用户名: 密码: 验证码:
改性碳纳米管负载铂—钌催化剂的可控制备及加氢性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)具有明显不同于传统催化剂载体材料的特性,其作为催化剂载体在多种催化反应以及燃料电池等领域显示了其独特的催化性能,而受到学术和工业界的广泛关注。因此,CNT表面官能团修饰也成为研究的热点之一,但有关表面官能团对CNT负载金属纳米颗粒及其催化性能的影响的文献报道却很少。针对这一问题,本论文发展了混酸氧化-热处理、HNO3气相氧化以及NH3处理方法进行CNT表面官能团化,从而实现了CNT表面官能团种类及数量的可控;并发明了室温下无表面活性剂和修饰剂的贵金属胶体合成方法,探讨了胶体的可能形成机理;通过多醇胶体方法制备CNT负载Pt和Ru催化剂,研究其在1,5-环辛二烯(1,5-COD)和苯乙炔(PA)选择加氢反应中的催化性能。主要结果如下:
     采用HNO3-H2SO4混酸处理CNT可以在CNT表面形成丰富的含氧官能团。在惰性气氛下,通过程序升温热处理可以选择性地控制表面官能团的数量和种类。采用乙二醇还原法制备了改性CNT负载Pt催化剂,发现金属Pt的分散度和抗烧结能力与载体表面含氧官能团的种类及数量有关,但含氧官能团对Pt的担载量却无明显影响。苯乙炔(PA)加氢结果显示CNT表面官能团种类不影响PA选择加氢反应速率,且苯乙烯(ST)的选择性不受Pt粒径的影响。PA选择加氢TOF随Pt粒径的增加而增加,表明PA选择加氢反应是结构敏感反应。
     HNO3气相氧化可在CNT表面生成含氧官能团。气相氧化过程中碳刻蚀导致CNT的比表面积增加,同时氧含量和表面酸性也随着氧化时间的增加而增加,随着处理温度的增加而减小。而高温NH3处理气相氧化后的CNT可以引入含氮官能团,氮含量与氧化CNT中氧含量成正比,高浓度NH3降低了CNT的比表面积。氧官能团或氮官能团的引入均降低了CNT的热稳定性。
     CNT负载Pt催化剂用于1,5-COD气相选择加氢反应,结果表明在1-6%H2浓度范围内,H2的反应级数为1/2,而1,5-COD的反应级数为0。1,5-COD选择加氢的TOF随粒径的增加而增加,而COE加氢的TOF和反应物反应级数均不受金属Pt粒径的影响。NH3处理氧化CNT生成的嘧啶类官能团增强了金属Pt纳米颗粒与载体CNT的相互作用,使Pt均匀地分散在CNT表面。与Pt/oCNTs催化剂相比,Pt/NCNTs在1,5-COD加氢反应表现出较高的催化活性及稳定性。
     采用乙二醇还原方法,使用相同的金属前体,选择性地制备出具有不同Pt-Ru结构的双金属(如核-壳,合金,和简单物理混合结构)纳米颗粒。制备的Pt, Ru, Pt-Ru合金,Ru@Pt和Pt@Ru核-壳纳米颗粒的粒径在1.5到3.0纳米之间,可以均匀地分散在CNT表面。CNT负载Pt@Ru和Ru@Pt核壳纳米催化剂在PA选择加氢中显示出不同与具有相同金属组成的Pt-Ru合金和简单的物理混合催化剂的加氢性能。
     在室温下,在老化的H2PtCl6乙二醇溶液中引入醋酸钠控制合成了Pt溶胶,并通过调整醋酸钠的浓度从2×10-3-2×10-1mol/l可以调控Pt纳米颗粒的粒径在2.4-4.2nm之间。研究认为室温下乙二醇还原法制备Pt溶胶的反应机理如下:老化的过程中生成易还原的配合物H2PtCl4(EG)n;然后此配合物在醋酸钠存在下使Pt离子还原为Pt金属纳米颗粒,而乙二醇氧化生成羟基乙醛;生成的羟基乙醛不稳定易被进一步氧化生成羟基乙酸;醋酸钠促进了配合物H2PtCl4(EG)n的还原,并稳定了生成的Pt胶体。
CNT is a novel catalytic material with unique structure and properties and has drawn much attention as a potential catalytic material from a viewpoint of both fundamental research and industrial uses. It has been demonstrated that the use of CNTs as catalyst support can improve activity and selectivity in hydrogenation and electrocatalysis. Meanwhile, the oxygen-containing surface groups on CNTs also have received more and more attention, but only a few studies have been directed at elucidating the influence of the surface oxygen groups on the catalytic behavior of the CNTs-supported catalysts. In terms of current issues, we have developed oxidative treatments of CNTs with HNO3-H2SO4followed by thermal treatments to control the type of the surface oxygen groups or HNO3vapor treatment was applied for the oxygen and nitrogen functionalization of CNTs. Pt colloids have been synthesized at room temperature through simply introducing acetate to the aged ethylene glycol (EG) solution of H2PtCl6and the possible formation process was also discussed. Pt/CNTs was achieved through chemical reduction of H2PtCl6·6H2O by EG in the presence of NaOH. Selective hydrogenation of PA and1,5-COD were used as probe reaction to evaluate their catalytic performances. The main results are as follows.
     CNTs with different surface groups were achieved by oxidative treatments with HNO3-H2SO4followed by thermal treatments. The type and amount of surface oxygen functional groups on the CNTs can be tuned by thermal treatments at different temperatures in an inert atmosphere. Deposition of Pt particles onto CNTs was achieved through chemical reduction of H2PtCl6·6H2O by EG in the presence of NaOH. Both dispersion and sintering resistance of Pt nanoparticles were found to be a function of amount of oxygen surface groups on the carbon nanotubes, however, the amount of oxygen surface groups apparently did not affect the Pt loading on the CNTs. For the hydrogenation of PA, the TOF increased linearly when the Pt particle size increases, whereas the selectivity to ST did not depend on particle size.
     Gas-phase methods were applied for the oxygen and nitrogen functionalization of CNTs. The oxygen functionalization was performed by HNO3vapor treatment at temperatures from200℃to250℃for12h up to120h. The oxygen-functionalized CNTs were used as starting material for nitrogen functionalization through thermal treatment under NH3. The BET surface area increased after the treatment in HNO3vapor, which also caused the weight loss due to carbon corrosion. The oxygen content and the surface acidity increased with increasing treatment time, but decreased with increasing temperature. As to nitrogen functionalization, the amount of nitrogen was correlated with the oxygen amount in the starting CNTs. A higher NH3concentration resulted in lower BET surface area due to carbon corrosion. The incorporation of both oxygen and nitrogen lowered the thermostability of CNTs.
     The prepared Pt/CNTs catalysts were evaluated for their performance as catalysts in the hydrogenation of1,5-COD. The reaction is1/2order with respect to H2in the investigated range of1%to6%, and zero order to COD. In the hydrogenation of1,5-COD, it was observed that TOF increases linearly when the Pt particle size increased. However, the TOF of COE remained constant independent of the Pt particle size. Formation of the nitrogen-containing sites with a pyridine-like state should enhance the adhesion between platinum particles and support to stabilizing platinum in a more dispersed state. Pt/NCNTs catalyst due to the higher dispersion of metal displayed higher activity and stability than Pt/oCNTs.
     Through the use of the same precursors and protocols, Pt-Ru bimetallic nanoparticles with different structures (i.e., core-shell, alloy, and mixtures of monometallic NP) can be prepared selectively. The prepared Pt, Ru, Pt-Ru alloy, Ru@Pt and Pt@Ru nanoparticles fell in the range of1.5-3.0nm in diameter, and were uniformly dispersed on the CNTs. The Pt@Ru/CNTs and Ru@Pt/CNTs core-shell catalysts showed different catalytic properties in selective hydrogenation of phenylacetylene from the Pt-Ru alloy, and the mixed monometallic samples with the correspondingly identical composition.
     Pt colloids have been synthesized at room temperature through simply introducing acetate to the aged EG solution of H2PtCl6without any other capping agents or surfactants. The amount of acetate added to the reaction solution played a key role in producing Pt colloids and adjusting the size of the Pt nanoparticles. The Pt particle sizes were controlled in the range from2.4to4.2nm by changing the concentration of acetate from2×10-3to3.2×10-1M. The possible formation mechanism is the formation of H2PtCl4(EG)n in the process of aging. During reducing Pt ions by EG, CH3COONa plays the role of catalyst and stabilizing agent. For this reaction pathway to take place, the-OH groups of ethylene glycol interact with Pt-ion sites, resulting in the oxidation of the alcohol groups to aldehydes. These aldehydes are not very stable and can be easily oxidized to glycolic.
引文
[1]IIJIMA S. Helical Microtubules of Graphitic Carbon [J]. Nature,1991,354(6348): 56-58.
    [2]LI W Z, LIANG C H, QIU J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell [J]. Carbon,2002,40(5):791-794.
    [3]LI W Z, LIANG C H, ZHOU W J, et al. Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells [J]. Carbon,2004,42(2):436-439.
    [4]LI W Z, LIANG C H, ZHOU W J, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells [J]. J Phys Chem B,2003,107(26):6292-6299.
    [5]RINZLER A G, HAFNER J H, NIKOLAEV P, et al. Unraveling Nanotubes Field-Emission from an Atomic Wire [J]. Science,1995,269(5230):1550-1553.
    [6]LIU C, FAN Y Y, LIU M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science,1999,286(5442):1127-1129.
    [7]CHAMBERS A, PARK C, BAKER R T K, et al. Hydrogen storage in graphite nanofibers [J]. J Phys Chem B,1998,102(22):4253-4256.
    [8]DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature,1997,386:377-379.
    [9]PLANEIX J M, COUSTEL N, COQ B, et al. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis [J]. J Am Chem Soc,1994,116(17): 7935-7936.
    [10]ZHANG H Z, QIU J S, LIANG C H, et al. A novel approach to Co/CNTs catalyst via chemical vapor deposition of organometallic compounds [J]. Catal Lett,2005, 101(3-4):211-214.
    [11]ZHANG Y, ZHANG H B, LIN G D, et al. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst [J]. Appl Catal A-Gen,1999,187(2):213-224.
    [12]RODRIGUEZ-REINOSO F. The role of carbon materials in heterogeneous catalysis [J]. Carbon,1998,36(3):159-175.
    [13]SERP P, CORRIAS M, KALCK P. Carbon nanotubes and nanofibers in catalysis [J]. Appl Catal A-Gen,2003,253(2):337-358.
    [14]PHAM-HUU C, KELLER N, EHRET G, et al. Carbon nanofiber supported palladium catalyst for liquid-phase reactions-An active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J]. J Mol Catal A-Chem,2001,170(1-2):155-163.
    [15]RODRIGUEZ N M, KIM M S, BAKER R T K. Carbon Nanofibers-a Unique Catalyst Support Medium [J]. J Phys Chem,1994,98(50):13108-13111.
    [16]BAKER R T K, LAUBERNDS K, WOOTSCH A, et al. Pt/graphite nano fiber catalyst in n-hexane test reaction [J]. J Catal,2000,193(1):165-167.
    [17]SAITO R, FUJITA M, DRESSELHAUS G, et al. Electronic-Structure and Growth-Mechanism of Carbon Tubules [J]. Mat Sci Eng B-Solid,1993,19(1-2): 185-191.
    [18]CHAMBERS A, NEMES T, RODRIGUEZ N M, et al. Catalytic behavior of graphite nano fiber supported nickel particles.1. Comparison with other support media [J]. J Phys Chem B,1998,102(12):2251-2258.
    [19]PARK C, BAKER R T K. Catalytic behavior of graphite nanofiber supported nickel particles.2. The influence of the nanofiber structure [J]. J Phys Chem B,1998, 102(26):5168-5177.
    [20]PARK C, BAKER R T K. Catalytic behavior of graphite nanofiber supported nickel particles.3. The effect of chemical blocking on the performance of the system [J]. J Phys Chem B,1999,103(13):2453-2459.
    [21]SALMAN F, PARK C, BAKER R T K. Hydrogenation of crotonaldehyde over graphite nanofiber supported nickel [J]. Catal Today,1999,53(3):385-394.
    [22]MARTINEZ M T, CALLEJAS M A, BENITO A M, et al. Sensitivity of single wall carbon nanotubes to oxidative processing:structural modification, intercalation and functionalisation [J]. Carbon,2003,41(12):2247-2256.
    [23]MOON J M, AN K H, LEE Y H, et al. High-yield purification process of singlewalled carbon nanotubes [J]. J Phys Chem B,2001,105(24):5677-5681.
    [24]PHAM-HUU C, KELLER N, CHARBONNIERE L J, et al. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds [J]. Chem Commun,2000,19:1871-1872.
    [25]NHUT J M, VIEIRA R, PESANT L, et al. Synthesis and catalytic uses of carbon and silicon carbide nanostructures [J]. Catal Today,2002,76(1):11-32.
    [26]YAO N, LORDI V, WEI J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst [J]. Abstr Pap Am Chem S,2004, 228:U539-U539.
    [27]LORDI V, YAO N, WEI J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst [J]. Chem Mater,2001,13(3): 733-737.
    [28]ZUO S F, HUANG Q Q, ZHOU R X. Al/Ce pillared clays with high surface area and large pore:Synthesis, characterization and supported palladium catalysts for deep oxidation of benzene [J]. Catal Today,2008,139(1-2):88-93.
    [29]LIANG C H, LI Z L, QIU J S, et al. Graphitic nanofilaments as novel support of Ru-Ba catalysts for ammonia synthesis [J]. J Catal,2002,211(1):278-282.
    [30]LI W Z, LIANG C H, QIU J S, et al. Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst for direct methanol fuel cell [J]. React Kinet Catal Lett,2004, 82(2):235-240.
    [31]BESSEL C A, LAUBERNDS K, RODRIGUEZ N M, et al. Graphite nanofibers as an electrode for fuel cell applications [J]. J Phys Chem B,2001,105(6):1115-1118.
    [32]STEIGERWALT E S, DELUGA G A, CLIFFEL D E, et al. A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst [J]. J Phys Chem B,2001,105(34): 8097-8101.
    [33]CHE G L, LAKSHMI B B, MARTIN C R, et al. Metal-nanocluster-filled carbon nanotubes:Catalytic properties and possible applications in electrochemical energy storage and production [J]. Langmuir,1999,15(3):750-758.
    [34]LIU Z L, LIN X H, LEE J Y, et al. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells [J]. Langmuir,2002,18(10):4054-4060.
    [35]GU Y S, HOU X M, HU H Y, et al. Controlled loading of gold nanoparticles on carbon nanotubes by regenerative ion exchange [J]. Mater Chem Phys,2009,116(1): 284-288.
    [36]KIM Y T, MITANI T. Surface thiolation of carbon nanotubes as supports:A promising route for the high dispersion of Pt nanoparticles for electrocatalysts [J]. J Catal,2006,238(2):394-401.
    [37]WANG R K, CHEN W C, CAMPOS D K, et al. Swelling the Micelle Core Surrounding Single-Walled Carbon Nanotubes with Water-immiscible Organic Solvents [J]. J Am Chem Soc,2008,130(48):16330-16337.
    [38]CASTILLEJOS E, CHICO R, BACSA R, et al. Selective Deposition of Gold Nanoparticles on or Inside Carbon Nanotubes and Their Catalytic Activity for Preferential Oxidation of CO [J]. Eur J Inorg Chem,2010,32:5096-5102.
    [39]CASTILLEJOS E, DEBOUTTIERE P J, ROIBAN L, et al. An Efficient Strategy to Drive Nanoparticles into Carbon Nanotubes and the Remarkable Effect of Confinement on Their Catalytic Performance [J]. Angew Chem Int Edit,2009, 48(14):2529-2533.
    [40]CHU A, COOK J, HEESOM R J R, et al. Filling of carbon nanotubes with silver, gold, and gold chloride [J]. Chem Mater,1996,8(12):2751-2754.
    [41]ZHANG X, GUO Y C, ZHANG Z C, et al. High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1,3-butadiene and cinnamaldehyde [J]. J Catal,2012,292:213-226.
    [42]TESSONNIER J P, PESANT L, EHRET G, et al. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J]. Appl Catal A-Gen,2005,288(1-2):203-210.
    [43]MA H X, WANG L C, CHEN L Y, et al. Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde [J]. Catal Commun,2007, 8(3):452-456.
    [44]CHEN W, PAN X L, WILLINGER M G, et al. Facile autoreduction of iron oxide/carbon nanotube encapsulates [J]. J Am Chem Soc,2006,128(10): 3136-3137.
    [45]CHEN W, PAN X L, BAO X H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes [J]. J Am Chem Soc,2007,129(23): 7421-7426.
    [46]PAN X L, FAN Z L, CHEN W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles [J]. Nat Mater,2007,6(7): 507-511.
    [47]CHEN W, FAN Z L, PAN X L, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst [J]. J Am Chem Soc,2008,130(29): 9414-9419.
    [48]CHEN Z J, GUAN Z H, LI M R, et al. Enhancement of the Performance of a Platinum Nanocatalyst Confined within Carbon Nanotubes for Asymmetric Hydrogenation [J]. Angew Chem Int Edit,2011,50(21):4913-4917.
    [49]VAN STEEN E, PRINSLOO F F. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts [J]. Catal Today,2002,71(3-4): 327-334.
    [50]WANG S J, YIN S F, LI L, et al. Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia [J]. Appl Catal B-Environ, 2004,52(4):287-299.
    [51]MESTL G, MAKSIMOVA N I, KELLER N, et al. Carbon nanofilaments in heterogeneous catalysis:An industrial application for new carbon materials? [J]. Angew Chem Int Edit,2001,40(11):2066-2068.
    [52]PEREIRA M F R, FIGUEIREDO J L, ORFAO J J M, et al. Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene [J]. Carbon, 2004,42(14):2807-2813.
    [53]ZHANG J, LIU X, BLUME R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane [J]. Science,2008,322:73-77.
    [54]LUO J Z, GAO L Z, LEUNG Y L, et al. The decomposition of NO on CNTs and 1 wt% Rh/CNTs [J]. Catal Lett,2000,66(1-2):91-97.
    [55]WU B H, KUANG Y J, ZHANG X H, et al. Noble metal nanoparticles/carbon nanotubes nanohybrids:Synthesis and applications [J]. Nano Today,2011,6(1): 75-90.
    [56]YU R Q, CHEN L W, LIU Q P, et al. Platinum deposition on carbon nanotubes via chemical modification [J]. Chem Mater,1998,10(3):718-722.
    [57]HERMANS S, SLOAN J, SHEPHARD D S, et al. Bimetallic nanoparticles aligned at the tips of carbon nanotubes [J]. Chem Commun,2002,3:276-277.
    [58]ENDO M, KIM Y A, EZAKA M, et al. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nano fibers [J]. Nano Lett,2003, 3(6):723-726.
    [59]XUE B, CHEN P, HONG Q, et al. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes [J]. J Mater Chem,2001,11(9):2378-2381.
    [60]GIORDANO R, SERP P, KALCK P, et al. Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction [J]. Eur J Inorg Chem,2003,4:610-617.
    [61]BITTER J H, VAN DER LEE M K, SLOTBOOM A G T, et al. Synthesis of highly loaded highly dispersed nickel on carbon nanofibers by homogeneous deposition-precipitation [J]. Catal Lett,2003,89(1-2):139-142.
    [62]TOEBES M L, PRINSLOO F F, BITTER J H, et al. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde [J]. J Catal,2003, 214(1):78-87.
    [63]TOEBES M L, BITTER J H, VAN DILLEN A J, et al. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers [J]. Catal Today,2002,76(1):33-42.
    [64]TOEBES M L, NIJHUIS T A, HAJEK J, et al. Support effects in hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts:Kinetic modeling [J]. Chem Eng Sci,2005,60(21):5682-5695.
    [65]TOEBES M L, PRINSLOO F F, BITTER J H, et al. Synthesis and characterization of carbon nanofiber supported ruthenium catalysts [J]. Stud Surf Sci Catal,2002, 143:201-208.
    [66]TOEBES M L, VAN DER LEE M K, TANG L M, et al. Preparation of carbon nanofiber supported platinum and ruthenium catalysts:Comparison of ion adsorption and homogeneous deposition precipitation [J]. J Phys Chem B,2004, 108(31):11611-11619.
    [67]TOEBES M L, VAN HEESWIJK E M P, BITTER J H, et al. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers [J]. Carbon,2004,42(2):307-315.
    [68]TOEBES M L, ZHANG Y H, HAJEK J, et al. Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis [J]. J Catal,2004,226(1):215-225.
    [69]FIEVET F, FIEVETVINCENT F, LAGIER J P, et al. Controlled Nucleation and Growth of Micrometer-Size Copper Particles Prepared by the Polyol Process [J]. J Mater Chem,1993,3(6):627-632.
    [70]FIEVET F, LAGIER J P, BLIN B, et al. Homogeneous and Heterogeneous Nucleations in the Polyol Process for the Preparation of Micron and Sub-Micron Size Metal Particles [J]. Solid State Ionics,1989,32:198-205.
    [71]BONET F, GRUGEON S, URBINA R H, et al. In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases [J]. Solid State Sci,2002,4(5): 665-670.
    [72]BONET F, DELMAS V, GRUGEON S, et al. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol [J]. Nanostruct Mater,1999,11(8): 1277-1284.
    [73]BONET F, GUERY C, GUYOMARD D, et al. Electrochemical reduction of noble metal species in ethylene glycol at platinum and glassy carbon rotating disk electrodes [J]. Solid State Ionics,1999,126(3-4):337-348.
    [74]BONET F, GUERY C, GUYOMARD D, et al. Electrochemical reduction of noble metal compounds in ethylene glycol [J]. Int J Inorg Mater,1999,1(1):47-51.
    [75]BONET F, TEKAIA-ELHSISSEN K, SARATHY K V. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process [J]. Bull Mater Sci,2000,23(3):165-168.
    [76]SUN Y G, MAYERS B T, XIA Y N. Template-engaged replacement reaction:A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors [J]. Nano Lett,2002,2(5):481-485.
    [77]SUN Y G, XIA Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002,298(5601):2176-2179.
    [78]SUN Y G, XIA Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process [J]. Adv Mater,2002,14(11):833-837.
    [79]TOSHIMA N, WANG Y. Novel Preparation, Characterization and Catalytic Properties of Polymer-Protected Cu/Pd Bimetallic Colloids [J]. Chem Lett,1993,9: 1611-1614.
    [80]TOSHIMA N, SHIRAISHI Y, SHIOTSUKI A, et al. Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters [J]. Eur Phys JD,2001,16(1-3):209-212.
    [81]TOSHIMA N, WANG Y. Preparation and Catalysis of Novel Colloidal Dispersions of Copper Noble-Metal Bimetallic Clusters [J]. Langmuir,1994,10(12):4574-4580.
    [82]TOSHIMA N, WANG Y. Polymer-Protected Cu/Pd Bimetallic Clusters [J]. Adv Mater,1994,6(3):245-247.
    [83]TOSHIMA N, YONEZAWA T. Bimetallic nanoparticles-novel materials for chemical and physical applications [J]. New J Chem,1998,22(11):1179-1201.
    [84]WANG Y, REN J W, DENG K, et al. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media [J]. Chem Mater,2000,12(6):1622-1627.
    [85]BOCK C, PAQUET C, COUILLARD M, et al. Size-selected synthesis of PtRu nano-catalysts:Reaction and size control mechanism [J]. J Am Chem Soc,2004, 126(25):8028-8037.
    [86]LI D G, WANG C, TRIPKOVIC D, et al. Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis:The Effect on Catalytic Performance [J]. Acs Catal,2012,2(7):1358-1362.
    [87]QIU J S, ZHANG H Z, LIANG C H, et al. Co/CNF catalysts tailored by controlling the deposition of metal colloids onto CNFs:Preparation and catalytic properties [J]. Chem-Eur J,2006,12(8):2147-2151.
    [88]ANG L M, HOR T S A, XU G Q, et al. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method [J]. Chem Mater,1999,11(8): 2115-2118.
    [89]ANG L M, HOR T S A, XU G Q, et al. Decoration of activated carbon nanotubes with copper and nickel [J]. Carbon,2000,38(3):363-372.
    [90]SERP P, KALCK P, FEURER R. Chemical vapor deposition methods for the controlled preparation of supported catalytic materials [J]. Chem Rev,2002,102(9): 3085-3128.
    [91]SERP P, FEURER R, KIHN Y, et al. Controlled-growth of platinum nanoparticles on carbon nanotubes or nanospheres by MOCVD in fluidized bed reactor [J]. J Phys Iv,2002,12(Pr4):29-36.
    [92]LIANG C H, XIA W, SOLTANI-AHMADI H, et al. The two-step chemical vapor deposition of Pd(allyl)Cp as an atom-efficient route to synthesize highly dispersed palladium nanoparticles on carbon nano fibers [J]. Chem Commun,2005,2: 282-284.
    [93]JIANG K Y, EITAN A, SCHADLER L S, et al. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes [J]. Nano Lett,2003,3(3): 275-277.
    [94]DOMINGUEZ-DOMINGUEZ S, BERENGUER-MURCIA A, CAZORLA-AMOROS D, et al. Semihydrogenation of phenylacetylene catalyzed by metallic nanoparticles containing noble metals [J]. J Catal,2006,243(1):74-81.
    [95]FRANCESCO ARENA, GIAMPIETRO CUM, RAFFAELE GALLO, et al. padlladium catalysts supported on oligomeric aramides in liquid-phase selective hydrogenation of phenylacetylene [J]. J Mol Catal A:Chem,1996,110(3):235-342.
    [96]DOMINGUEZ-DOMINGUEZ S, BERENGUER-MURCIA A, LINARES-SOLANO A, et al. Inorganic materials as supports for palladium nanoparticles:Application in the semi-hydrogenation of phenylacetylene [J]. J Catal, 2008,257(1):87-95.
    [97]DOMINGUEZ-DOMINGUEZ S, BERENGUER-MURCIA W, PRADHAN B K, et al. Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials [J]. J Phys Chem C,2008,112(10):3827-3834.
    [98]DUCA D, LIOTTA L F, DEGANELLO G. Liquid-Phase Hydrogenation of Phenylacetylene on Pumice Supported Palladium Catalysts [J]. Catal Today,1995, 24(1-2):15-21.
    [99]TIENGCHAD N, MEKASUWANDUMRONG O, NA-CHIANGMAI C, et al. Geometrical confinement effect in the liquid-phase semihydrogenation of phenylacetylene over mesostructured silica supported Pd catalysts [J]. Catal Commun,2011,12(10):910-916.
    [100]WEERACHAWANASAK P, MEKASUWANDUMRONG O, ARAI M, et al. Effect of strong metal-support interaction on the catalytic performance of Pd/TiO2 in the liquid-phase semi hydrogenation of phenylacetylene [J]. J Catal,2009,262(2): 199-205.
    [101]WEERACHAWANASAK P, PRASERTHDAM P, ARAI M, et al. A comparative study of strong metal-support interaction and catalytic behavior of Pd catalysts supported on micron- and nano-sized TiO2 in liquid-phase selective hydrogenation of phenylacetylene [J]. J Mol Catal A-Chem,2008,279(1):133-139.
    [102]SHAO Z F, LI C A, CHEN X A, et al. A Facile and Controlled Route to Prepare an Eggshell Pd Catalyst for Selective Hydrogenation of Phenylacetylene [J]. Chemcatchem,2010,2(12):1555-1558.
    [103]DELANGEL G, BENITEZ J L. Selective Hydrogenation of Phenylacetylene on Pd/A1203:Effect of The Addition of Pt and Particle Size [J]. React Kinet Catal Lett,1993,51(2):547-553.
    [104]GUCZI L, SCHAY Z, STEFLER G, et al. Pumice-supported Cu-Pd catalysts: Influence of copper on the activity and selectivity of palladium in the hydrogenation of phenylacetylene and but-1-ene [J]. J Catal,1999,182(2):456-462.
    [105]RUZICKA J-Y, ANDERSON D P, GAW S, et al. Platinum-Ruthenium Nanoparticles:Active and Selective Catalysts for Hydrogenation of Phenylacetylene [J]. Aust J Chem 2012,65:1420-1425.
    [106]PELLEGATTA J L, BLANDY C, COLLIERE V, et al. Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene [J]. J Mol Catal A-Chem,2002,178(1-2):55-61.
    [107]LEITMANNOVA E, SVOBODA J, SEDLACEK J, et al. Hydrogenation of phenylacetylene and 3-phenylpropyne using Rh(diene) complexes under homogeneous and heterogeneous conditions [J]. Appl Catal A-Gen,2010,372(1): 34-39.
    [108]CHEN X, ZHAO A G, SHAO Z F, et al. Synthesis and Catalytic Properties for Phenylacetylene Hydrogenation of Silicide Modified Nickel Catalysts [J]. J Phys Chem C,2010,114(39):16525-16533.
    [109]NIKOLAEV S A, SMIRNOV V V. Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites [J]. Catal Today,2009,147: S336-S41.
    [110]PANPRANOT J, PHANDINTHONG K, SIRIKAJORN T, et al. Impact of palladium silicide formation on the catalytic properties of Pd/SiO2 catalysts in liquid-phase semihydrogenation of phenylacetylene [J]. J Mol Catal A-Chem,2007, 261(1):29-35.
    [111]MOURA F C C, PINTO F G, DOS SANTOS E N, et al. Experiments on heterogeneous catalysis using a simple gas chromatograph [J]. J Chem Educ,2006, 83(3):417-420.
    [112]HIRAI H, CHAWANYA H, TOSHIMA N. Selective Hydrogenation of Cyclooctadienes Catalyzed by Colloidal Palladium in Poly(N-Vinyl-2-Pyrrolidone) [J]. Makromol Chem-Rapid,1981,2(1):99-103.
    [113]SCHWARZE M, KEILITZ J, NOWAG S, et al. Quasi-Homogeneous Hydrogenation with Platinum and Palladium Nanoparticles Stabilized by Dendritic Core-Multishell Architectures [J]. Langmuir,2011,27(10):6511-6518.
    [114]ZHOU Y H, YE H Q, SCHOMACKER R. Selective hydrogenation of 1,5-cyclo-octadiene over porous Pd/alpha-A12O3 active membrane [J]. Chin J Catal, 2007,28(8):715-719.
    [115]HAAS T, GAUBE J. Selective hydrogenation Kinetic investigation of 1 3-cyclo-octadiene and cyclo-octene hydrogenation [J]. Chem Eng Technol 1989,12: 45-53.
    [116]WUCHTER N, SCHAFER P, SCHULER C, et al. Comparison of selective gas phaseand liquid phase hydrogenation of (cyclo-)alkadienes towards cycloalkenes on Pd/alumina egg-shell catalysts [J]. Chem Eng & Tech,2006,29(12):1487-1495.
    [117]DEGANELLO G, DUCA D, MARTORANA A, et al. Pumice-Supported Palladium Catalysts.2. Selective Hydrogenation of 1,3-Cyctooctadiene [J]. J Catal,1994, 150(1):127-134.
    [118]PARK J W, CHUNG Y M, SUH Y W, et al. Partial hydrogenation of 1,3-cyclooctadiene catalyzed by palladium-complex catalysts immobilized on silica [J]. Catal Today,2004,93:445-450.
    [119]HANIKA J, SVOBODA I, RUZICKA V. Kinetics of Hydrogenation of Cyclic Butadiene Oligomers on Palladium Catalysts-Cyclooctadiene Isomers [J]. Collect Czech Chem C,1981,46(4):1031-1038.
    [120]HUANG T S, WANG Y H, JIANG J Y, et al. PEG-stabilized palladium nanoparticles:An efficient and recyclable catalyst for the selective hydrogenation of 1,5-cyclooctadiene in thermoregulated PEG biphase system [J]. Chin Chem Lett, 2008,19(1):102-104.
    [121]VENEZIA A M, ROSSI A, DUCA D, et al. Particle-Size and Metal-Support Interaction Effects in Pumice Supported Palladium Catalysts [J]. Appl Catal A-Gen, 1995,125(1):113-128.
    [122]DUCA D, LA MANNA G, DEGANELLO G. Kinetic study of 1,5-cyclooctadiene hydro-isomerization on Pd/pumice catalysts [J]. Catal Lett,1998,52(1-2):73-79.
    [123]HANAOKA T, MATSUZAKI T, SUGI Y. Selective photocatalytic transfer-hydrogenation to 1,5-cyclooctadiene with light transition metal modified rhodium colloids catalyst [J]. J Mol Catal A-Chem,1999,149(1-2):161-167.
    [124]ERNST S, DISTELDORF H, YANG X. Liquid-phase hydrogenation of 1,5-cyclooctadiene on zeolite-encapsulated noble metal-salen complexes [J]. Microporous Mesoporous Mater,1998,22(1-3):457-464.
    [125]MOURA FCC, DOS SANTOS E N, LAGO R M, et al. Ir-4 cluster-based selective catalytic hydrogenation of 1,5-cyclooctadiene [J]. J Mol Catal A-Chem,2005, 226(2):243-251.
    [126]HANAOKA T, KUBOTA Y, TAKEUCHI K, et al. Colloidal Rhodium-Catalyzed Photo Transfer Hydrogenation of 1,5-Cyclooctadiene [J]. J Mol Catal A-Chem,1995, 98(3):157-160.
    [127]CHEN C C, CHEN C F, CHEN C M, et al. Modification of multi-walled carbon nanotubes by microwave digestion method as electro catalyst supports for direct methanol fuel cell applications [J]. Electrochem Commun,2007,9(1):159-163.
    [128]HU C Y, LI F Y, HUA L, et al. A study concerning the pretreatment of CNTs and its influence on the performance of NiB/CNTs amorphous catalyst [J]. J Serb Chem Soc,2006,71(11):1153-1160.
    [129]GAO Z, BANDOSZ T J, ZHAO Z, et al. Investigation of the Role of Surface Chemistry and Accessibility of Cadmium Adsorption Sites on Open-Surface Carbonaceous Materials [J]. Langmuir,2008,24(20):11701-11710.
    [130]XIA W, JIN C, KUNDU S, et al. A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor [J]. Carbon,2009, 47(3):919-922.
    [131]XIA W, WANG Y, BERGSTRASSER R, et al. Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption [J]. Appl Surf Sci,2007,254(1):247-250.
    [132]KUNDU S, WANG Y M, XIA W, et al. Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study [J]. J Phys Chem C,2008, 112(43):16869-16878.
    [133]KLEIN K L, MELECHKO A V, MCKNIGHT T E, et al. Surface characterization and functionalization of carbon nanofibers [J]. J Appl Phys,2008,103(6): 061301-061326.
    [134]JIN C, XIA W, CHEN P R, et al. On the role of the residual iron growth catalyst in the gasification of multi-walled carbon nanotubes with carbon dioxide [J]. Catal Today,2012,186(1):128-133.
    [135]PLOMP A J, SU D S, DE JONG K P, et al. On the Nature of Oxygen-Containing Surface Groups on Carbon Nanofibers and Their Role for Platinum Deposition-An XPS and Titration Study [J]. J Phys Chem C,2009,113(22):9865-9869.
    [136]XIA W, YIN X L, KUNDU S, et al. Visualization and functions of surface defects on carbon nano tubes created by catalytic etching [J]. Carbon,2011,49(1):299-305.
    [137]XIA W, CHEN X X, KUNDU S, et al. Chemical vapor synthesis of secondary carbon nanotubes catalyzed by iron nanoparticles electrodeposited on primary carbon nanotubes [J]. Surf Coat Tech,2007,201(22-23):9232-9237.
    [138]KUNDU S, XIA W, BUSSER W, et al. The formation of nitrogen-containing functional groups on carbon nanotube surfaces:a quantitative XPS and TPD study [J]. Phys Chem Chem Phys,2010,12(17):4351-4359.
    [139]LI C, ZHAO A Q, XIA W, et al. Quantitative Studies on the Oxygen and Nitrogen Functionalization of Carbon Nanotubes Performed in the Gas Phase [J]. J Phys Chem C,2012,116(39):20930-20936.
    [140]HARPENESS R, PENG Z, LIU X S, et al. Controlling the agglomeration of anisotropic Ru nanoparticles by the microwave-polyol process [J]. J Colloids Interf Sci,2005,287(2):678-684.
    [141]YANG J, DEIVARAJ T C, TOO H P, et al. Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol [J]. Langmuir,2004,20(10):4241-4245.
    [142]SONG H, KIM F, CONNOR S, et al. Pt nanocrystals:Shape control and Langmuir-Blodgett monolayer formation [J]. J Phys Chem B,2005,109(1):188-93.
    [143]LI C, SHAO Z F, PANG M, et al. Carbon Nanotubes Supported Mono-and Bimetallic Pt and Ru Catalysts for Selective Hydrogenation of Phenylacetylene [J]. Ind Eng Chem Res,2012,51(13):4934-4941.
    [144]CHEN J Y, HERRICKS T, XIA Y N. Polyol synthesis of platinum nano structures: Control of morphology through the manipulation of reduction kinetics [J]. Angew Chem Int Edit,2005,44(17):2589-2592.
    [145]HERRICKS T, CHEN J Y, XIA Y N. Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate [J]. Nano Lett,2004,4(12):2367-2371.
    [146]KONG H, ZHOU M, LIN G D, et al. Pt Catalyst Supported on Multi-Walled Carbon Nanotubes for Hydrogenation-Dearomatization of Toluene and Tetralin [J]. Catal Lett,2010,135(1-2):83-90.
    [147]MARCEAU E, CHE M, SAINT JUST J, et al. Influence of chlorine ions in Pt/A12O3 catalysts for methane total oxidation [J]. Catal Today,1996,29(1-4): 415-419.
    [148]HWANG C P, YEH C T. Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina [J]. J Mol Catal A-Chem,1996,112(2):295-302.
    [149]LIANG C H, MA W P, FENG Z C, et al. Activated carbon supported bimetallic CoMo carbides synthesized by carbothermal hydrogen reduction [J]. Carbon,2003, 41(9):1833-1839.
    [150]SUN S H, MURRAY C B, WELLER D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science,2000,287(5460): 1989-1992.
    [151]KLIMOV V I, MIKHAILOVSKY A A, XU S, et al. Optical gain and stimulated emission in nanocrystal quantum dots [J]. Science,2000,290(5490):314-317.
    [152]YUAN Q, ZHUANG J, WANG X. Single-phase aqueous approach toward Pd sub-10 nm nanocubes and Pd-Pt heterostructured ultrathin nanowires [J]. Chem Commun,2009,43:6613-6615.
    [153]MIYAMURA H, MATSUBARA R, KOBAYASHI S. Gold-platinum bimetallic clusters for aerobic oxidation of alcohols under ambient conditions [J]. Chem Commun,2008,17:2031-2033.
    [154]ALAYOGLU S, NILEKAR A U, MAVRIKAKIS M, et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J]. Nat Mater,2008,7(4):333-338.
    [155]ALAYOGLU S, ZAVALIJ P, EICHHORN B, et al. Structural and Architectural Evaluation of Bimetallic Nanoparticles:A Case Study of Pt-Ru Core-Shell and Alloy Nanoparticles [J]. Acs Nano,2009,3(10):3127-3137.
    [156]ALAYOGLU S, EICHHORN B. Rh-Pt Bimetallic Catalysts:Synthesis, Characterization, and Catalysis of Core-Shell, Alloy, and Monometallic Nanoparticles [J]. J Am Chem Soc,2008,130(51):17479-17486.
    [157]LI C, SHAO Z F, PANG M, et al. Carbon nanotubes supported Pt catalysts for phenylacetylene hydrogenation:effects of oxygen containing surface groups on Pt dispersion and catalytic performance [J]. Catal Today,2012,186(1):69-75.
    [158]HWANG B J, SARMA L S, CHEN C H, et al. Controlled Synthesis and Characterization of Ru-core-Pt-shell Bimetallic Nanoparticles [J]. J Phys Chem C, 2008,112(50):19922-19929.
    [159]SARMA L S, CHEN C H, KUMAR S M S, et al. Formation of Pt-Ru nanoparticles in ethylene glycol solution:An in situ X-ray absorption spectroscopy study [J]. Langmuir,2007,23(10):5802-5809.
    [160]KELLER T M, QADRI S B, LITTLE C A. Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions [J]. J Mate Chem,2004,14(20):3063-3070.
    [161]LALANDE G, DENIS M C, GUAY D, et al. Structural and surface characterizations of nanocrystalline Pt-Ru alloys prepared by high-energy ball-milling [J]. J Alloy Compd,1999,292(1-2):301-310.
    [162]CUI Z M, LIU C P, LIAO J H, et al. Highly active PtRu catalysts supported on carbon nanotubes prepared by modified impregnation method for methanol electro-oxidation [J]. Electrochimi Acta,2008,53(27):7807-7811.
    [163]GUO J S, SUN G Q, WANG Q, et al. Carbon nanofibers supported Pt-Ru electrocatalysts for direct methanol fuel cells [J]. Carbon,2006,44(1):152-157.
    [164]YANG C W, WANG D L, HU X G, et al. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation [J]. J Alloy Compd,2008,448(1-2):109-115.
    [165]ZHANG G X, YANG D Q, SACHER E. X-ray photoelectron spectroscopic analysis of Pt nanoparticles on highly oriented pyrolytic graphite, using symmetric component line shapes [J]. J Phys Chem C,2007,111(2):565-570.
    [166]BANCROFT G M, ADAMS I, COATS WORTH L L, et al. Esca Study of Sputtered Platinum Films [J]. Anal Chem,1975,47(3):586-588.
    [167]DE LA FUENTE J L G, MARTINEZ-HUERTA M V, ROJAS S, et al. Tailoring and structure of PtRu nanoparticles supported on functionalized carbon for DMFC applications:New evidence of the hydrous ruthenium oxide phase [J]. Appl Catal B-Environ,2009,88(3-4):505-514.
    [168]ROLISON D R, HAGANS P L, SWIDER K E, et al. Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts:The importance of mixed electron/proton conductivity [J]. Langmuir,1999,15(3):774-779.
    [169]CHETTY R, XIA W, KUNDU S, et al. Effect of Reduction Temperature on the Preparation and Characterization of Pt-Ru Nanoparticles on Multiwalled Carbon Nanotubes [J]. Langmuir,2009,25(6):3853-3860.
    [170]PARKINSON C R, WALKER M, MCCONVILLE C F. Reaction of atomic oxygen with a Pt(111) surface:chemical and structural determination using XPS, CAICISS and LEED [J]. Surf Sci,2003,545(1-2):19-33.
    [171]DECARO D, BRADLEY J S. Surface spectroscopic study of carbon monoxide adsorption on nanoscale nickel colloids prepared from a zerovalent organometallic precursor [J]. Langmuir,1997,13(12):3067-3069.
    [172]BARANOVA E A, BOCK C, ILIN D, et al. Infrared spectroscopy on size-controlled synthesized Pt-based nano-catalysts [J]. Surf Sci,2006,600(17): 3502-3511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700