancenanocatalysts for single-step hydrogenations[J]. Acc. Chem. Res.,2003,36:20–30
    [43] Hungria AB, Raja R, Adams RD, Captain B, Thomas JM, Midgley PA, Golovko V,Johnson BFG. Single-Step Conversion of Dimethyl Terephthalate intoCyclohexanedimethanol with Ru5PtSn, a Trimetallic Nanoparticle Catalyst[J]. Angew.Chem. Int. Ed.,2006,45:4782–4785
    [44]朱志庆.对苯二甲酸催化剂加氢制1,4-环己烷二甲村的专利技术[J].化工进展,2005,24:754–762
    [45] Charles ES, Bruce LG. Hydrogenation of phthalic acids to cyclohexanedicarboxylicacid[P]. US patent, US6291706B1.2001
    [46] Yoshinori H, Hiroko T, Mitsubishi gas chemical company. Method for producingcyclohexane dicarboxylic acid[P]. JP patent, JP2002193873.2002
    [47] Mitsuo K, Eizaburou U, Mitsubishi gas chemical company. Catalysts for hydrogenaiton ofcarboxylic acid[P]. US patent, US6495730B1.2002
    [48] Yoshinori H, Koetsu E, Hiroko T, Mitsubishi gas chemical company. Process for themanufacture of cycloalkyldimethanol[P]. US patent, US6294703.2001
    [49] Isotani A, Tanaka S, Nakamura H, Mitsubishi gas chemical company. Method forproducing dialcohol[P]. JP patent, JP2002053502.2002
    [50] Zhu Z, Lu Z, Li B, Guo S.Characterization of bimetallic Ru-Sn supported catalysts andhydrogenation of1,4-cyclohexanedicarboxylic acid[J]. Appl. Catal. A,2006,302:208–214
    [51] Hiroko T, Mitsubishi gas chemical company. Production of1,4-cyclohexanedimethanol[P].JP patent, JP2000007596.1998
    [52] Fischer R, Pinkos R, Wulff-D ring J. Method for producing alcohols containingcycloaliphatic groups[P]. US patent, US6284932B1.2001
    [53] Ishida T, Production of1,4-cyclohexanedimethanol[P]. JP patent, JP11335311.1998
    [54] Nagamura Y, Satoh Y, Tatsumi J, Yamamura K. Producing method of alcohols such ascyclohexanedimethanol[P]. US patent, US6600080B1.2003
    [55] Zhang J, Leitus G, Ben-David Y, Milstein D. Efficient homogeneous catalystichydrogenaton of esters to Alcohols[J]. Angew. Chem. Int. Ed.,2006,45:1113–1115
    [56] Teunissen HT, Elsevier CJ. Ruthenium catalysed hydrogenation of dimethyl oxalate toethylene glycol[J]. Chem. Common.,1997,667–668
    [57] Balaraman E, Fogler E, Milstein D. Efficient hydrogenation of biomass-derived cyclicdi-esters to1,2-diols[J]. Chem. Common.,2012,48:1111–1113
    [58] Rao R, Dandekar A, Baker RTK, Vannice MA. Properties of Copper Chromite Catalysts inHydrogenation Reactions[J]. J. Catal.,1997,171:406–419
    [59] Jenck J, Germain JE. High-pressure competitive hydrogenation of aldehydes, ketones, andolefins on copper chromite catalyst[J]. J. Catal.,1980,65:141–149
    [60] Adkins H, Connor R. The catalytic hydrogenation of organic compounds over copperchromite[J]. J. Am. Chem. Soc.,1931,53:1091–1095
    [61] Idriss H, Hindermann JP, Kieffer R, Kiennemann A. Characterization of dioxymethylenespecies over Cu-Zn catalysts[J]. J. Mol. Catal.,1987,42:205–213
    [62] Fujitani T, Nakamura J. The chemical modification seen in the Cu/ZnO methanol synthesiscatalysts[J]. Appl. Catal. A,2000,191:111–129
    [63] Wang S, Liu H. Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnOcatalysts[J]. Catal. Lett,2007,117:62–67
    [64] Slaa JC, Van Ommen JG, Ross JRH. The synthesis of higher alcohols using modifiedCu/ZnO/Al2O3catalysts[J]. Catal. Today,1992,15:129–148
    [65] Kasatkin I, Kurr P, Kniep B, Trunschke A, Schl gl R. Role of lattice strain and defects incopper particles on the activity of Cu/ZnO/Al2O3catalysts for methanol synthesis[J].Angew. Chem. Int. Ed.,2007,119:7465–7468
    [66] Behrens M, Studt F, Kasatkin I, Kühl S, H vecker M, Abild-Pedersen F, Zander S,Girgsdies F, Kurr P, Kniep B, Tovar M, Fischer RW, N rskov JK, Schl gl R. Theactive site of methanol synthesis over Cu/ZnO/Al2O3industrial catalysts[J]. Science,2012,336:893–897
    [67] Sahibzada M, Metcalfe I S, Chadwick D. Methanol synthesis from CO/CO2H2overCu/ZnO/Al2O3at differential and finite conversions[J]. J. Catal.,1998,174:111–118
    [68] Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F. Synthesis,characterization and activity pattern of Cu–ZnO/ZrO2catalysts in the hydrogenation ofcarbon dioxide to methanol[J]. J. Catal.,2007,249:185–194
    [69] Matter PH, Braden DJ, Ozkan US. Steam reforming of methanol to H2over nonreducedZr-containing CuO/ZnO catalysts[J]. J. Catal.,2004,223:340–351
    [70] Zhang R, Yin H, Zhang D, Qi L, Lu H, Shen Y, Jiang T. Gas phase hydrogenation ofmaleic anhydride to tetrahydrofuran by Cu/ZnO/TiO2catalysts in the presence ofn-butanol[J]. Chem. Eng. J.,2008,140:488–496
    [71] He Z, Lin H, He P, Yuan Y. Effect of boric oxide doping on the stability and activity of aCu-SiO2catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J].J. Catal.,2011,277:54–63
    [72] Yin A, Wen C, Guo X, Fan K, Dai WL. Influence of Ni species on the structural evolutionof Cu/SiO2catalyst for the chemoselective hydrogenation of dimethyl oxalate[J]. J. Catal.,2011,280:77–88
    [73] Zhang Y, Drake IJ, Briggs DN, Bell AT. Synthesis of dimethyl carbonate and dimethoxymethane over Cu-ZSM-5[J]. J. Catal.,2006,244:219–229
    [74] Lin J, Zhao X, Cui Y, Zhang H, Liao D. Effect of feedstock solvent on the stability ofCu/SiO2catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J].Chem. Commun.,2012,48:1177–1179
    [75] Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, Xu HL, Fan KN. Cu/SiO2catalystsprepared by the ammonia-evaporation method: Texture, structure, and catalyticperformance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J. Catal.,2008,257:172–180
    [76] Duan X, Evans DG. layered double hydroxides[M]. Springer,2006
    [77] Lei X, Zhang F, Yang L, Guo X, Tian Y, Fu S, Li F, Evans DG, and Duan X. Highlycrystalline activated layered louble hydroxides as solid acid-base catalysts[J]. AIChE J,2007,53:932-940
    [78] Liu X, Wei M, Li F, and Duan X. Intraparticle diffusion of1-phenyl-1,2-ethanediol inlayered double hydroxides[J]. AIChE J,2007,53:1592-1600
    [79] Wei M, Pu M, Guo J, Han J, Li F, He J, Evans DG, Duan Xue. Intercalation of L-dopa intolayered double hydroxides: enhancement of both chemical and Stereochemical Stabilitiesof a drug through host-guest interactions[J]. Chem. Mater.,2008,20:5169–5180
    [80] Han J, Lu J, Wei M, Wang ZL, Duan X. Heterogeneous ultrathin films fabricated byalternate assembly of exfoliated layered double hydroxides and polyanion[J]. Chem.Commun.,2008,0:5188-5190
    [81] Shi H, Yu C, He J. Constraining titanium tartrate in the interlayer space of layered doublehydroxides induces enantioselectivity[J]. J. Catal.,2010,271:79–87
    [82]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007
    [83] Khan AI, O'Hare D. Intercalation chemistry of layered double hydroxides: recentdevelopments and applications[J]. J. Mater. Chem.,2002,12:3191–3198
    [84] Choy JH, Kwak SY, Jeong YJ, Park JS. Inorganic layered double hydroxides as nonviralvectors[J]. Angew. Chem. Int. Ed.,2000,39:4041–4045
    [85] Evans DG, Duan X. Preparation of layered double hydroxides and their applications asadditives in polymers, as precursors to magnetic materials and in biology and medicine[J].Chem. Commun.,2006,0:485–496
    [86] Boclair JW, Braterman PS. Layered double hydroxide stability.1. Relative stabilities oflayered double hydroxides and their simple counterparts[J]. Chem. Mater.,1999,11:298–302
    [87] Yun SK, Pinnavaia TJ. Water content and particle texture of synthetic hydrotalcite-likelayered double hydroxides[J]. Chem. Mater.,1995,7:348–354
    [88] Braterman PS, Xu ZP, Yarberry F.“Layered Double Hydroxides”, In Handbook ofLayered Materials. Auerbach SM, Carrado KA, Dutta PK, Eds. Marcel D. New York,2004, pp373-474
    [89] Wang H, Xiang X, Li F. Facile synthesis and novel electrocatalytic performance ofnanostructured Ni-Al layered double hydroxide/carbon nanotube composites[J]. J. Mater.Chem.,2010,20:3944–3952
    [90] Challier T, Slade RCT. Nanocomposite materials: polyaniline-intercalated layered doublehydroxides[J]. J. Mater. Chem.,1994,4:367–371
    [91] Li B, He J, Evans DG, Duan X. Inorganic layered double hydroxides as a drug deliverysystem-intercalation and in vitro release of fenbufen[J]. Appl. Clay Sci.,2004,27:199–207
    [92] Del Hoyo C. Layered double hydroxides and human health: An overview[J]. Appl. ClaySci.,2007,36:103–121
    [93] Tagaya H, Sato S, Kuwahara T, Kadokawa J, Masa K, Chibaa K. Photoisomerization ofindolinespirobenzopyran in anionic clay matrices of layered double hydroxides[J]. J.Mater. Chem.,1994,4:1907–1912
    [94] Leroux F, Besse JP. Polymer interleaved layered double hydroxide: a new emerging classof nanocomposites[J]. Chem. Mater.,2001,13:3507–3515
    [95] Prinetto F, Ghiotti G, Durand R, Tichit D. Investigation of acid-base properties of catalystsobtained from layered double hydroxides[J]. J. Phys. Chem. B,2000,104:11117–11126
    [96] Lombardo GM, Pappalardo GC. Thermal effects on mixed metal (Zn/Al) layered doublehydroxides: direct modeling of the X-ray powder diffraction line shape through moleculardynamics simulations[J]. Chem. Mater.,2008,20:5585–5592
    [97] Zhao X, Zhang F, Xu S, Evans DG, Duan X. From layered double hydroxides toZnO-based mixed metal oxides by thermal decomposition: transformation mechanism andUV-blocking properties of the product[J]. Chem. Mater.,2010,22:3933–3942
    [98] Xu ZP, Zhang J, Adebajo MO, Zhang H, Zhou C. Catalytic applications of layered doublehydroxides and derivatives. Appl. Clay Sci.,2011,53:139–150
    [99] M Behrens, I Kasatkin, S Kühl, Weinberg G. Phase-pure Cu,Zn,Al hydrotalcite-likematerials as precursors for copper rich Cu/ZnO/Al2O3catalysts[J]. Chem. Mater.,2010,22:386–397
    [100] Rocha J, del Arco M, Rives V, Ulibarri M. A. Reconstruction of layered double hydroxidesfrom calcined precursors: a powder XRD and27Al MAS NMR study[J]. J. Mater. Chem.,1999,9:2499–2503
    [101] Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T. Dryreforming of methane over catalysts derived from nickel-containing Mg–Al layered doublehydroxides[J]. J. Catal.,2003,213:191–203
    [102] Zhang LH, Li F, Evans DG, Duan X. Cu-Zn-(Mn)-(Fe)-Al Layered Double Hydroxidesand Their Mixed Metal Oxides: Physicochemical and Catalytic Properties in WetHydrogen Peroxide Oxidation of Phenol[J]. Ind. Eng. Chem. Res.,2010,49:5959–5968
    [103] Wang H, Xiang X, Li F, Evans DG, Duan X. Investigation of the structure and surfacecharacteristics of Cu–Ni–M(III) mixed oxides (M=Al, Cr and In) prepared from layereddouble hydroxide precursors[J]. Appl Surface Sci,2009,255:6945–6952
    [104] Shen J Y, Guang B, Tu M, Chen Y. Preparation and characterization of Fe/MgO catalystsobtained from hydrotalcite-like compounds[J]. Catal. Today,1996,30:77–82
    [105] Fornasari G, GaZZano M, Matteuzzi D, Trifirò F, Vaccari A. Structure and reactivity ofhigh-surface-area Ni/Mg/Al mixed oxides[J]. Appl. Clay Sci.,1995,10:69–82
    [106] Oh JM, Hwang SH, Choy JH. The effect of synthetic conditions on tailoring the size ofdydrotalcite particles[J]. Solid State Ionics,2002,151:285–291
    [107] Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of layered double-hydroxidenanomaterials with a uniform crystallite size using a new method involving separatenucleation and aging steps[J]. Chem. Mater.,2002,14:4286–4291
    [108] Carlino S, Hudson M J, Husain S W, Knowles J A. The reaction of moltenphenyphosphonic acid with a layered double hydroxide and its calcined oxide[J]. SolidState Ionics,1996,84:117–129
    [109] Meyn M, Beneke K, Lagaly G. Anion-exchange reactions of layered double hydroxides[J].Inorg. Chem.,1990,29:5201–5207
    [110]王佳.层状前驱体制备高分散负载型纳米镍基催化剂及其性能的研究[D].北京:北京化工大学,2012
    [111] Olafsen A, Slagtern, Dahl IM, Olsbye U, Schuurman Y, Mirodatos C. Mechanisticfeatures for propane reforming by carbon dioxide over a Ni/Mg (Al) Ohydrotalcite-derived catalyst[J]. J. Catal.,2005,229:163–175
    [112]王辉.层状双金属氢氧化物/碳纳米管杂化复合材料的制备、结构及其性能研究[D].北京:北京化工大学,2010
    [113]安哲,何静,段雪.层状材料及催化[J].中国科学:化学,2012,42:390–405
    [114]吕志.原子经济反应合成LDHs及相关动力学研究[D].北京:北京化工大学,2009
    [115] Zhang L, Li F, Xiang X, Wei M, Evans D G. Ni-based supported catalysts from layereddouble hydroxides: Tunable microstructure and controlled property for the synthesis ofcarbon nanotubes[J]. Chem. Eng. J.,2009,155:474–482
    [116] Xiang X, Hima HI, Wang H, Li F. Facile synthesis and catalytic properties of nickel-basedmixed-metal oxides with mesopore networks from a novel hybrid composite precursor[J].Chem. Mater.,2008,20:1173–1182
    [117] Segal SR, Anderson K B, Carrado K A, Marshall C L. Low temperature steam reformingof methanol over layered double hydroxide-derived catalysts[J]. Appl. Catal. A,2002,231:215-226
    [118] Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schl gl R, Ressler T. Microstructuralcharacterization of Cu/ZnO/Al2O3catalysts for methanol steam reforming—A comparativestudy[J]. Appl. Catal. A,2008,348:153–164
    [119] Tanasoi S, Tanchoux N, Urd A, Tichit D, S ndulescu I, Fajula F, Marcu I-C. NewCu-based mixed oxides obtained from LDH precursors, catalysts for methane totaloxidation[J]. Appl. Catal. A,2009,363:135–142
    [120] Velu S, Suzuki K, Kapoor MP, Ohashi F, Osaki T. Selective production of hydrogen forfuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts[J].Appl. Catal. A,2001,213:47–63
    [121] Busca G, Costantino U, Marmottini F, Montanari T, Patrono P, Pinzari F, Ramis G.Methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts[J]. Appl. Catal. A,2006,310:70–78
    [122] Costantino U, Fmarmottini, Sisani M, Montanari T, Ramis G, Busca G, Turco M,Bagnasco G. Cu-Zn-Al hydrotalcites as precursors of catalysts for the production ofhydrogen from methanol[J]. Solid State Ionics,2005,176:2917–2922
    [1] Shi R, Wang F, Tana, Li Y, Huang X, Shen W. A highly efficient Cu/La2O3catalyst fortransfer dehydrogenation of primary aliphatic alcohols [J]. Green Chem.,2010,12:108–113
    [2] Fridman VZ, Davydov AA. Dehydrogenation of cyclohexanol on copper-containingcatalysts I. the influence of the oxidation state of copper on the activity of copper sites [J].J. Catal.,2000,195:20–30
    [3] Bond GC, Namijo SN. An improved procedure for estimating themetal surface area ofsupported copper catalysts [J]. J. Catal.,1989,118:507–510
    [4] Yin A, Guo X, Dai WL, Fan K. The nature of active copper species in Cu-HMS catalystfor hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergeticeffect between Cu0and Cu+[J]. J. Phys. Chem. C,2009,113:11003–11013
    [1] Liu G, Willcox D, Garland M, Kung.H H. The role of CO2in methanol synthesis on Cu-Znoxide: An isotope labeling study[J]. J. Catal.,1985,96:251–260
    [2] Chen HY, Lau SP, Chen L, Lin J, Huan CHA, Tan KL, Pan JS. Synergism between Cuand Zn sites in Cu/Zn catalysts for methanol synthesis[J]. Appl. Surf. Sci.,1999,152:193–199
    [3] Nakamura I, Nakano H, Fujitani T, Uchijima T, Nakamura J. Evidence for a specialformate species adsorbed on the Cu-Zn active site for methanol synthesis[J]. Surf. Sci.,1998,402–404:92–95
    [4] Choi Y, Futagami K, Fujitani T, Nakamura J. The role of ZnO in Cu/ZnO methanolsynthesis catalysts-morphology effect or active site model?[J]. Appl. Catal. A,2001,208:163–167
    [5] Fujitani T, Nakamura J. The effect of ZnO in methanol synthesis catalysts on Cudispersion and the specific activity[J]. Catal. Lett.,1998,56:119–124
    [6] Wang S, Liu H. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnOcatalysts[J]. Catal. Lett.,2007,117:62–67
    [7] Balaraju M, Rekha V, Prasad PSS, Prasad RBN, Lingaiah N. Selective Hydrogenolysis ofGlycerol to1,2Propanediol Over Cu-ZnO Catalysts[J]. Catal. Lett.,2008,126:119–124
    [8] Zheng HY, Zhu YL, Teng BT, Bai ZQ, Zhang CH, Xiang HW, Li YW. Towardsunderstanding the reaction pathway in vapour phase hydrogenation of furfural to2-methylfuran[J]. J. Mol. Catal. A,2006,246:18–23
    [9] López DE, Suwannakarn K, Bruce DA, Goodwin JG. Esterification and transesterificationon tungstated zirconia: effect of calcination temperature[J]. J. Catal.,2007,247:43–50
    [10] Fan MS, Abdullah AZ, Bhatia S. Utilization of greenhouse gases through carbon dioxidereforming of methane over Ni-Co/MgO-ZrO2: preparation, characterization and activitystudies[J]. Appl. Catal. B,2010,100:365–377
    [11] Yokoyama T, Setoyama T, Fujita N, Nakajima M, Maki T. Novel direct hydrogenationprocess of aromatic carboxylic acids to the corresponding aldehydes with zirconiacatalyst[J]. Appl. Catal.,1992,88:149–161
    [12] Gasser D, Baiker A. Hydrogenation of carbon dioxide over copper-zirconia catalystsprepared by in situ activation of amorphous copper-zirconium alloy[J]. Appl. Catal.,1989,48:279–294
    [13] Zhang X, Shi H, Xu BQ. Catalysis by Gold: Isolated Surface Au3+Ions are Active Sites forSelective Hydrogenation of1,3-Butadiene over Au/ZrO2Catalysts[J]. Angew. Chem. Int.Ed.,2005,44:7132–7135
    [14] He D, Shi H, Wu Y, Xu BQ. Synthesis of chloroanilines: selective hydrogenation of thenitro in chloronitrobenzenes over zirconia-supported gold catalyst[J]. Green Chem.,2007,9:849–851
    [15] Tanuma T, Okamoto H, Ohnishi K, Morikawa S, Suzuki T. Activated zirconium oxidecatalysts to synthesize dichloropentafluoropropane by the reaction ofdichlorofluoromethane with tetrafouoroethylene[J]. Appl. Catal. A,2009,359:158–164
    [16] Watanabe M, Inomata H, Arai K. Catalytic bydrogen generation from biomass (glucoseand cellulose) with ZrO2in supercritical water[J]. Biomass Bioenergy,2002,22:405–410
    [17] Sun Y, Sermon PA. Carbon monoxide hydrogenation over ZrO2and Cu/ZrO2[J]. J. Chem.Soc. Common.,1993,16:1242–1243
    [18] Bianchi D, Chafik T, Khalfallah M, Teichaner SJ. Intermediate species on zirconiasupported methanol aerogel catalysts: IV Adsorption of carbon dioxide[J]. Appl. Catal. A,1994,112:219–235
    [19]马中义,杨成,周玮,张德胜,李正,魏伟,孙予罕.载体表面性质对Cu/ZrO2催化剂CO加氢反应行为的影响[J].燃料化学学报,2009,37:217–221
    [20] In situ infrared study of methanol synthesis from H2/CO2over Cu/SiO2andCu/ZrO2/SiO2[J]. J. Catal.,1997,172:222–237
    [21] Fisher A, Bell A T. A Mechanistic Study of Methanol Decomposition over Cu/SiO2,ZrO2/SiO2, and Cu/ZrO2SiO2[J]. J. Catal.,1999,184:357–376
    [22] Nitta Y, Suwata O, Ikeda Y, Okamoto Y, Imanaka T. Copper-zirconia catalysts formethanol synthesis form carbon dioxide: effect of ZnO addition to Cu-ZrO2catalysts[J].Catal. Lett.,1994,26:345–354
    [23] Zhang D, Yin H, Xue J, Ge C, Jiang T, Yu L, Shen Y. Selective hydrogenation of maleicanhydride to tetrahydrofuran over Cu-Zn-M (M=Al, Ti, Zr) catalysts using ethanol as asolvent[J]. Ind. Eng. Chem. Res.,2009,48:11220–11224
    [24] Matter PH, Ozkan US. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts forthe steam reforming of methanol to H2[J]. J. Catal.,2005,234:463–475
    [25] Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F. Synthesis,characterization and activity pattern of Cu-ZnO/ZrO2catalysts in the hydrogenation ofcarbon dioxide to methanol[J]. J. Catal.,2007,249:185–194
    [26] Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro R M, Fierro J L G.Production fo hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2andAl2O3[J]. J. Catal.,2003,219:389–403
    [27] Zhao Y, Li F, Zhang R, Evans DG, Duan X. Preparation of layered double-hydroxidenanomaterials with a uniform crystallite size using a new method involving separatenucleation and aging steps[J]. Chem. Mater.,2002,14:4286–4291
    [28] Tang Y, Liu Y, Zhu P, Xue QS, Chen L, Lu Y. High-performance HTLcs-derived CuZnAlcatalysts for hydrogen production via methanol steam reforming[J]. AIChE J.,2009,55:1217–1228
    [29] Clause O, Gazzano M, Trifirò F, Vaccari A, Zatorski L. Preparation and thermal reactivityof nickel/chromium and nickel/aluminium hydrotalcite-type precursors[J]. Appl. Catal.,1991,73:217–236
    [30] T pfer J, Feltz A. Investigations on electronically conducting oxide systems XXIV1.:Preparation and electrical properties of the spinel series CuzNiMn2zO4[J]. Solid StateIonics,1993,59:249–256
    [31] Bond GC, Namijo SN. An improved procedure for estimating themetal surface area ofsupported copper catalysts[J]. J. Catal.,1989,118:507–510
    [32] Yin A, Guo X, Dai WL, Fan K. The nature of active copper species in Cu-HMS catalystfor hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergeticeffect between Cu0and Cu+[J]. J. Phys. Chem. C,2009,113:11003–11013
    [33] Evans JW, Wainwright MS, Bridgewater AJ, Young DJ. On the determination of coppersurface area by reaction with nitrous oxide[J]. Appl. Catal.,1983,7:75–83
    [34] Chinchen GC, Waugh KC, Whan DA. The activity and state of the copper surface inmethanol synthesis catalysts[J]. Appl. Catal.,1986,25:101–107
    [35] Giamello E, Fubini B, Lauro P, Bossi A. A microcalorimetric method for the evaluation ofcopper surface area in Cu-ZnO catalyst[J]. J. Catal.,1984,87:443–451
    [36] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Emanuel T,Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniformgraphene films on copper foils[J]. Science,2009,324:1312–1314
    [37] Shi R, Wang F, Tana, Li Y, Huang X, Shen W. A highly efficient Cu/La2O3catalyst fortransfer dehydrogenation of primary aliphatic alcohols[J]. Green Chem.,2010,12:108–113
    [38] Yin A, Guo X, Fan K., Dai WL. Influence of copper precursors on the structure evolutionand catalytic performance of Cu/HMS catalysts in the hydrogenation of dimethyl oxalateto ethylene glycol[J]. Appl. Catal. A,2010,377:128–133
    [39] Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, Xu HL, Fan KN. Cu/SiO2catalystsprepared by the ammonia-evaporation method: Texture, structure, and catalyticperformance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J. Catal.,2008,257:172–180
    [40] Yin A, Guo X, Dai W L, Li H, Fan K. Highly active and selective copper-containing HMScatalyst in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Appl. Catal. A,2008,394:91–99
    [41] Chen LF, Guo PJ, Zhu LJ, Qiao MH, Shen W, Xu HL, Fan KN. Preparation of Cu/SBA-15catalysts by different methods for the hydrogenolysis of dimethyl maleate to1,4-butanediol[J]. Appl. Catal. A,2009,356:129–136
    [42] Zhang B, Zhu Y, Ding G, Zheng H, Li Y. Modification of the supported Cu/SiO2catalystby alkaline earth metals in the selective conversion of1,4-butanediol toγ-butyrolactone[J]. Appl. Catal.A,2012,443–444:191–201
    [43] Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X. Synthesis of Ethanol viaSyngas on Cu/SiO2Catalysts with Balanced Cu0–Cu+Sites[J]. J. Am. Chem. Soc.,2012,134:13922–13925
    [44]陈梁锋,朱渊,刘晓钰,裴燕,乔明华,沈伟,徐华龙,范康年. Cu/SiO2催化剂制备方法对其草酸二甲酯催化氢解性能的影响[J].化学学报,2009,67:2739–2744
    [45] Fridman VZ, Davydov AA. Dehydrogenation of cyclohexanol on copper-containingcatalysts I. the influence of the oxidation state of copper on the activity of copper sites[J].J. Catal.,2000,195:20–30
    [46] Kanai Y, Watanabe T, Fujitani T, Saito M, akamuraJ N, Uchijima T. Evidence for themigration of ZnOxin a Cu/ZnO methanol synthesis catalyst[J]. Catal. Lett.,1994,27:67–78
    [47] Becker R, Parala H, Hipler F, Tkachenko OP, Klementiev KV, Grünert W, Wilmer H,Hinrichsen O, Muhler M, Birkner A, W ll C, Sch fer S, Fischer RA. MOCVD-Loading ofMesoporous Siliceous Matrices with Cu/ZnO: Supported Catalysts for MethanolSynthesis[J]. Angew. Chem. Int. Ed.,2004,43:2839–2842
    [48] Y Kanai, T Watanabe, T Fujitani, T Uchijima, Nakamura J. The synergy between Cu andZnO in methanol synthesis catalysts[J]. Catal. Lett.,1996,38:157–163
    [49] Yang R, Yu X, Zhang Y, Li W, Tsubaki N. Anew method of low-temperature methanolsynthesis on Cu/ZnO/Al2O3catalysts from CO/CO2/H2[J]. Fuel,2008,87:443–450
    [50] Burch R, Golunski SE, Spencer MS. The role of hydrogen in methanol synthesis overcopper catalysts[J]. Catal. Lett.,1990,5:55–60
    [1] Molnár á, Katona T, Bartók M, Varga K. Amorphous alloy catalysis: part1.dehydrogenation of2-propanol on amorphous Cu61Zr39alloy precursors[J]. J. Mol. Catal.,1991,64:41–51
    [2] Kobayashi H, Takezawa N, Minochi C. Methanol–reforming raction overcopper–containing catalysts—The effects of anions and copper loading in the preparationof the catalysts by kneading method[J]. J. Catal.,1981,69:487–494
    [3] Bartók M, Molnár á.1,2-Bond shift isomerization on copper[J]. J Chem Soc, ChemCommun,1980,790:1178–1180
    [4] Bartók M, Molnár á. H–D exchange, configurational isomerization, and hydrogenolysis of1,2-dimethylsilacycloalkanes on copper[J]. J. Chem. Soc., Chem. Commun.,1982,279:1089–1090
    [5] Bartók M, Palinko I, Molnár á. Ring-opening of alkyl-substituted cyclopropanes in thepresence of hydrogen on copper[J]. J. Chem. Soc., Chem. Commun.,1987,1826:953–954
    [6] Bridier B, López N, Pérez-Ramírez J. Partial hydrogenation of propyne over copper-basedcatalysts and comparison with nickel-based analogues[J]. J. Catal.,2010,269:80–92
    [7] Boccuzzi F, Chiorino A, Gargano M, Ravasio N. Preparation, characterization, and activityof Cu/TiO2catalysts II. Effect of the catalyst Morphology on the hydrogenation of1,3-cyclooctadiene and the CO-NO reaction on Cu/TiO2catalysts[J]. J. Catal.,1997,165:140–149
    [8] Bertero NM, Apesteguia CR, Marchi AJ. Catalytic and kinetic study of the liquid-phasehydrogenation of acetophenone over Cu/SiO2catalyst[J]. Appl. Catal. A,2008,349:100–109
    [9] Chambers A, Jackson DS, Stirling D, Webb G. Selective hydrogenation of cinnamaldehydeover supported copper catalysts[J]. J. Catal.,1997,168:301–314
    [10] Schoenmaker-Stolk MC, Verwijs JW, Scholten JJF. The catalytic hydrogenation ofbenzene over supported metal catalysts.: III. Gas-phase hydrogenation of benzene oversilica-supported Ru-Cu catalysts[J]. Appl. Catal.,1987,30:339–352
    [11] Hutchings GJ, King F, Okoye IP, Padley MB, Rochester C H. Modification of Selectivityin the Hydrogenation of Crotonaldehyde Using Cu/Al2O3Catalysts Modified with SulfurCompounds: Effect of Sulfur Source[J]. J. Catal.,1994,148:464–469
    [12] Moulijn JA, van Diepen AE, Kapteijn F. Catalyst deactivation: is it predictable?: What todo?[J]. Appl. Catal. A,2001,212:3–16
    [13] Tohji K, Udagawa Y, Mizushima T, Ueno A. The structure of the copper/zinc oxidecatalyst by an in situ EXAFS study[J]. J. Phys. Chem.,1985,89:5671–5676
    [14] Zhang Q, Zuo YZ, Han MH, Wang JF, Jin Y, Wei F. Long carbon nanotubes intercrossedCu/Zn/Al/Zr catalyst for CO/CO2hydrogenation to methanol/dimethyl ether[J]. Catal.Today,2010,150:55–60
    [15]左宜赞,张强,韩明汉,王金福,王铁锋,王德峥,金涌.铜基甲醇催化剂的高温烧结[J].催化学报,2009,30:624–630
    [16] JT Sun, IS Metcalfe, M Sahibzada. Deactivation of Cu/ZnO/Al2O3methanol synthesiscatalyst by sintering[J]. Ind. Eng. Chem. Res.,1999,38:3868–3872
    [17] Jenck J, Germain JE. High-pressure competitive hydrogenation of aldehydes, ketones, andolefins on copper chromite catalyst[J]. J. Catal.,1980,65:141–149
    [18] Adkins H, Connor R. The catalytic hydrogenation of organic compounds over copperchromite[J]. J. Am. Chem. Soc.,1931,53:1091–1095
    [19] Rao R, Dandekar A, Baker RTK, Vannice MA. Properties of Copper Chromite Catalysts inHydrogenation Reactions[J]. J. Catal.,1997,171:406–419
    [20] Kibler C, Bell A, Smith JG, Tenn K. Linear polyesters and polyester-amides from1,4-cyclohexanedimethanol[P]. US pattern, US2901466.1959
    [21] Applenton. Process[P]. US pattern, US5414159.1995
    [22] Tseng H H, Lin H Y, Kuo Y F, Su Y T. Synthesis, characterization, and promoter effect ofCu-Zn/γ-Al2O3catalysts on NO reduction with CO[J]. Chem. Eng. J.,2010,160:13–19
    [23] Grunwaldt JD, Molenbroek AM, Tops e NY, Tops e H, Clausen B S. In Situinvestigations of structural changes in Cu/ZnO catalysts[J]. J. Catal.,2000,194:452–460
    [24] Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC.Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials'interface in selective hydrogenation of CO2to CH3OH[J]. Angew. Chem. Int. Ed.,2011,50:2132–2135
    [25] Kurtz M, Strunk J, Hinrichsen O, Muhler M, Fink K, Meyer B, W ll C. Active sites onoxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2[J]. Angew. Chem.Int. Ed.,2005,44:2790–2794
    [26] Slaa JC, Van Ommen JG, Ross JRH. The synthesis of higher alcohols using modifiedCu/ZnO/Al2O3catalysts[J]. Catal. Today,1992,15:129–148
    [27] Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ranmis G, BuscaG. Production of hydrogen from oxidative steam reforming of methanol: I. Preparation andcharacterization of Cu/ZnO/Al2O3catalysts from a hydrotalcite-like LDH precursor[J]. J.Catal.,2004,228:43–55
    [28] Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ranmis G, BuscaG. Production of hydrogen from oxidative steam reforming of methanol: II. Catalyticactivity and reaction mechanism on Cu/ZnO/Al2O3hydrotalcite-derived catalysts[J]. J.Catal.,2004,228:56–65
    [29] Kasatkin I, Kurr P, Kniep B, Trunschke A, Schl gl R. Role of lattice strain and defects incopper particles on the activity of Cu/ZnO/Al2O3catalysts for methanol synthesis[J].Angew. Chem. Int. Ed.,2007,119:7465–7468
    [30] Behrens M, Studt F, Kasatkin I, Kühl S, H vecker M, Abild-Pedersen F, Zander S,Girgsdies F, Kurr P, Kniep B, Tovar M, Fischer RW, N rskov JK, Schl gl R. Theactive site of methanol synthesis over Cu/ZnO/Al2O3industrial catalysts[J]. Science,2012,336:893–897
    [31] Sahibzada M, Metcalfe IS, Chadwick D. Methanol synthesis from CO/CO2H2overCu/ZnO/Al2O3at differential and finite conversions[J]. J. Catal.,1998,174:111–118
    [32] Braterman PS, Xu ZP, Yarberry F.“Layered Double Hydroxides”, In Handbook ofLayered Materials[M]. Auerbach SM, Carrado KA, Dutta PK, Eds. Marcel D. New York,2004
    [33] Duan X, Evans DG. layered double hydroxides[M]. Springer,2006
    [34] Li F, Duan X. Applications of Layered Double Hydroxides[M]. Struct. Bonding (Berlin,Ger.)2006,119,193–223
    [35] Xu ZP, Zhang J, Adebajo MO, Zhang H, Zhou C. Catalytic applications of layered doublehydroxides and derivatives. Appl. Clay Sci.,2011,53:139–150
    [36] Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T. Dryreforming of methane over catalysts derived from nickel-containing Mg–Al layered doublehydroxides[J]. J. Catal.,2003,213:191–203
    [37] Gérardin C, Kostadinova D, Sanson N, Coq B, Tichit D. Supported metal particles fromLDH nanocomposite precursors: control of the metal particle size at increasing metalcontent[J]. Chem Mater,2005,17:6473–6478
    [38] Gérardin C, Kostadinova D, Coq B, Tichit D. LDH nanocomposites with different guestentities as precursors of supported Ni catalysts[J]. Chem. Mater.,2008,20:2086–2094
    [39] Resini C, Montanari T, Barattini L, Ramis G, Busca G, Presto S, Riani P, Marazza R, SisaniM, Marmottini F, Costantino U. Hydrogen production by ethanol steam reforming over Nicatalysts derived from hydrotalcite-like precursors: Catalyst characterization, catalyticactivity and reaction path[J]. Appl. Catal. A,2009,355:83–93
    [40] Olafsen A, Slagtern, Dahl IM, Olsbye U, Schuurman Y, Mirodatos C. Mechanisticfeatures for propane reforming by carbon dioxide over a Ni/Mg (Al) Ohydrotalcite-derived catalyst[J]. J. Catal.,2005,229:163–175
    [41] Yu Z, Chen D, R nning M, T tdal B, Vr lstad T, Ochoa-Fernández E, Holmen A.Large-scale synthesis of carbon nanofibers on Ni-Fe-Al hydrotalcite derived catalysts: II:Effect of Ni/Fe composition on CNF synthesis from ethylene and carbon monoxide[J].Appl. Catal. A,2008,338:147–158
    [42] Barrabes N, Cornado D, Foettinger K, Dafinov A, Llorca J, Medina F, Rupprechter G.Hydrodechlorination of trichloroethylene on noble metal promotedCu-hydrotalcite-derived catalysts[J]. J. Catal.,2009,263:239–246
    [43] Feng JT, Lin YJ, Evans DG, Duan X, Li DQ. Enhanced metal dispersion andhydrodechlorination properties of a Ni/Al2O3catalyst derived from layered doublehydroxides[J]. J. Catal.,2009,266:351–358
    [44] Zhang L, Li F, Xiang X, Wei M, Evans DG. Ni-based supported catalysts from layereddouble hydroxides: Tunable microstructure and controlled property for the synthesis ofcarbon nanotubes[J]. Chem. Eng. J.,2009,155:474–482
    [45] Xiang X, Hima HI, Wang H, Li F. Facile synthesis and catalytic properties of nickel-basedmixed-metal oxides with mesopore networks from a novel hybrid composite precursor[J].Chem. Mater.,2008,20:1173–1182
    [46] Segal SR, Anderson KB, Carrado KA, Marshall CL. Low temperature steam reforming ofmethanol over layered double hydroxide-derived catalysts[J]. Appl. Catal. A,2002,231:215-226
    [47] Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schl gl R, Ressler T. Microstructuralcharacterization of Cu/ZnO/Al2O3catalysts for methanol steam reforming—A comparativestudy[J]. Appl. Catal. A,2008,348:153–164
    [48] Tanasoi S, Tanchoux N, Urd A, Tichit D, S ndulescu I, Fajula F, Marcu I-C. NewCu-based mixed oxides obtained from LDH precursors, catalysts for methane totaloxidation[J]. Appl. Catal. A,2009,363:135–142
    [49] Velu S, Suzuki K, Kapoor MP, Ohashi F, Osaki T. Selective production of hydrogen forfuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts[J].Appl. Catal. A,2001,213:47–63
    [50] Busca G, Costantino U, Marmottini F, Montanari T, Patrono P, Pinzari F, Ramis G.Methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts[J]. Appl. Catal. A,2006,310:70–78
    [51] Costantino U, Fmarmottini, Sisani M, Montanari T, Ramis G, Busca G, Turco M,Bagnasco G. Cu-Zn-Al hydrotalcites as precursors of catalysts for the production ofhydrogen from methanol[J]. Solid State Ionics,2005,176:2917–2922
    [52] Jun KW, Shen WJ, Rama, Rao KS, Lee KW. Residual sodium effect on the catalyticactivity of Cu/ZnO/Al2O3in methanol synthesis from CO2hydrogenation[J]. Appl. Catal.A,1998,174:231–238
    [53] Choi Y, Futagami K, Fujitani T, Nakamura J. The role of ZnO in Cu/ZnO methanolsynthesis catalysts-morphology effect or active site model?[J]. Appl. Catal. A,2001,208:163–167
    [54] Kawamoto AM, Pardini LC, Rezende LC. Synthesis of copper chromite catalyst[J].Aerosp. Sci.Techol.,2004,8:591–598
    [55] Zhang L, Li F, Evans DG, Duan X. Structure and surface characteristics of Cu-basedcomposite metal oxides derived from layered double hydroxides[J]. Mater. Chem. Phys.,2004,87:402–410
    [56] Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, propertiesand applications[J]. Catal Today,1991,11:173–301
    [57] Tang Y, Liu Y, Zhu P, Xue QS, Chen L, Lu Y. High-performance HTLcs-derived CuZnAlcatalysts for hydrogen production via methanol steam reforming[J]. AIChE J,2009,55:1217–1228
    [58] Avgouropoulos G, Ioannides T, Matralis H. Influence of the preparation method on theperformance of CuO-CeO2catalysts for the selective oxidation of CO[J]. Appl. Catal. B,2005,56:87–93
    [59] Clause O, Gazzano M, Trifirò F, Vaccari A, Zatorski L. Preparation and thermal reactivityof nickel/chromium and nickel/aluminium hydrotalcite-type precursors[J]. Appl. Catal.,1991,73:217–236
    [60] T pfer J, Feltz A. Investigations on electronically conducting oxide systems XXIV1.:Preparation and electrical properties of the spinel series CuzNiMn2zO4[J]. Solid StateIonics,1993,59:249–256
    [61] Haber J, Machej T, Ungier L, Ziolkowski J. ESCA studies of copper oxides and coppermolybdates[J]. J Solid State Chem,1978,25:207–218
    [62] Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K.Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3catalysts prepared byhomogeneous precipitation[J]. Appl. Catal. A,2006,303:62–7
    [63] Breen JP, Ross JRH. Methanol reforming for fuel-cell applications: development ofzirconia-containing Cu-Zn-Al catalysts[J]. Catal Today,1999,51:521–533
    [64] Okamoto Y, Fukino K, Imanaka T, Teranishi S. Surface characterization of copper (II)oxide-zinc oxide methanol-synthesis catalysts by X-ray photoelectron spectroscopy.2.Reduced catalysts[J]. J. Phys. Chem.,1983,87:3747–3754
    [65] Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, Xu HL, Fan KN. Cu/SiO2catalystsprepared by the ammonia-evaporation method: Texture, structure, and catalyticperformance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J. Catal.,2008,257:172–180
    [66] Yin A, Guo X, Dai W L, Li H, Fan K. Highly active and selective copper-containing HMScatalyst in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Appl. Catal. A,2008,394:91–99
    [67] Alejo L, Lago R, Pe a MA, Fierro JLG. Partial oxidation of methanol to produce hydrogenover Cu-Zn-based catalysts[J]. Appl. Catal. A,1997,162:281–297
    [68] Arena F, Italiano G, Barbera K. Solid-state interactions, adsorption sites and functionalityof Cu-ZnO/ZrO2catalysts in the CO2hydrogenation to CH3OH[J]. Appl. Catal. A,2008,350:16–23
    [69] Shi L, Tao K, Yang R, Meng FZ, Xing C, Tsubaki N. Study on the preparation of Cu/ZnOcatalyst by sol-gel auto-combustion method and its application for low-temperaturemethanol synthesis[J]. Appl. Catal. A,2011,401:46–55
    [70] Bartók M, Molnár á. in: Patai S (Ed.). The Chemistry of Double-Bonded FunctionalGroups[M]. Wiley, New York,1997, Chap.16, pp843-908
    [71] Fisher IA, Bell AT. In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2and Cu/ZrO2/SiO2[J]. J. Catal.1998,178:153–173
    [72] Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro RM, Fierro J L G.Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2andAl2O3[J]. J. Catal.2003,219:389–403
    [73] Rhodes MD, Pokrovski KA, Bell AT. The effects of zirconia morphology on methanolsynthesis from CO and H2over Cu/ZrO2catalysts Part II. Transient-response infraredstudies[J]. J. Catal.2005,233:210–220
    [1] Corma A, Hamid SB A, Iborra S, Velty A. Lewis and Br nsted basic active sites on solidcatalysts and their role in the synthesis of monoglycerides [J]. J. Catal.,2005,234:340–347
    [2] Hattori H. Solid base catalysts: generation of basic sites and application to organicsynthesis[J]. Appl. Catal. A,2001,222:247–259
    [3] Tu M, Davis RJ. Cycloaddition of CO2to Epoxides over Solid Base Catalysts [J]. J. Catal.,2001,199:85–91
    [4] Chai SH, Wang HP, Liang Y, Xu BQ. Sustainable production of acrolein: investigation ofsolid acid–base catalysts for gas-phase dehydration of glycerol[J]. Green Chem,2007,9:1130–1136
    [5] Wacala GS, Robertson AW, Johnson CL, Day ZB, Lewis RS, White MG, Iretskii AC,Ford PC. Transesterification catalysts from iron doped hydrotalcite-like precursors: solidbases for biodiesel production[J]. Catal. Lett,2008,122:205–209
    [6] Climent MJ, Corma A, Iborra S, Velty A. Designing the adequate base solid catalyst withLewis or Bronsted basic sites or with acid–base pairs[J]. J. Mol. Catal. A,2002,182–183:327–342
    [7] Corma A, Martin-Aranda RM. Application of solid base catalysts in the preparation ofprepolymers by condensation of ketones and malononitrile[J]. Appl. Catal. A,1993,105:271–279
    [8] Climent MJ, Corma A, Iborra S, Velty A. Synthesis of methylpseudoionones by activatedhydrotalcites as solid base catalysts[J]. Green Chem.,2002,4:474–480
    [9] Choudary BM, Kantam ML, Neeraja V, Rao KK, Figueras F, Delmotte L. Layered doublehydroxide fluoride: a novel solid base catalyst for C–C bond formation[J]. Green Chem.,2001,3:257–260
    [10] Corma A, Iborra S, Primo J, Rey F. One-step synthesis of citronitril on hydrotalcitederived base catalysts[J]. Appl. Catal. A,1994,114:215–225
    [11] Denmark SE, Beutner GL. Lewis base catalysis in organic synthesis[J]. Angew. Chem. Int.Ed.,2008,47:1560–1638
    [12] Guo Y, Li S. Unusual Concerted Lewis Acid Lewis Base Mechanism for HydrogenActivation by a Phosphine Borane Compound[J]. Inorg. Chem.,2008,47:6212–6219
    [13] George AA, Marl, Harrell JL, Toy FR, Tenn. Plural stage hydrogenation of dialkylterephthalate using palladium and then copper chromite[P]. US Patent, US3334149.1967
    [14] Henry CR, Chapon C, Goyhenex C, Monot R. Size effect in the CO chemisorption onpalladium clusters supported on magnesium oxide[J]. Surf. Sci.,1992,272:283–288
    [15] Guzman J, Gates BC. Structure and Reactivity of a Mononuclear Gold‐Complex CatalystSupported on Magnesium Oxide[J]. Angew. Chem. Int. Ed.,2003,42:690–693
    [16] Choudhary VR, Dumbre DK. Magnesium oxide supported nano-gold: A highly activecatalyst for solvent-free oxidation of benzyl alcohol to benzaldehyde by TBHP[J]. Chem.Common.,2009,10:1738–1742
    [17] Sato T, Furusawa T, Ishiyama Y, Sugito H, Miura Y, Sato M, Suzuki N, Itoh N. Effect ofwater density on the gasification of lignin with magnesium oxide supported nickelcatalysts in supercritical water[J]. Ind.Eng. Chem. Res.,2006,45:615–622
    [18] Che M, Naccache C, Imelik B. Electron spin resonance studies on titanium dioxide andmagnesium oxide—Electron donor properties[J]. J. Catal.,1972,24:328–335
    [19] Iwamoto M, Lunsford J H. Surface reactions of oxygen ions.5. Oxidation of alkanes andalkenes by O2-on magnesium oxide[J]. J. Phys. Chem.,1980,84:3079–3084
    [20] Gonchar A, Risse T, Freund HJ, Giordano L, Di Valentin C, Pacchioni G. Activation ofoxygen on MgO: O2radical ion formation on thin, metal-supported MgO (001) films[J].Angew. Chem. Int. Ed.,2003,42:690–693
    [21] Baird M J, Lunsford J H. Catalytic sites for the isomerization of1-butene over magnesiumoxide[J]. J. Catal.,1972,26:440–450
    [22] Nagaraja BM, Siva Kumar V, Shashikala V, Padmasri AH, Reddy SS, Raju BD, RamaRao KS. Effect of method of preparation of copper–magnesium oxide catalyst on thedehydrogenation of cyclohexanol[J]. J. Mol. Catal. A,2004,223:339–345
    [23] Ruckenstein E, Hu Y H. Methane partial oxidation over NiO/MgO solid solutioncatalysts[J]. Appl. Catal. A,1999,183:85–92
    [24] Li F, Duan X. Applications of Layered Double Hydroxides[M]. Struct. Bonding (Berlin,Ger.)2006,119,193-223
    [25]王佳.层状前驱体制备高分散负载型纳米镍基催化剂及其性能的研究[D].北京:北京化工大学,2012
    [26] Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T. Dryreforming of methane over catalysts derived from nickel-containing Mg-Al layered doublehydroxides[J]. J. Catal.,2003,213:191–203
    [27] Gérardin C, Kostadinova D, Sanson N, Coq B, Tichit D. Supported metal particles fromLDH nanocomposite precursors: control of the metal particle size at increasing metalcontent. Chem Mater,2005,17:6473–6478
    [28] Gérardin C, Kostadinova D, Coq B, Tichit D. LDH nanocomposites with different guestentities as precursors of supported Ni catalysts. Chem. Mater.,2008,20:2086–2094
    [29] Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T. Dryreforming of methane over catalysts derived from nickel-containing Mg–Al layered doublehydroxides[J]. J. Catal.,2003,213:191–203
    [30] Gérardin C, Kostadinova D, Sanson N, Coq B, Tichit D. Supported metal particles fromLDH nanocomposite precursors: control of the metal particle size at increasing metalcontent. Chem. Mater.,2005,17:6473–6478
    [31] Gérardin C, Kostadinova D, Coq B, Tichit D. LDH nanocomposites with different guestentities as precursors of supported Ni catalysts. Chem. Mater.,2008,20:2086–2094
    [32] Zhang S, Fan G, Zhang C, Li F. One-step synthesis of carbon nanotubes-coppercomposites for fabrication catalyst supports of methanol electrooxidation. Mater. Chem.Phys.,2012,135:137–143
    [33] Veloso CO, Pérez CN, de Souza BM, Lima EC, Dias AG, Monteiro JLF, Henriques CA.Condensation of glyceraldehyde acetonide with ethyl acetoacetate over Mg, Al-mixedoxides derived from hydrotalcites[J]. Microporous Mesoporous Mater.,2008,107:23–30
    [34] Zhang Z, Zhang Y, Wang Z, Gao X. Catalytic performance and mechanism ofpotassium-supported Mg-Al hydrotalcite mixed oxides for soot combustion with O2[J]. J.Catal.,2010,271:12–21
    [35] Chiment o RJ, Abelló S, Medina F, Llorca J, Sueiras JE, Cesteros Y, Salagre P.Defect-induced strategies for the creation of highly active hydrotalcites in base-catalyzedreactions[J]. J. Catal.,2007,252:249–257
    [36] Gérardin C, Kostadinova D, Sanson N, Coq B, Tichit D. Supported metal particles fromLDH nanocomposite precursors: control of the metal particle size at increasing metalcontent[J]. Chem. Mater.2005,17:6473-6478
    [37] Gérardin C, Kostadinova D, Coq B, Tichit D. LDH nanocomposites with different guestentities as precursors of supported Ni catalysts[J]. Chem. Mater.,2008,20:2086-2094
    [38] Clause O, Gazzano M, Trifirò F, Vaccari A, Zatorski L. Preparation and thermal reactivityof nickel/chromium and nickel/aluminium hydrotalcite-type precursors[J]. Appl. Catal.,1991,73:217–236
    [39] T pfer J, Feltz A. Investigations on electronically conducting oxide systems XXIV1.:Preparation and electrical properties of the spinel series CuzNiMn2zO4[J]. Solid StateIonics,1993,59:249–256
    [40] Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X. Synthesis of Ethanol viaSyngas on Cu/SiO+2Catalysts with Balanced Cu0–CuSites[J]. J. Am. Chem. Soc.,2012,134:13922–13925
    [41] Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, Xu HL, Fan KN. Cu/SiO2catalystsprepared by the ammonia-evaporation method: Texture, structure, and catalyticperformance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J. Catal.,2008,257:172–180
    [42] Yin A, Guo X, Dai W L, Li H, Fan K. Highly active and selective copper-containing HMScatalyst in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Appl. Catal. A,2008,394:91–99
    [43] Yin A, Guo X, Dai WL, Fan K. The nature of active copper species in Cu-HMS catalystfor hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergeticeffect between Cu0and Cu+[J]. J. Phys. Chem. C,2009,113:11003–11013
    [44] Shi R, Wang F, Tana, Li Y, Huang X, Shen W. A highly efficient Cu/La2O3catalyst fortransfer dehydrogenation of primary aliphatic alcohols[J]. Green Chem,2010,12:108–113
    [45] Fridman VZ, Davydov AA. Dehydrogenation of cyclohexanol on copper-containingcatalysts I. the influence of the oxidation state of copper on the activity of copper sites[J].J. Catal.,2000,195:20–30
    [46] Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR. Structure and surface andcatalytic properties of Mg-Al basic oxides[J]. J. Catal.,1998,178:499–510
    [47] Unnikrishnan P, Srinivas D. Calcined, rare earth modified hydrotalcite as a solid, reusablecatalyst for dimethyl carbonate synthesis[J]. Ind. Eng. Chem. Res.,2012,51:6356–6363
    [48] Tamura M, Tonomura T, Shimizu K, Satsuma A. Transamidation of amides with aminesunder solvent-free conditions using a CeO2catalyst[J]. Green Chem.,2012,14:717–724
    [49] Valente JS, Lima E, Toledo-Antonio JA, Cortes-Jacome M A, Lartundo-Rojas L, MontielR, Prince J. Comprehending the thermal decomposition and reconstruction process ofsol-gel MgAl layered double hydroxides[J]. J. Phys. Chem. C,2010,114:2089–2099
    [50] Shi L, Tao K, Yang R, Meng FZ, Xing C, Tsubaki N. Study on the preparation of Cu/ZnOcatalyst by sol-gel auto-combustion method and its application for low-temperaturemethanol synthesis[J]. Appl. Catal. A,2011,401:46–55
    [51] Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X. Deactivation of Ni catalysts duringmethane autothermal reforming with CO2and O2in a fluidized-bed reactor[J]. J. Catal.,2007,250:331–341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700