用户名: 密码: 验证码:
高性能透明聚氨酯涂层的制备、结构与性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯(PU)独特的链结构和聚集态结构赋予其极优异的物理性能和加工性能,如强度高、韧性好、优异的耐磨、耐油特性等,已被广泛地应用于工农业和日常生活的各个领域。透明聚氨酯材料既具有聚氨酯优异的性能,又具有较高的透明度,是近年来透明高分子材料的重要发展方向。
     根据高聚物结构理论,结晶共聚物由于存在晶区和非晶区,光线对这两相的折射率不同,因此结晶聚合物往往是不透明的,只有无规非晶的聚合物才有可能是透明的。聚酯聚氨酯中由于酯基极性高,易产生结晶,影响其透明性,而聚醚分子链间的相互作用力较聚酯弱,易无规随机排列,结晶度低,因此透明性好,目前透明聚氨酯多采用聚醚多元醇制备。但聚醚型透明聚氨酯由于分子间作用力小、内聚强度低,其机械强度较差、耐紫外和耐溶剂性能不理想。
     本文在前人的研究基础上,根据聚合物结构-性能之间的关系,通过合理设计聚酯多元醇的结构及选择原料,制备出高透明且性能优异的聚氨酯涂层,并对其结构-性能关系进行了深入研究,同时在此基础上对其进行改性,赋予其特殊性能,以使其适用于对涂层有特殊要求的领域,具体研究工作及取得的成果如下:
     (1)根据聚合物结构与性能的关系,设计合成一系列直链和支链、分子量大小和分布可控、透明、流动性好的聚酯多元醇,研究了聚酯多元醇的结构和组成对其玻璃化温度(Tg)和粘度的影响。结果表明环状单体可以提高聚酯多元醇的Tg和粘度;长链线性脂肪族二元酸和二元醇可使其Tg和粘度降低、流动性变好;少量三官能度单体的加入可以提高其Tg和粘度。
     (2)以聚酯多元醇和多异氰酸酯为主要原料制备一系列透明聚氨酯涂层,对其物理化学性质、机械性能和光学性能等进行测试,并对涂层结构进行了表征。研究表明:聚酯多元醇中直链单体赋予涂层优异的耐冲击性和柔韧性,环状单体使涂层硬度和剪切强度增加,涂层的冲击强度随环状单体的增加先增加后降低;环状异氰酸酯制备的涂层又韧又硬,而直链异氰酸酯赋予涂层较好的柔韧性;通过合理设计涂层的结构,使涂层的微相分离控制在一定程度,可制备出同时具有优异机械性能和光学性能的聚氨酯涂层。
     (3)以聚酯多元醇和含氟异氰酸酯预聚物为原料制备一系列含氟聚氨酯涂层,探讨了不同氟碳链序列长度对涂层性能的影响。结果表明:含氟链段的引入使聚氨酯内部短程有序结构程度增加,导致聚氨酯的透明度下降,而有序结构增加的程度和氟碳链的长度成反比;氟元素的引入使聚氨酯的机械性能下降,适度的微相分离可以使机械性能下降的程度降低;氟元素的引入可以提高聚氨酯的耐热性能,且异氰酸酯中氟碳链越短,聚氨酯的耐热性能越好;聚氨酯内部的氟元素有向表面迁移的趋势,使其表面能得到降低,迁移的程度和聚氨酯中的结晶程度有关。
     (4)通过溶胶-凝胶法制备一系列不同粒径的二氧化硅溶胶,采用原位聚合的方法将二氧化硅引入到聚酯多元醇中,将杂化聚酯与多异氰酸酯交联固化制备聚氨酯纳米复合涂层,对其结构与性能进行表征。结果表明:杂化聚酯的粘度随着二氧化硅粒径的增大而增大;二氧化硅的加入使聚氨酯的机械性能、耐磨性能和Tg得到明显的提高,且当二氧化硅表面羟基含量越高,效果越明显。涂层的透明度随着二氧化硅粒径的增大而降低,但二氧化硅的加入并没有提高涂层对紫外线的屏蔽作用。
     (5)以蛇纤纹石为原料,采用化学分散、酸浸方法制备出氧化硅纳米纤维。采用共混法将其引入到聚氨酯中,并对其性能进行测试。结果表明:涂层的透光率随着氧化硅纳米纤维加入量的增加而降低,涂层由无色透明转为黑色,但氧化硅纳米纤维在一定程度上提高了涂层对紫外线的屏蔽效果。同时氧化硅纳米纤维可作为补强填料进一步提高聚氨酯涂层的硬度、剪切强度、耐磨性能和热稳定性,但会使涂层的韧性降低。
The unique chain and aggregation structure enables polyurethanes (PU) with excellentphysical and processing properties, such as high strength, flexibility, excellent wear andchemical resistance, and they have been applied widely in industry, agriculture and daily life.Transparent polyurethanes not only have excellent properties of PU, but also have hightransparency, they are an important research direction in recent years.
     According to the theory of polymer, crystalline polymers are always opaque because ofthe different refractive index between the crystalline and amorphous region, and thetransparent materials are always amorphous polymers. Polyester polyurethanes possess highpolarity structure in the form of–(C=O)-, causing polyurethanes synthesized from thesematerials to crystallize easily. Polyether macrodiols are the most commonly used materials inpreparing transparent PU as weak force between molecular chains in these materials reducescrystallinity in the PU so synthesized. However, there are some disadvantages for polyetherpolyurethanes, such as: lower mechanical strength, ultraviolet and solvent resistance are poor.
     On the basis of previous research, we synthesized transparent and high performancepolyurethane coatings with polyester polyols and isocyanate trimers according to therelationship between structure and properties of polymers, and we researched the relationshipbetween structure and property in PU. At the same time, polyurethanes were modified to havespecial properties and make them suitable for coating with special requirements. The specificresearch and achievements are as follows:
     (1) We synthesized a series of linear and branched transparent polyester polyols withcontrollable molecular weight and distribution. The structure of monomer had a significanteffect on the glass temperature (Tg) and viscosity of polyester polyols. The cyclic monomerincreased Tg and viscosity of polyester polyols, while the long linear monomer decreased theTg and viscosity, small amounts of three functional monomer also increased the Tg andviscosity of polyester polyols.
     (2) Transparent polyurethane coatings were synthesised with homemade polyesterpolyols and aliphatic isocyanates. The physicochemical, mechanical, optical properties andthe structure in PU were characterized. Results indicated that the linear monomers inpolyester polyols enabled PU with excellent impact resistance and flexibility, the cyclicmonomers could increase the hardness and shear strength of PU, and the impact resistanceincreased first and then declined with the increased amount of cyclic monomers. The cyclic structure in polyisocyanate endowed PU with toughness and hardness, the linearpolyisocyanate enabled PU with good flexibility. The results indicated that high transparentpolyurethane coatings with excellent mechanical properties could be synthesized bycontrolling the microphase separation in PU to a certain degree.
     (3) Transparent fluorinated polyurethane coatings were synthesized with fluorinatedisocyanates and polyester polyol. The length of fluorocarbon chain on the properties of PUwas discussed. Results indicated that the introduction of fluorocarbon chain increased theinternal short-range ordered structure in PU, resulting in a decline in transparency, and thedegree of the structure increased is inversely proportional to the length of fluorocarbon chain.The mechanical properties were declined as the fluorocarbon chains were introduced topolyurethanes, and the moderate micro-phase separation in fluorinated polyurethanes loweredthe degree of mechanical performance degradation. The introduction of fluorine improved thethermal resistance of polyurethanes, and the short the fluorocarbon chain, the better theperformance of heat-resistant properties. Fluorine would migrate to the surface of PU andreduced the surface energy, and the degree of migration was related to the degree ofcrystallization in PU.
     (4) A series of nano silica sols with different particle size were prepared by sol-gelmethod, and introduced them to polyester polyol by in situ polymerization. Transparentorganic-inorganic hybrid polyurethane coatings were prepared by nano hybrid polyester resinsand polyisocyanates. Results indicated that the viscosity of hybrid polyester resins wasimproved with increasing silica particle size. The mechanical properties, abrasion resistanceand Tg were obviously increased as nanosilica particles were introduced to PU, especiallywhen the diameter was35nm. However, the effect on UV shielding was not obvious.
     (5) One-dimensional nanostructure material, silica nanofibers were prepared by chemicaldispersing and acid leaching route using chrysotile as raw material, and introduced them toPU by blending method. Results showed that: the transmittance of PU decreased withincreased amount of silica nanowires, and the appearance changed from colorless to black.However, silica nanofibers improved the UV shielding to a certain extent. At the same time,silica nanofibers could be used as reinforcing filler to improve the hardness, shear strength,wear resistance and thermal stability of PU, but they would decrease the flexibility of PU.
引文
[1] Adhikari, R.; Gunatillake, P. A.; Meijs, G. F.; McCarthy, S. J., The effect of diisocyanateisomer composition on properties and morphology of polyurethanes based on4,4′-dicyclohexyl methane diisocyanate and mixed macrodiols (PDMS–PHMO)[J]. Journalof Applied Polymer Science,1999,73(4):573-582.
    [2] Das, S. K.; Lenka, S., Interpenetrating polymer networks composed of castor oil-basedpolyurethane and2-hydroxy-4-methacryloyloxy acetophenone [J]. Journal of Applied science,2000,75(12):1487-1492.
    [3] Fu, B. X.; Hsiao, B. S.; Pagola, S., et al., Structural development during deformation ofpolyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules [J].Polymer,2001,42(2):599-611.
    [4] Koberstein, J. T.; Leung, L. M., Compression-molded polyurethane block copolymers.2.Evaluation of microphase compositions [J]. Macromolecules,1992,25(23):6205-6213.
    [5] Koberstein, J. T.; Galambos, A. F.; Leung, L. M., Compression-molded polyurethaneblock copolymers.1. Microdomain morphology and thermomechanical properties [J].Macromoleeules,1992,25(23):6195-6204.
    [6] Estes, G. M.; Seymour, R. W.; Cooper, S. L., Infrared studies of segmented polyurethaneelastomers. II. infrared dichroism [J]. Macromolecules,1971,4(4):452-457.
    [7] Bonart, R., Segmentierte Polyurethane [J]. Die angewandte makromolekulare chemie,1977,58(1):259-297.
    [8] Noshay, A.; McGrath, J. E., Block CoPolymers: Overview and critical survey [M].Academic Press: NewYork,1977.
    [9] Meekel, W.; Goyert, W.; Wieder, W., Thermo Plastic Elastomers[M]. Carl Hanser verlag:Muenchen Wien,1987.
    [10] Dorenr, K. H.; Ehbing, H., et al., Solar modules with a transparent polyurethane frontside and a process for producing same[P]. US:7049803B2.2009.
    [11] Shembel, E. M.; Shmyryeva, A., et al., Photovoltaic module[P]. US:0000656A1.2009.
    [12] Shembel, E. M.; Shmyryeva, A., et al., Transparent polymer materials for encapsulationof optical devices and photovoltaic module that uses this polymer[P]. US:0017268A1.2011.
    [13] Kiyotsugu Asai, Shin-ichi Inoue, Hiroshi okamoto., Preparation and properties ofimide-containing elastic polymers from elastic polyureas and pyromellitic dianhydride [J].Joumal of Polymer Science: PartA: Polymer Chemistry,2000,38(4):715-723.
    [14] Tyagi, D.; Yilgor, L.; Mcgrath, J. E.; Wilkes, G. L., Segmented organosiloxanecopolymers:2Thermal and mechanical properties of siloxane-urea copolymers [J]. Polymer,1984,25(12):1807-1816.
    [15] Krol, P.; Byczynski, L., Structure, methods for production, properties and application ofnovel polyurethane-polysiloxane copolymers [J]. Przemysl Chemiczny,2007,86(7):643-651.
    [16] Yoon, T. H.; Amord-MeKenna, C. A.; McGrath, J. E., Adhesion Behavior ofThermoplastic Polyimides and Poly(imide-siloxane) Segmented Copolymers: Influence ofTest Temperatures [J]. The Journal of Adhesion,1992,39(l):15-27.
    [17] Chen, S.; Lee, M.; Lai, J., Polysiloxaneimide membranes: Gas transport properties [J].European Polymer Journal,1996,32(12):1403-1408.
    [18] Volksen, W.; Hedriek, T. P.; Swanson, R. S., Imide-Dimethylsiloxane block copolymers:Design and synthesis of a permanent buried oxygen ion etch barrier [J]. Journal of AppliedPolymer Science,1997,66(1):199-208.
    [19] Furukawa, N.; Yuasa, M.; Yamada, Y., Synthesis and properties of novel thermosettingpolysiloxane-block-polyimides with vinyl functionality [J]. Polymer,1998,39(13):2941-2949.
    [20]杨柏.;吕长利.;沈家骢.,高性能聚合物光学材料-高分子新材料丛书[M].北京:化学工业出版社,2005,25-39.
    [21] Narayan, R.; Chattopadhyay, D.K.; Sreedhar, B.; Raju, K.V.S.N.; Mallikarjuna, N.N.;Aminabhavi, T.M., Synthesis and characterization of crosslinked polyurethane dispersionsbased on hydroxylated polyesters [J]. Journal of Applied Polymer Science,2006,99(1):368-380.
    [22] Wamprecht, C.; Sonntag, M., Polyester polyols and their use as a binder component intwo-component polyurethane coating compositions [P]. US:6423816,2002.
    [23] Santos, D.; Manuel, A., Polyester polyols and their use as the polyol component intwo-component polyurethane paints [P]. US:6184332,2001.
    [24] Brown, D.W.; Lowry, R.E.; Smith, L.E., Kinetics of hydrolytic aging of polyesterurethane elastomers [J]. Macromolecules,1980,13(2):248-252.
    [25] Pegoretti, A.; Fambri, L.; Penati, A.; Kolarik, J., Hydrolytic resistance of modelpoly(ether urethane ureas) and poly(ester urethane ureas)[J]. Journal of Applied PolymerScience,1998,70(3):577-586.
    [26] Dzierza, W., Mechanical properties of crosslinked polyurethanes [J]. Journal of AppliedPolymer Science,1978,22(9):1331-1342.
    [27] Britain, J.W., Gemeinhardt, P.G., Catalysis of the isocyanatehydroxyl reaction [J]. Journalof Applied Polymer Science,1960,4(1):207-211.
    [28] Hepburn C., Polyurethane elastomers [M].2nd ed. London, New York: Elsevier,1992.
    [29] Chattopadhyay, D.K.; Raju, K.V.S.N., Structural engineering of polyurethane coatingsfor high performance applications [J]. Progress in Polymer Science,2007,32(3):352-418.
    [30] Masiulanis, B.; Zielinski, R., Mechanical, thermal, and electric properties ofpolyurethaneimide elastomers [J]. Journal of Applied Polymer Science,1985,30(7):2731-2741.
    [31] Smith, T.L.; Magnusson, A.B., Diisocyanate-linked polymers. III. Relationships betweenthe composition and ultimate tensile properties of some polyurethane elastomers [J]. Journalof Applied Polymer Science,1961,5(14):218-232.
    [32] Haska, S.B.; Bayramli, E.; Pekel, F.; Ozkar, S., Mechanical properties ofHTPB-IPDI-based elastomers [J]. Journal of Applied Polymer Science,1997,64(12):2347-2354.
    [33] Kothandaraman, H.; Venkatarao, K.; Thanoo, B.C., Preparation, properties, andcrosslinking studies on polyurethane elastomers [J]. Polymer Journal,1989,21(10):829-839.
    [34] Kothandaraman, H.; Venkatarao, K.; Thanoo, B.C., Crosslinking studies ofpolyether-ester-based polyurethane systems [J]. Journal of Applied Polymer Science,1990,39(4):943-954.
    [35] Consaga, J.P.; French, D.M., Properties of hydroxyl-terminated polybutadiene-urethanesystems [J]. Journal of Applied Polymer Science,1971,15(12):2941-2956.
    [36] Spirkova, M.; Matejka, L.; Hlavata, D.; Meissner, B.; Pytela, J., Polybutadiene-basedpolyurethanes with controlled properties: properties: preparation and characterization [J].Journal of Applied Polymer Science,2000,77(2):381-390.
    [37] Kontou, E.; Spathis, G.; Niaounakis, M.; Kefalas, V., Physical and chemical cross-linkingeffects in polyurethane elastomers [J]. Colloid and Polymer Science,1990,268(7):636-644.
    [38] Desai, S.; Thakore, I.M.; Sarawade, B.D.; Devi, S., Effect of polyols and diisocyanateson thermo-mechanical and morphological properties of polyurethanes [J]. European PolymerJournal,2000,36(4):711-725.
    [39] Paulmer, R.D.A.; Shah, C.S.; Patni, M.J.; Pandya, M.V., Effect of crosslinking agents onthe structure and properties of polyurethane millable elastomer composites [J]. Journal ofApplied Polymer Science,1991,43(10):1953-1959.
    [40] Thomas, O.; Priester, Jr. R.D.; Hinze, K.J.; Latham, D.D., Effect of cross-link density onthe morphology, thermal and mechanical properties of flexible molded polyurea/urethanefoams and films [J]. Journal of Polymer Science Part B: Polymer Physics,1994,32(13):2155-2169.
    [41] Dounis, D.V.; Wilkes, G.L., Influence of diethanolamine on hard segment ordering inflexible polyurethane foams [J]. Journal of Applied Polymer Science,1997,65(3):525-537.
    [42] Petrovic, Z.S.; Ilavsky, M.; et al., The effect of crosslinking on properties of polyurethaneelastomers [J]. Journal of Applied Polymer Science,1991,42(2):391-398.
    [43] Petrovic, Z.S.; Javni, I.; Banhegy, G., Mechanical and dielectric properties of segmentedpolyurethane elastomers containing chemical crosslinks in the hard segment [J]. Journal ofPolymer Science Part B: Polymer Physics,1998,36(2):237-251.
    [44] Renz, H.; Bruchmann, B., Pathways targeting solvent-free PUR coatings [J]. Progress inOrganic Coatings,2001,43(1-3):32-40.
    [45] Chattopadhyay, D.K.; Prasad, P.S.R.; Sreedhar, B.; Raju, K.V.S.N., The phase mixing ofmoisture cured polyurethane-urea during cure [J]. Progress in Organic Coatings,2005,54(4):296-304.
    [46] Chattopadhyay, D.K.; Sreedhar, B.; Raju, K.V.S.N., The phase mixing studies onmoisture cured crosslinked poly-urethane-ureas during cure [J]. Polymer,2006,47(11):3814-3825.
    [47] Ong, I.W.; Julia, M.; Wilson, C.B.; Robert, S., Antimicrobial radiation curable coating[P]. US:7098256,2006.
    [48] Kim, B.K.; Kim, T.K.; Jeong, H.M., Aqueous dispersion of polyurethane anionomersfrom H12MDI/IPDI, PCL, BD, and DMPA [J]. Journal of Applied Polymer Science,1994,53(3):371-378.
    [49] Chen, Y.; Chen, Y.L., Aqueous dispersions of polyurethane anionomers: effects ofcounteraction [J]. Journal of Applied Polymer Science,1992,46:435-443.
    [50] Sung, C. S. P.; Smith, T. W.; Sung, N. H., Properties of segmentedpolyetherpoly(urethaneureas)based of2,4-toluene diisocya-nate.2.Infrared and mechanical studies[J].Macromolecules,1980,13(1):117-121.
    [51] Adhikari, R.; Gunatillake, P.A., et al., Mixed macrodiol-based siloxane polyurethanes:Effect of the comacrodiol structure on properties and morphology [J]. Journal of AppliedPolymer Science,2000,78(5):1071-1082.
    [52] Martin, D. J.; Meijs, G. F., et al., The effect of average soft segment length onmorphology and properties of a series of polyurethane elastomers. II. SAXS-DSC annealingstudy [J]. Journal of Applied Polymer Science,1997,64(4):803-817.
    [53] Wang, C. B.; Cooper, S. L., Morphology and properties of segmented polyetherpolyurethaneureas [J]. Macromolecules,1983,16(5):775-786.
    [54] Aitken, R. R.; Jeffs, G.M.F., Thermoplastic polyurethane elastomers based on aliphaticdiisocyanates: thermal transitions [J]. Polymer,1977,18(2):197-198.
    [55] Miller, J.A.; Lin, S. B., et al., Properties of polyether-polyurethane block copolymers:effects of hard segment length distribution [J]. Macromolecules,1985,18(1):32-44.
    [56] Seymour, R. W.; Cooper, S. L., Thermal analysis of polyurethane block polymers [J].Macromolecules,1973,6(1):48-53.
    [57] Leung, L. M.; Koberstein, J. T., DSC annealing study of microphase separation andmultiple endothermic behavior in polyether-based polyurethane block copolymers [J].Macromolecules,1986,19(3):706-713.
    [58]蓝立文.,高分子物理[M].陕西:西北工业大学出版社,1985:25-41.
    [59] Hood, M.A.; Wang, B.B.; et al., Morphology control of segmented polyurethanes bycrystallization of hard and soft segments [J]. Polymer,2010,51(10):2191-2198.
    [60] Furukawa, M.; Mitsui, Y.; et al., Microphase-separated structure and mechanicalproperties of novel polyurethane elastomers prepared with ether based diisocyanate [J].Polymer,2005,46(24):10817-10822.
    [61] Yang, X.F.; Li, J.; Croll, S.G.; et al., Degradation of low gloss polyurethane aircraftcoatings under UV and prohesion alternating exposures [J]. Polymer Degradation andStability,2003,80(1):51-58.
    [62] Yang, X.F.; Tallman, D.E.; Bierwagen, G.P.; Croll, S.G.; Rohlik, S., Blistering anddegradation of polyurethane coatings under different accelerated weathering tests [J]. PolymerDegradation and Stability,2002,77(1):103-109.
    [63] He, Y.; Yuan, J.P.; Cao,H.; et al., Characterization of photo-degradation of a polyurethanecoating system by electron spin resonance [J]. Progress in Organic Coatings,2001,42(1-2):75-81.
    [64] Sonnenschein, M.F.; Rondan, N.; Wendt, B.L.; Cox, J.M., Synthesis of transparentthermoplastic polyurethane elastomers [J]. Journal of Polymer Science Part A: PolymerChemistry.2004,42(2):271-278.
    [65] Schon, P.; Bagdi, K.; et al., Quantitative mapping of elastic moduli at the nanoscale inphase separated polyurethanes by AFM [J]. European Polymer Journal,2011,47(4):692-698.
    [66]张晓华.;曹亚.,交联对透明聚氨酯弹性体结构与性能的影响[J].高分子材料科学与工程,2002,18(6):122-125.
    [67]薛锋.;黄树槐.,透明聚氨酯树脂材料的合成及性能研究[J].华中科技大学学报,2004,32(7):98-101.
    [68]郭新涛.;厉蕾., HMDI-PTMEG基透明聚氨酯弹性体热老化机理研究[J].航空材料学报,2011,31(3):90-94.
    [69] Manning, S. C.; Gracik, C. S.; Mason, A. W.; Chan, J. C., Soft, transparent andprocessable thermoplastic polyurethane [P]. US:6294638B1,2001.
    [70]王华.透明聚氨酯材料的制备与研究[D].西安:西安科技大学硕士论文,2007.
    [71] Sonnenschein, M. F.; Rondan, N., et al., Synthesis of transparent thermoplasticpolyurethane elastomers [J]. Journal of Polymer Science Part A: Polymer Chemistry,2004,42(2):271-278.
    [72]Saunders, J. H.; Frisch, K. C., Polyurethanes: chemistry and technology [M]. vol. XVI.High polymers, Part I. New York: Wiley,1962.
    [73] Slagel, E. C., Protective shield [P]. US:3866242,1975.
    [74] Slagel, E. C., Impact resistance polyurethane and method of manufacture thereof [P]. US:5962617,1999.
    [75] Slagel, E. C., Impact resistance polyurethane and method of manufacture thereof [P]. US:6127505,2000.
    [76] Stutz, H.; Illers, K. H.; Schuster, L., Polyurethane-urea elastomers and their production[P]. US:4208507,1980.
    [77] Tamura, K.; Mitsuuchi, S.; Chang, C. T., Polyurethane resin composition for opticallenses and impact strength synthetic resin lenses [P]. US:7216976B2,2007.
    [78] Maletzko, C.; Baumann, E.; Beuermann, I. R.; Roche, P.; et al., Compact, transparentpolyisocyanate polyaddition products [P]. EP:0943637A1,2003.
    [79] Slagel, E. C., High heat distortion temperature transparent polyurethanes [P]. US:4808690,1989.
    [80] Laas, H. J.; Krause, J.; Halpaap, R.; Wamprecht, C.; et al., Polyurethane castingcompounds [P]. US:0281965A1,2011.
    [81] Moncur, M. V.; HOO, L. H.; Houghton, E. J., Transparent fluorinated polyurethanecoating composition and methods of use thereof [P]. US:6001923,1999.
    [82] Sonnenschein, M. F.; Rondan, N., et al., Synthesis of transparent thermoplasticpolyurethane elastomers [J]. Journal of Polymer Science Part A: Polymer Chemistry.2004,42(2):271-278.
    [83] Chen, P. H.; Yang, Y. F., et al., Synthesis and properties of transparent thermoplasticsegmented polyurethanes [J]. Advances in Polymer Technology,2007,26(1):33-40.
    [84] Ameduri, B.; Boutevin, B.; Kostov, G., Fluoroelastomers: synthesis, properties andapplications [J]. Progress in Polymer Science,2001,26(1):105-187.
    [85] Hougham, G.; Johns, K.; Cassidy, P.E.; Davidson, T., Fluoropolymers: synthesis andpolymerization [M], vols.1and2. New York: Plenum Press;1999.
    [86] Scheirs, J., Modern fluoropolymers [M]. Victoria: Wiley;1997.
    [87] Flemming, R.G.; Capelli, C.C.; Cooper, S.L.; Proctor, R.A., Bacterial colonization offunctionalized polyurethanes [J]. Biomaterials,2000,21(3):273-281.
    [88] Kim, Y.S.; Lee, J.S.; Ji, Q; McGrath, J.E., Surface properties of fluorinated oxetanepolyol modified polyurethane block copolymers [J]. Polymer,2002,43(25):7161-7170.
    [89] Tonelli, C.; Trombetta, T.; Scicchitano, M.; Simeone, G.; Ajroldi, G., New fluorinatedthermoplastic elastomers [J]. Journal of Applied Polymer Science,1996,59(2):311-327.
    [90] Aneja, A.; Wilkes, G.L., A systematic series of ‘model’PTMO based segmentedpolyurethanes reinvestigated using atomic force microscopy [J]. Polymer,2003,44(23):7221-7228.
    [91] Wang, L.F.; Wei, Y.H., Effect of soft segment length on properties offluorinated polyurethanes [J]. Colloids and Surfaces B: Biointerfaces,2005,41(4):249-255.
    [92] Tan, H.; Guo, M.; et al., The effect of fluorinated side chain attached on hard segment onthe phase separation and surface topography of polyurethanes [J]. Polymer,2004,45(5):1647-1657.
    [93] Ge, Z.; Zhang, X.Y.; Dai, J.B.; et al., Synthesis, characterization and properties of a novelfluorinated polyurethane [J]. European Polymer Journal,2009,45(2):530-536.
    [94] Wu, W.L.; Yuan, G.C.;He, A.H.; Han, C.C., Surface depletion of the fluorine content ofelectrospun fibers of fluorinated polyurethane [J]. Langmuir,2009,25(5):3178-3183.
    [95] Tonelli, C.; Trombetta, T.; Scicchitano, M.; Castiglioni, G., New perfluoropolyether softsegment containing polyurethanes [J]. Journal of Applied Polymer Science,1995,57(9):1031-1042.
    [96] Ho, T.; Wynne, K.J., A new fluorinated polyurethane: polymerization, characterization,and mechanical properties [J]. Macromolecules,1992,25(13):3521-3527.
    [97] Takakura, T.; Kato, M.; Yamabe, M., Fluorinated polyurethanes,1. Synthesis andcharacterization of fluorine-containing segmented poly(urethane-urea)s [J]. DieMacromolekulare Chemie,1990,191(3):625-632.
    [98] Yoon, S.C.; Ratner, B.D., Surface structure of segmented poly(ether urethanes) andpoly(ether urethane ureas) with various perfluoro chain extenders. An x-ray photoelectronspectroscopic investigation [J]. Macromolecules,1986,19(4):1068-1079.
    [99] Yoon, S.C.; Ratner, B.D., Surface and bulk structure of segmented poly(ether urethanes)with perfluoro chain extenders.2. FTIR, DSC, and x-ray photoelectron spectroscopic studies[J]. Macromolecules,1988,21(8):2392-2400.
    [100] Jiang, M.; Zhao, X.L.; Ding, X.B., et al., A novel approach to fluorinated polyurethanebymacromonomer copolymerization [J]. European Polymer Journal,2005,41(8):1798-1803.
    [101] Yoon, S.C.; Ratner, B.D., Surface and bulk structure of segmented poly(ether urethanes)with perfluoro chain extenders.3. Effects of annealing, casting solvent, and casting conditions[J]. Macromolecules,1988,21(8):2401-2404.
    [102] Chen, K.Y.; Kuo, J.F., Synthesis and properties of novel fluorinated aliphaticpolyurethanes with fluoro chain extenders [J]. Macromolecular Chemistry and Physics,2000,201(18):2676-2686.
    [103] Wang, L.F.; Wei, Y.H.; Chen, K.Y.; Lin, J.C.; Kuo, J.F., Properties of phospholipidmonolayer deposited on a fluorinated polyurethane [J]. Journal of Biomaterials Science,Polymer Edition,2004,15(8):957-969.
    [104] Trombetta, T.; Iengo, P.; Turri, S., Fluorinated segmented polyurethane anionomers forwater-oil repellent surface treatments of cellulosic substrates [J]. Journal of Applied PolymerScience,2005,98(3):1364-1372.
    [105] Turri, S.; Levi, M.; Trombetta, T., Process design of fluorinated polyurethane-ureaanionomer aqueous dispersions [J]. Macromolecular Symposia,2004,218(1):29-38.
    [106] Ji, Q.; Kang, H.; Wang, J., et al., Surface characterization of fluorinated oxetane polyolmodified polyurethane block copolymers [J]. Polymer Preprints,2000,41(1):346-347.
    [107] Ji, Q.; Wang, J.; Wang, S., et al., Fluorinated oxetane polyol modified segmentedpolyurethane elastomers [J]. Polymer Preprints,1999,40(2):930-931.
    [108] Kim, Y. S.; Lee, J. S.; Ji, Q., et al., Surface properties of fluorinated oxetane polyolmodified polyurethane block copolymers[J]. Polymer,2002,43(25):7161-7170.
    [109] Turri, S.; Trombetta, T.; Levi M., Catalyst effect on the crosslinking kinetics of afluorine containing polyurethane network [J]. Macromolecular Materials and Engineering,2000,283(1):144-152.
    [110]葛震., PTMG-g-HFP及含氟聚氨酯的合成、表征与性能研究[D].安徽:中国科学技术大学,2006.
    [111] Chen, K. Y.; Kuo, J. F., Synthesis and properties of novel fluorinated aliphaticpolyurethanes with fluoro chain extenders [J]. Macromolecular Chemistry and Physics,2000,201(18):2676-2686.
    [112] Wang, L. F.; Wei, Y. H., Effect of soft segment length on properties of fluorinatedpolyurethanes [J]. Colloids and Surfaces B: Biointerfaces,2005,41(4):249-255.
    [113] Tan, H.; Xie, X.; Li, J., et al., Synthesis and surface mobility of segmentedpolyurethanes with fluorinated side chains attached to hard blocks [J]. Polymer,2004,45(5):1495-1502.
    [114] Tan, H.; Li, J.; Guo, M., et al., Phase behavior and hydrogen bonding in biomembranemimicing polyurethanes with long side chain fluorinated alkyl phosphatidylcholine polarhead groups attached to hard block [J]. Polymer,2005,46(18):7230-7239.
    [115]谢兴益.,氟碳化合物封端的聚碳酸酯聚氨酯的合成及生物稳定性研究[D].成都:四川大学,2001.
    [116] Hollander, J.; Trischler, F. D.; Gosnell, R. B., Synthesis of polyurethanes fromfluorinated diisocyanates [J]. Journal of Polymer Science Part A-1: Polymer Chemistry,1967,5(11):2757-2767.
    [117] Li, G.; Shen, Y.; Ren, Q., Effect of fluorinated acrylate on the surface properties ofcationic fluorinated polyurethane-acrylate hybrid dispersions [J]. Journal of Applied PolymerScience,2005,97(6):2192-2196.
    [118] Wang, L.F.; Ji, Q.; Glass, T.E., et al., Synthesis and characterization of organosiloxanemodified segmented polyether polyurethanes [J]. Polymer,2000,41(13):5083-5093.
    [119] Vogel, R.; Meredith, P.; Kartini, I., Mesostructured dye-doped titanium dioxide formicro-optoelectronic applications [J]. ChemPhysChem,2003,4(6):595-603.
    [120] Frach, P.; Goedicke, K., et al., High rate deposition of insulating TiO2and conductingITO films for optical and display applications [J]. Thin Solid Films,2003,445(2):251-258.
    [121] Francioso, L.; Presicce, D. S., et al., Response evaluation of TiO2sensor to flue gasspark ignition engine and in controlled environment[J]. Sensors and Actuators B: Chemical,2005,107(2):563-571.
    [122] Hansel, H.; Zettl, H., et al., Optical and Electronic Contributions inDouble-Heterojunction Organic Thin-Film Solar Cells [J]. Advanced Materials,2003,15(24):2056-2060.
    [123] Kron, G.; Egerter, T.; Werner, J.H., et al., Electronic transport in dye-sensitizednanoporous TiO2solar cells-comparison of electrolyte and solid-state devices [J]. The Journalof Physical Chemistry B,2003,107(15):3556-3564.
    [124] Bosc, F.; Ayral, A., et al., A simple route for low-temperature synthesis of mesoporousand nanocrystalline anatase thin films [J]. Chemistry of Materials,2003,15(12):2463-2468.
    [125] Nakamura, R.; Imanishi, A., et al., In situ FTIR studies of primary intermediates ofphotocatalytic reactions on nanocrystalline TiO2films in contact with aqueous solutions [J].Journal of the American Chemical Society,2003,125(24):7443-7450.
    [126] Chen, W. C.; Liu, W. C., et al., Synthesis and characterization of oligomericphenylsilsequioxane-titania hybrid optical thin films [J]. Materials Chemistry and Physics,2004,83(1):71-77.
    [127] Miura, S.; Naito, H.; Kanemitsu, Y., et al., Photocarrier generation at nano-interfaces inorganic polysilane-titania matrix hybrid thin films [J]. Thin Solid Films,2003,438-439:253-256.
    [128] Perrin, F. X.; Nguyen, V.; Vernet, J. L., Mechanical properties of polyacrylic-titaniahybrids-microhardness studies [J]. Polymer,2002,43(23):6159-6167.
    [129] Chiang, P. C.; Whang, W. T., et al., Physical and mechanical properties ofpolyimide/titania hybrid films [J]. Thin Solid Films,2004,447-448:359-364.
    [130] Liu, L.; Lu, Q. H.; Yin, J., et al., Preparation and properties of photosensitivepolyimide/titania-silica hybrid materials [J]. Materials Science and Engineering: C,2002,22(1):61-65.
    [131] Que, W. X.; Hu, X., Sol-gel derived titania/γ-glycidoxypropyltrimethoxysilane andmethyltrimethoxysilane hybrid materials for optical waveguides [J]. Journal of Sol-GelScience and Technology,2003,28(3):319-325.
    [132] Agag, T.; Tsuchiya, H.; Takeichi, T., Novel organic-inorganic hybrids prepared frompolybenzoxazine and titania using sol-gel process [J]. Polymer,2004,45(23):7903-7910.
    [133] Perrin, F. X.; Nguyen, V.; Vernet, J. L., Mechanical properties of polyacrylic-titaniahybrids-microhardness studies [J]. Polymer,2002,43(23):6159-6167.
    [134] Chen, T. K.; Tien, Y. I.; Wei, K. H., Synthesis and characterization of nove segmentedpolyurethane/clay nanocomposites [J]. Polymer,2000,41(4):1345-1353.
    [135] Tortora, M.; Gorrasi, G.; Vittoria, V.; et al., Structural characterization and transportproperties of organically modified montmorillonite/polyurethane nanocomposites [J]. Polymer,2002,43(23):6147-6157.
    [136] Yao, K. J.; Song, M.; et al., Polymer/layered caly nanocomposite:2polyurethanenanocomposites [J]. Polymer,2002,43(3):1017-1020.
    [137] Song, M.; Hourston, D. J.; et al., High performance nanocomposites of polyurethaneelastomer and organically modified layered silicate [J]. Journal of Applied Polymer Science,2003,90(12):3239-3243.
    [138] Rehab, A.; Salahuddin, N., Nanocomposite materials based on polyurethane intercalatedinto montmorillonite clay [J]. Materials Science and Engineering: A,2005,399(1-2):368-376.
    [139] Yuen, S.M.; Ma, C.C.M.; et al., Silane-modified MWCNT/PMMAcomposites-preparation, electrical resistivity, thermal conductivity and thermal stability [J].Composites Part A: Applied Science and Manufacturing,2007,38(12):132-137.
    [140] Song, L.; Hu, Y.; Tang, Y.; et al., Study on the properties of flame retardantpolyurethane/organoclay nanocomposite [J]. Polymer Degradation and Stability,2005,87(1):111-116.
    [141] Pegoretti, A.; Dorigato, A.; et al., Contact angle measurements as a tool to investigatethe filler-matrix interation in polyurethane-clay nanocomposites from blocked prepolymer [J].European Polymer Journal,2008,44(6):1662-1672.
    [142] Wen, J.; Wilkes, G. L., Organic/inorganic hybrid network materials by the sol-gelapproach [J]. Chemistry of Materials,1996,8(8):1667-1681.
    [143] Schottner, G., Hybrid sol-gel-derived polymers: applications of multifunctionalmaterials [J]. Chemistry of Materials,2001,3(10):3422-3435.
    [144] Mahltig, B.; Fischer, A., Inroganic/organic polymer coatings for textiles to realize waterrepellent and antimicrobial properties-A study with respect to textile comfort [J]. Journal ofPolymer Science Part B: Polymer Physics,2004,48(14):1562-1568.
    [145] Ni, H.; Skaja, A. D.; Soucek, M. D., Acid-catalyzed moisture-curingpolyurea/polysiloxane creamer coatings [J]. Progress in Oorganic Coatings,2000,40(1):175-184.
    [146] Landry, C. J. T.; Coltrain, B. K.; Landry, M. R.; Fitzgerald, J. J.; Long, V. K., Poly(vinylacetate)/silica-filled materials: material properties of in situ vs fumed silica particles [J].Macromolecules,1993;26(14):3702-3712.
    [147] Hajji, P.; David, L.; Gerard, J. F.; Pascault, J. P.; Vigier, G., Synthesis, structure, andmorphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate [J].Journal of Polymer Science Part B: Polymer Physics,1999,37(22):3172-3187.
    [148] Ou, Y. C.; Yang, F.; Yu, Z. Z., A new conception on the toughness of nylon6/silicananocomposite prepared via in situ polymerization [J]. Journal of Polymer Science Part B:Polymer Physics,1998,36(5):789-795.
    [149] Reynaud, E.; Jouen, T.; Gauthier, C.; Vigier, G.; Varlet, J., Nanofillers in polymericmatrix: a study on silica reinforced PA6[J]. Polymer,2001,42(21):8759-8768.
    [150] Hsiue, G. H.; Kuo, W. J.; Huang, Y. P, Jeng, R. J., Microstructuraland morphological characteristics of PS-SiO2nanocomposites [J]. Polymer,2000;41(8):2813-2825.
    [151] Chen, Y. C.; Zhou, S. X.; et al., PreParation and characterization of nanocompositePolyurethane [J]. Journal of Colloid and Interfaee Science,2004,279(2)370-378.
    [152] Chen, G. D.; Zhou, S. X.; et al., Effects of surface property of colloidal silica particleson redispersibility and proPerties of acrylic based polyurethane/silica composites [J]. Journalof Colloid and Interface Science,2005,281(2):339-350.
    [153] Bonilla, G.; Martinez, M.; et al., Ternary interpenetrating networks ofpolyurethane-poly(methyl methacrylate)-silica: preparation by the sol-gel process andcharacterization of films [J]. European Polymer Journal,2006,42(11):2977-2986.
    [154] Koch, C.C., Synthesis of nanostructured materials by mechanical milling: problems andopportunities [J]. Nanostructured Materials,1997,9(1-8):13-22.
    [155] Tjong, S. C.; Chen, H., Nanocrystalline materials and coatings [J]. Materials Scienceand Engineering: R: Reports,2004,45(1-2):1-88.
    [156] Ryszkowska, J.; Zawadzak, E. A.; et al., Structure and properties of polyurethanenanocomposites with zirconium oxide including Eu [J]. Materials Science and Engineering C,2007,27(5-8):994-997.
    [157] Zhou, L. M.; Gao, L. J.; et al., Preparation and characterization of a series of novelEuIII-complex-polyurethane acrylate materials based on mixed6-hydroxy-1-naphthoate and1,10-phenanthroline ligands [J]. Journal of Applied Polymer Science,2012,125(5):690-696.
    [158]周立明.;孙光辉.;高丽君.;等.,稀土配合物La(Phen)2Cl3DMF.(DMF)2/聚氨酯丙烯酸酯透明材料的制备及性能[J].功能材料,2009,40(3):362-364.
    [159]陈永春.,聚酯聚氨酯/SiO2(TiO2)纳米复合涂层的制备及表征[D].复旦大学,2005.
    [160] Chen, T. K.; Tien, Y. I.; et al., Synthesis and characterization of novel segmentedpolyurethane/clay nanocomposites [J]. Polymer,2000,41(4):1345-1353.
    [161] Tortora, M.; Gorrasi, G.; Vittoria, V.; et al., Structural characterization and transportproperties of organically modified montmorillonite/polyurethane nanocomposites [J].Polymer,2002,43(23):6147-6157.
    [162] Yao, K. J.; Song, M.; et al., Polymer/layered clay nanocomposites:2polyurethanenanocomposites [J]. Polymer,2002,43(3):1017-1020.
    [163] Song, M.; Hourston, D. J.; et al., High performance nanocomposites of polyurethaneelastomer and organically modified layered silicate [J]. Journal of Applied Polymer Science,2003,90(12):3239-3243.
    [164] Rehab, A.; Salahuddin, N., Nanocomposite materials based on polyurethaneintercalated into montmorillonite clay [J]. Mater. Sci. Eng. A: Struct Mater PropertiesMicrostruct Process,2005,399(1-2):368-376.
    [165] Xiong, J. W.; Zheng, Z.; et al., Reinforcement of polyurethane composites with anorganically modified montmorillonite [J]. Composites Part A: Applied Science andManufacturing,2007,38(1):132-137.
    [166] Song, L.; Hu, Y.; Tang, Y.; et al., Study on the properties of flame retardantpolyurethane/organoclay nanocomposite [J]. Polymer Degradation and Stability,2005,87(1):111-116.
    [167] Pegoretti, A.; Dorigato, A.; et al., Contact angle measurements as a tool to investigatethe filler-matrix interactions in polyurethane-clay nanocomposites from blocked prepolymer[J]. European Polymer Journal,2008,44(6):1662-1672.
    [168] Alivistaos, A. P., Perspectives on the physical chemistry of semiconductor nanocrystals[J]. Science,1996,100(31):13226-13239.
    [169] Chen, S.; Zhu, J.; Shen, Y. F.; et al., Synthesis of Nanocrystal-polymer TransparentHybrids via Polyurethane Matrix Grafted onto Functionalized CdS Nanocrystals [J].Langmuir,2007,23(2):850-854.
    [170] Kojio, K.; Fukumaru, T.; Furukawa, M., Highly softened polyurethane elastomersynthesized with novel1,2-bis(isocyanate) ethoxyethane [J]. Macromolecules,2004,37(9):3287-3291.
    [171] Chu, B.; Gao, T.; Li, Y. J.; et al., Microphase separation kinetics in segmentedpolyurethanes: effects of soft segment length and structure [J]. Macromolecules,1992,25(21):5724-5729.
    [172] Culin, J.; Andreis, M.; Smit, T.; et al., Motional heterogeneity and phase separation offunctionalized polyester polyurethanes[J]. European Polymer Journal,2004,40(8):1857-1866.
    [173] Xie, H. Q.; Liu, Z. H.; Liu, H.; et al., Nonlinear optical crosslinked polymers andinterpenetrating polymer networks containing azo-benzothiazole chromophore groups [J].Polymer,1998,39(12):2393-2398.
    [174] Rosu, D.; Rosu, L.; Cascaval, C. N., IR-change and yellowing of polyurethane as aresult of UV irradiation [J]. Polymer Degradation and Stability,2009,94(4):591-596.
    [175] Kojio, K.; Nakashima, S.; Furukawa, M., Microphase-separated structure andmechanical properties of norbornane diisocyanate-based polyurethanes [J]. Polymer,2007,48(4):997-1004.
    [176] Chen, Y. C.; Zhou, S. X.; Gu, G. X.; Wu, L. M., Microstructure and properties ofpolyester-based polyurethane/titania hybrid films prepared by sol-gel process [J]. Polymer,2006,47(5):640-1648.
    [177] Coutinho, F. M. B.; Delpech, M. C., Degradation profile of films cast from aqueouspolyurethane dispersions [J]. Polymer Degradation and Stability,2000,70(1)49-57.
    [178] Coutinho, F. M. B.; Delpech, M. C.; Alves, T. L.; Ferreira, A. A., Degradation profilesof cast films of polyurethane and poly(urethane-urea) aqueous dispersions based onhydroxy-terminated polybutadiene and different diisocyanates [J]. Polymer Degradation andStability,2003,81(1):19-27.
    [179] Santos, C. C.; Delpech, M. C.; Coutinho, F. M. B., Thermal and mechanical profile ofcast films from waterborne polyurethanes based on polyether block copolymers [J]. Journal ofMaterial Science,2009,44(5):1317-1323.
    [180] Wang, T. L.; Hsieh, T. H., Effect of polyol structure and molecular weight on thethermal stability of segmented poly(urethaneureas)[J]. Polymer Degradation and Stability,1997,55(1):95-102.
    [181] Eastman Publication N-329C,"Triangle Glycol Study,"(June1998).
    [182] Rosu, D.; Rosu L, Cascaval C N. IR-change and yellowing of polyurethane as a resultof UV irradiation [J]. Polymer Degradation and Stability,2009,94(4):591-596.
    [183] Kojio, K.; Nakashima, S.; Furukawa, M., Microphase-separated structure andmechanical properties of norbornane diisocyanate-based polyurethanes [J]. Polymer,2007,48(4):997-1004.
    [184] Sung, C. S. P.; Schneider, N. S., Infrared studies of hydrogen bonding in toluenediisocyanate based polyurethanes [J]. Macromolecules,1975,8(1):68-73.
    [185] Kim, Y. S.; Lee, J. S.; Ji, Q.; et al., Surface properties of fluorinated oxetane polyolmodified polyurethane block copolymers [J]. Polymer,2002,43(25):7161-7170.
    [186] Coleman, M. M.; Skrovanek, D. J.; Hu, J. B.; et al., Hydrogen bonding in polymerblends.4. Blends involving polymers containing methacrylic acid and vinylpyridine groups[J]. Macromolecules,1988,21(4):59-65.
    [187] Hernandez, R.; Weksler, J.; Padsalgikar, A.; et al., A comparision of phase organizationof model segmented polyurethanes with different intersegment compatibilities [J].Macromolecules,2008,41(24):9767-9776.
    [188] Brunette, C. M.; Hsu, S. L.; MacKnight, W. J., Hydrogen-bonding properties ofhard-segment model compounds in polyurethane block copolymers [J]. Macromolecules,1982,15(1):71-77.
    [189] Yoon, S. C.; Ratner, B. D., Surface and bulk structure of segmented poly(etherurethanes) with perfluoro chain extends.2. FTIR, DSC, and x-ray photoelectron spectroscopicstudies [J]. Macromolecules,1998,21:2392-2400.
    [190] Yilgor, I.; Yilgor, E.; Guler, I. G.; et al., FTIR investigation of the influence ofdiisocyanate symmetry on the morphology development in model segmented polyurethanes[J]. Polymer.2006,47(11):4105-4114.
    [191] Davies, P.; Evrard, G., Accelerated ageing of polyurethanes for marine applications [J].Polymer Degradation and Stability,2007,92(8):1455-1464.
    [192] Ameduri, B.; Boutevin, B.; Kostov, G., Fluoroelastomers: synthesis, properties andapplications [J]. Progress in Polymer Science,2001,26(1):105-187.
    [193] Ho, T.; Wynne, K. J., A new fluorinated polyurethane: polymerization, characterization,and mechanical properties [J]. Macromolecules,1992,25(13):3521-3527.
    [194] Yoon, S. C.; Ratner, B. D., Surface structure of segmented poly(ether urethanes) andpoly(ether urethane ureas) with various perfluoro chain extenders. An x-ray photoelectronspectroscopic investigation [J]. Macromolecules,1986,19(4):1068-1079.
    [195] Yoon, S. C.; Ratner, B. D., Surface and bulk structure of segmented poly(etherurethanes) with perfluoro chain extenders.3. Effects of annealing, casting solvent, and castingconditions [J]. Macromolecules,1988,21(8):2401-2404.
    [196]多英全.;等.,异佛尔酮二异氰酸酯基热塑性聚氨酯氢键体系的研究[J].高分子材料科学与工程,2001,17(6):87-89.
    [197] Lu, C. L.; Cui, Z. C.; et al., Research on preparation, structure and properties ofTiO2/polythiourethane hybrid optical films with high refractive index [J]. MacromolecularMaterials and Engineering,2003,288(9):717-723.
    [198] Chang, T. C.; Wang, Y. T.; Hong, Y. S.; Chiu, Y. S., Organic–inorganic hybrid materials.V. Dynamics and degradation of poly(methyl methacrylate) silica hybrids [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2000,38(11):1972-1980.
    [199] Kokado, K.; Iwamura, T.; Chujo, Y., Synthesis and photoluminescence properties ofpyrene-incorporated organic-inorganic polymer hybrids [J]. Polymer Journal,2008,40(5):402-408.
    [200] Shang, X. Y.; Zhu, Z. K.; Yin, J.; Ma, X. D., Compatibility of soluble polyimide hybridinduced by a coupling agent [J]. Chemistry of Materials,2002,14(1):71-77.
    [201] Yu, Y.Y.; Chen, W.C., Transparent organic–inorganic hybrid thin flms prepared fromacrylic polymer and aqueous monodispersed colloidal silica [J]. Materials Chemistry andPhysics,2003,82(2):388-395.
    [202] Hajji, P.; David,L.; Gerard, J.F.; et al., Synthesis, structure, and morphology ofpolymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate [J]. Journal ofPolymer Science Part B: Polymer Physics,1999,37(22):3172-3187.
    [203] Chang, T.C.; Wang, Y.T.; Hong, Y.S.; Chiu, Y.S., Organic-inorganic hybrid materials. V.Dynamics and degradation of poly(methyl methacrylate) silica hybrids [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2000,38(11)1972-1980.
    [204] Leverkusen, M.B.; Koln, T.E.; Leverkusen, S.G.; et al., US:6020419,2000.
    [205] Bourgeat-Lami, E.; Lang, J.; Encapsulation of inorganic particals by dispersionpolymerization in polar media: silica nanoparticles encapsulated by polystyrene [J].Journal of Colloid and Interface Science,1998,197(2)293-308.
    [206] Chen, G. D.; Zhou, S. X.; Gu, G. X.; Wu, L. M., Modification of colloidal silica on themechanical properties of acrylic based polyurethane/silica composites [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,296(1-3):29–36
    [207] Zaman, A. A.; BjeiloPavlic, M.; Moudgil, B.M., Effect of adsorbed Poluethylene Oxideon the rheology of colloidal silica suspensions [J]. Journal of Colloid and Interface Science,2000,226(2):290-298.
    [208] Havet, G.; Isayev, A. I., A thermodynamic approach to the rheology of highly interactivefiller-polymer mixtures. PartⅡ. Comparison with polystyrene/nanosilica mixture [J].Rheologica Acta,2003,42(1-2):47-55.
    [209]陈国栋.,丙烯酸聚氨酯/纳米二氧化硅复合涂层的研究[D].上海:复旦大学,2005.
    [210] Iijima, S., Helical mocritubules of graphite carbon [J]. Nature,1991,354(6384):56-58.
    [211]杨艳霞.,纤蛇纹石酸浸及其制备氧化硅纳米线的研究[D].长沙:中南大学,2007.
    [212] Jiang, X. C.; Herricks, T.; Xia, Y. N., Cuo nanowires can be synthesized by heatingcopper substrates in air [J]. Nano Letters,2002,2(12):1333-1338.
    [213] Chen, C. C.; Yeh, C. C.; Chen, C. H.; et al., Catalytic growth and characterization ofgallium nitride nanowires [J]. Journal of the American Chemical Society,2001,123(12):2791-2798.
    [214]彭新生.,准一维氧化物、半导体纳米材料的制备及物性表征[D].北京:中国科学院固体物理研究所,2003.
    [215] Kar, S.; Chaudhuri, S., Catalytic and non-catalytic growth of amorphous silicananowires and their photoluminescence properties [J]. Solid State Communications,2005,133(3):151-155.
    [216] Chen, Z.; Wang, Y. X.; He, H. P.; et al., Mechanism of intense blue photoluminescencein silica wires [J]. Solid State Communications,2005,135(4):247-250.
    [217]刘琨.;冯其明.;杨艳霞.;张国范.,纤蛇纹石制备氧化硅纳米线[J].硅酸盐学报,2007,35(2):164-169.
    [218]韩静香.;佘利娟.;翟立新.,化学沉淀法制备纳米二氧化硅[J].硅酸盐通报,2010,29(3):681-6
    [219] Zhuravlev, T., The surface chemistry of amorphous silica. zhuravlev model [J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2000,173(1):1-38.
    [220] Wang, L. J.; Lu, A. H.; Wang, C. Q.; et al., Nano-fibriform production of silica fromnatural chrysotile [J]. Journal of Colloid and Interface Science,2006,295(2):436-439.
    [221] Wypych, F.; Schreiner, W. H.; Richard, E. Jr., Grafting of phenylarsonic and2-nitrophenol-4-arsonic acid onto disordered silica obtained by selective leaching ofbrucite-like sheet from chrysotile structure [J]. Journal of Colloid and Interface Science,2004,276(1):167-173.
    [222] Zhou, Q.; Zhang, L.; Zhang, M.; Wang, B.; Wang, S., Miscibility, free volume behaviorand properties of blends from cellulose acetate and castor oil-based polyurethane [J]. Polymer,2003,44(5):1733-1739.
    [223] Mothe, C. G.; Araujo, C. R., Properties of polyurethane elastomers and composites bythermal analysis [J]. Thermochimica acta,2000,357-358:321-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700