用户名: 密码: 验证码:
高Nb-TiAl合金高温变形及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高Nb-TiAl合金是发展高温高强TiAl合金的典范,具有高比强度和比模量,良好的高温抗氧化性以及蠕变抗力等优点,使其在航空航天工业以及汽车工业中极具应用前景。高Nb-TiAl合金铸锭制备困难,变形抗力大,限制了其加工和应用。β相凝固被证明可以有效的细化合金的铸造组织,减小元素偏析。本文通过ISM技术、 VAR技术分别制备出了成分为Ti-45Al-9Nb-Y和Ti-44Al-8Nb-0.2W-0.2B-Y的β相凝固高Nb-TiAl合金,并对铸锭制备、热加工技术、热处理工艺,以及组织和性能进行了系统的研究。
     采用ISM技术,VAR三次重熔技术分别成功制备了Ti-45Al-9Nb-Y合金以及Ti-44Al-8Nb-0.2W-0.2B-Y合金。Ti-45Al-9Nb-Y合金是典型的近层片组织,相邻片层晶团具有相同的片层取向。γ相遵循(110) β//(111) γ位向关系从晶界上残余的β相内不连续析出,形成混合组织。ISM熔炼可以有效的减少元素偏析,提高组织均匀性。热等静压后大尺寸Ti-44Al-8Nb-0.2W-0.2B-Y合金铸锭元素分布基本均匀。添加的B元素形成的TiB作为异质形核剂提高α相的形核率,导致大量非Burgers位向关系的α相出现,细化了片层组织。铸锭顶部具有最好的性能,室温强度约为680MPa。
     对Ti-45Al-9Nb-Y合金进行了高温压缩试验以及包套锻造。高温热压缩过程中,θ=0°的中等强度取向片层晶团发生θ=90°的片层弯曲,并在晶界和片层弯曲处发生动态再结晶。0°<θ<90°的软取向片层晶团向θ=90°的取向整体转动同时发生大量的动态再结晶。θ=90°的硬取向片层拉长,晶界上发生动态再结晶。确定最佳变形工艺为:1250℃/0.05s~(-1)。锻态组织是双态组织,残余片层晶团内α_2相板条粗化,并形成垂直于板条取向的花呢状花纹。在1330℃/30min/FC的热处理中,锻态组织中等轴γ相内获得魏氏组织(Widmannst tten),魏氏组织的出现有利于片层的形成。对锻造组织进行了双态以及全层片组织热处理。全层片组织强度最高,锻态组织延伸率最高。
     在1275℃对Ti-44Al-8Nb-0.2W-0.2B-Y合金进行包套锻造,制备出了变形量分别为50%和70%的锻饼,并对70%变形量的锻饼进行了炉冷和空冷处理。变形量越大,室温强度和塑性越高,70%变形量合金的室温强度达到930MPa。空冷组织残余应力大,加工硬化明显,锻饼发生开裂。在70%变形量合金900℃以上高温拉伸组织中,形成白亮的ω相,并且温度越高,应变速率越低,ω相越多。拉伸过程中,ω相的形成可以通过α_2→ω+γ固态相变形成。此外,对锻态Ti-44Al-8Nb-0.2W-0.2B-Y合金在1310℃/20min+1240℃/1h进行了双步热处理,并获得了球状γ等轴晶粒与细小片层的双态组织。1340℃/10min可以获得全层片组织。对双态组织和全片层组织进行了力学性能测试。
     详细分析了α板条和γ板条在热加工及冷却过程中的组织演化机制。变形过程中,残余片层内有序γ相首先以亚晶界的转动发生动态再结晶γ_D,而高层错能的无序α相板条仅发生塑性弯曲形成亚结构。γ D再结晶晶粒通过晶界的膨胀在冷却过程中向α_2相板条的生长。随着变形量的增加,α相发生动态再结晶,γ_D对α_2相的吞食作用增加。 γ_D对α_2相的吞食作用与冷却速度有关,冷却速度越快,吞食作用越弱,残余α_2相含量。
     包套轧制后Ti-45Al-9Nb-Y合金的组织发生明显变化。轧制组织在RD、ND以及TD三个方向均为动态再结晶等轴晶粒,是典型的近γ组织。随着轧制变形量的增加,发生应力诱发的γ→α相变,形成的α_2+γ混合组织粗化,并完全转变成单相的α_2相。由于变形量较大,65%变形量的板材组织中等轴γ相内形成以层错为核心退火孪晶。轧制变形促进了ω相在β/B2相的形成,轧制变形量的增加,ω相含量增加并改变了ω相的析出形貌。变形量增加到65%,β/B2相内ω相的含量很高。ω相是有害相,1420℃保温20min的全层片热处理可以完全消除ω相。
High Nb containing TiAl based alloy is the typier of high temperature and highstrength TiAl alloy. Due to their attractive propertis, such as high specific strengthand modulus, good high temperature oxidation resistance and creep resistance, etc,high Nb containing TiAl alloys have a high potential application in aerospace andautomobile industry. However, the difficulty in ingot preparation and the largedeformation resistance of high Nb containing TiAl alloy limit their processing andapplication. It is proved that β solidifying can effectively reduce segregation andrefine the structure. Two kinds of β solidifying high Nb containing TiAl alloy withnominal composition of Ti-45Al-9Nb-Y and Ti-44Al-8Nb-0.2W-0.2B-Y areprepared by using ISM and VAR technologies, respectively. The preparation ofingots, hot working technology, heat treatment processing, and microstructure andmechanical properties were investigated systematically in this paper.
     Ti-45Al-9Nb-Y and Ti-44Al-8Nb-0.2W-0.2B-Y alloys were prepared by ISMand VAR respectively. Ti-45Al-9Nb-Y alloy shows a typical near lamellar structure,with same orientation in the adjacent lamellar colonies. And γ phase precipitateddiscontinuously in the residual β phase with the relationship of(110) β//(111) γ,forming mixed structure between β/B2and γ phase in the grain boundary. ISMtechnology can effectively reduce segregation and improve the uniformity of theorganization. Elements in Ti-44Al-8Nb-0.2W-0.2B-Y ingot after HIP distributeduniformly. TiB formed during solidifying act as heterogeneous nucleation siteswhich increase the nucleation rate of α phase and refine the lamellar strcutureresulting in the formation of non Burhers relationship α phase. The top of the ingothas the best mechanical properties; room temperature strength is about680MPa.
     High temperature compression test and canned forging of Ti-45Al-9Nb-Y alloywere carried out. The θ=0°lamellar colony with medium yield strength bent androtated to the orientation of θ=90°which has highest yield strength, and dynamicrecrystallized at this bent area of lamellar colony and its grain boundary. The0°<θ<90°lamellar colony with soft orientation also rotated to the orientation of θ=90°accompanied with numerous dynamic recrystallization, while the θ=90°lamellarcolony was elongated with dynamic recrystallization at grain boundary. Theoptimum deformation process was determined as1250℃/0.05s~(-1). The as-forgedstructure is typically duplex structure, composed of γ phase, β phase and γ/α_2structure. The coarsened α_2phase in the residual lamellar colony containstweed-like pattern perpendicular to the lamellar orientation. Widmannst tten α_2 phase was obtained in equiaxed γ phase after heat treated at1330℃with30min/FC,which promoted the formation of lamellar structure. The full lamellarstructure has the highest strength and the elongation of as-forged structure is thelargest.
     Ti-44Al-8Nb-0.2W-0.2B-Y alloy was canned forged at1275℃withdeformation of50%and70%, and pancakes with70%deformation were furnacecooled and air cooled, repectively. And with the increase of deformation, as-forgedstructure has much higher strength and plasticity at room temperture, for example,the strength at room temperature was930MPa of alloy with70%deformation. Theair cooled deformation structure was work hardened obviously which indeedincreased the strength at lower temperature and resulted in the crack of the pancake.After tensiled of the alloy with70%deformations at900℃and above tempertautre,ω phase with white contrast formed, and its content increased with temperatureincreasing or strain rate slowing. Considerating the solid state phase transformationduring the tensile tests, it was believed that ω phase fromed in the transformationα_2→ω+γwhich was promoted by the dynamic recrystallization. Fine duplexmicrostrucutre with globularized γ grain and small lamellar structure formed after atwo steps heat treatment of1310℃/20min+1240℃/1h. Full lamellae structure couldbe obtained at1340℃for10min. The mechanical properties were measured forduplex structure and full lamellar structure.
     Microstructure evolution of α laths and γ laths during hot working and thefollowing cooling processss was discussed in detail. During deformation, ordered γphase in remnant lamellae dynamic recrystallized prior (γ_D) in the form ofsubboundary rotaion,while the disordered α lath which has high stacking fault weremerely bended. As deformation increase, dynamic recrystallization occurred in αphase and the grown of γ_Dinto α_2phase by bulging increased. The higher rate ofcooling, the lower rare of swallowing ofγ_D, the more quantity of α_2phase residual.
     The microstructure of as-rolled Ti-45Al-9Nb-Y alloy is typically near γstructure with dynamic recrystallized grain in RD, ND and TD directions. As thedeformation increase, the stress induced α phase transformation of γ→αoccurredfrom forming α_2+γ mixed structure into forming single α_2phase. Annealing twinsformed by stacking fault in the sheet with65%deformations. ω phase tranformedfrom β/B2phase was dramatically improved by rolling, the morphology of ω phasechanged, and the number of ω phase increased, as deformation increase. β/B2phasehas high contents of ω phase after rolling with65%deformations. Full lamellae heattreatment at1420℃holding20min could eliminate ω phase completely which isbrittleness and is bad to the properties.
引文
[1] Gerling R, Schimansky F P, Stark A, et al. Microstructure and mechanicalproperties of Ti45Al5Nb+(0-0.5C)sheets[J]. Intermetallics,2008,16(5):689-697.
    [2] Draper S L, Krause D, Lerch B, et al. Development and evaluation of TiAlsheet structures for hypersonic applications[J]. Mat Sci Eng: A,2007,464(1-2):330-342.
    [3] Appel F, Wagner R. Deformation Mechanism in TiAl/Ti3Al Structure. Kim YW, Wagner R, Yamaguchi M. Gamma Titanium Aluminides, Warrendale,Pennsylvania,1995, TMS:231-244.
    [4] Appel F, Beaven P A, Wagner R. Deformation processes related to interfacialboundaries in two-phase γ-titanium aluminides[J]. Acta Metall Mater,1993,41(6):1721-1732.
    [5] Zhang R G, Acoff V L. Processing sheet materials by accumulative rollbonding and reaction annealing from Ti/Al/Nb elemental foils[J]. Mat SciEng: A,2007,463(1-2):67-73.
    [6] Wang Y H, Lin J P, He Y H, et al. Microstructure and mechanical propertiesof as-cast Ti-45Al-8.5Nb-(W,B,Y) alloy with industrial scale[J]. Mat Sci Eng:A,2007,471(1-2):82-87.
    [7] Chen Y Y, Li B H, Kong F T. Microstructural refinement and mechanicalproperties of Y-bearing TiAl alloys[J]. J Alloy Compd,2008,457(1-2):265-269.
    [8] Gerling R C, H.Schimansky, F, P. Powder metallurgical processing ofintermetallic gamma titanium aluminides[J]. Adv Eng Mater,2004,6:23-38.
    [9] Chen G L, Wang X T, Ni K Q, et al. Investigation on the1000,1150and1400°C isothermal section of the Ti-Al-Nb system[J]. Intermetallics,1996,4(1):13-22.
    [10]林均品,陈国良. TiAl基金属间化合物的发展[J].中国材料进展,2009,(01):31-37.
    [11] Ma ecka J, Grzesik W, Hernas A. An investigation on oxidation wearmechanisms of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni intermetallic-based alloys[J].Corros Sci,2010,52(1):263-272.
    [12] Kim B G, Kim G M, Kim C J. Oxidation behavior of TiAl-X (X=Cr, V, Si,Mo or Nb) intermetallics at elevated temperature[J]. Scr Metall Mater,1995,33(7):1117-1125.
    [13] Xu X J, Lin J P, Wang Y L, et al. Microstructure and tensile properties ofas-cast Ti-45Al-(8-9)Nb-(W, B, Y) alloy[J]. J Alloy Compd,2006,414(1-2):131-136.
    [14] Cheng T T, Loretto M H. A Preliminary Study on the Decomposition of theBeta Phase in Ti-44Al-8Nb and Ti-44Al-4Ta-4Zr-0.2Si Alloys. Nathal M V,Dorolia R, Liu C T, et al. Structural Intermetallics, Warrendale, PA,1997,TMS:253-260.
    [15] Xu X J, Lin J P, Wang Y L, et al. Deformability and microstructuretransformation of pilot ingot of Ti-45Al-(8-9)Nb-(W,B,Y) alloy[J]. Mat SciEng: A,2006,416(1-2):98-103.
    [16] Hu D, Mei J F, Wickins M, et al. Microstructure and tensile properties ofinvestment cast Ti-46Al-8Nb-1B alloy[J]. Scripta Mater,2002,47(4):273-278.
    [17] Nieh T G, Hsiung L M, Wadsworth J. Superplastic behavior of a powdermetallurgy TiAl alloy with a metastable microstructure[J]. Intermetallics,1999,7(2):163-170.
    [18] Tetsui T, Shindo K, Kobayashi S, et al. A newly developed hot worked TiAlalloy for blades and structural components[J]. Scripta Mater,2002,47(6):399-403.
    [19] Clemens H, Wallgram W, Kremmer S, et al. Design of Novel β-SolidifyingTiAl Alloys with Adjustable β/B2-Phase Fraction and ExcellentHot-Workability[J]. Adv Eng Mater,2008,10(8):707-713.
    [20] Tetsui T, Shindo K, Kobayashi S, et al. Strengthening a high-strength TiAlalloy by hot-forging[J]. Intermetallics,2003,11(4):299-306.
    [21] Tetsui T, Shindo K, Kaji S, et al. Fabrication of TiAl components by means ofhot forging and machining[J]. Intermetallics,2005,13(9):971-978.
    [22] H. Clemens, Kestler H. Processing and applications of intermetallicTiAl-based alloys[J]. Adv Eng Mater,2000,2:551-570.
    [23] Masahashi N, Mizuhara Y. APFIM study of β and γ microduplex TiAlintermetallic alloy[J]. Mat Sci Eng: A,1997,223(1-2):29-35.
    [24] Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: III.Thermodynamic re-evaluation of the constituent binary system Al-Ti[J]. JAlloy Compd,2008,465(1-2):64-77.
    [25] Schuster J, Palm M. Reassessment of the binary Aluminum-Titanium phasediagram[J]. Journal of Phase Equilibria and Diffusion,2006,27(3):255-277.
    [26] Freudenberger J, G llner J, Heilmaier M, et al. Materials Science andEngineering[M]. Springer Berlin Heidelberg,2009:73-222.
    [27] Stark A, Bartels A, Clemens H, et al. Microstructure and Texture FormationDuring Near Conventional Forging of an Intermetallic Ti-45Al-5Nb Alloy[J].Adv Eng Mater,2009,11(12):976-981.
    [28] Stark A, Bartels A, Gerling R, et al. Microstructure and Texture Formationduring Hot Rolling of Niobium-Rich γ TiAl Alloys with Different CarbonContents[J]. Adv Eng Mater,2006,8(11):1101-1108.
    [29] Clemens H, Chladil H F, Wallgram W, et al. In and ex situ investigations ofthe β-phase in a Nb and Mo containing γ-TiAl based alloy[J]. Intermetallics,2008,16(6):827-833.
    [30] Clemens H, Appel F, Bartles A, et al. Processing and application ofengineering γ-TiAl based alloys. Lutjering G, Albrecht J. Ti-2003Science andTechnology, Weinheim, Darmstadt, Germany,2003, WILEY-VCH VerlagGmbH&Co. KGaA:2123-2136.
    [31]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].国防工业出版社,2001.
    [32] etsui T, Harada H. The influence of oxygen concentration and phasecomposition on the manufacturability and high-temperature strength ofTi-42Al-5Mn (at%) forged alloy[J]. J Mater Process Tech,2013,213(5):752-758.
    [33] Kong F T, Chen Y Y, Li B H. Effects of forging and rolling on microstructureand mechanical property of Ti-43Al-9V-0.3Y alloy[J]. Acta MetallurgicaSinica,2008,44(7):815-820.
    [34] Appel F, Paul J D H, Oehring M. Alloy Design[M]. Wiley-VCH Verlag GmbH&Co. KGaA,2011:465-478.
    [35] Kelly T J, Juhas M C, Huang S C. Effect of a B2/gamma structure on thetensile properties of the cast gamma titanium aluminide Ti-48Al-2Cr-2Nb[J].Scr Metall Mater,1993,29(11):1409-1414.
    [36] Lu W, Chen C L, He L L, et al. TEM study of different stages ofTi-45Al-8Nb-0.2W-0.2B-0.02Y alloy oxidation at900°C[J]. Corros Sci,2008,50(4):978-988.
    [37]张宁,林均品,王艳丽,等. W,B,Y合金元素对高铌TiAl基合金高温长期抗氧化性能的影响[J].稀有金属材料与工程,2007,(05):884-887.
    [38] Jiang H R, Wang Z L, Ma W S, et al. Effects of Nb and Si on hightemperature oxidation of TiAl[J]. T Nonferr Metal Soc,2008,18(3):512-517.
    [39] Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of highNb containing TiAl alloys[J]. Intermetallics,2011,19(2):131-136.
    [40] Lin J P, Xu X J, Wang Y L, et al. High temperature deformation behaviors ofa high Nb containing TiAl alloy[J]. Intermetallics,2007,15(5-6):668-674.
    [41] Bystrzanowski S, Bartels A, Clemens H, et al. Creep behaviour and relatedhigh temperature microstructural stability of Ti-46Al-9Nb sheet material[J].Intermetallics,2005,13(5):515-524.
    [42] Huang L, Liaw P K, Liu C T, et al. Microstructural evolution of(TiAl)+Nb+W+B alloy[J]. T Nonferr Metal Soc,2011,21(10):2192-2198.
    [43] Paul J D H, Appel F, Wagner R. The compression behaviour of niobiumalloyed γ-titanium alumindies[J]. Acta Mater,1998,46(4):1075-1085.
    [44] Wu X. Review of alloy and process development of TiAl alloys[J].Intermetallics,2006,14(10-11):1114-1122.
    [45] Wu X, Hu D, Loretto M H. Alloy and process development of TiAl[J]. JMater Sci,2004,39(12):3935-3940.
    [46] Chladil H F, Clemens H, Takeyama M, et al. On the influence of Nb on thetransition temperatures of titanium aluminides[J]. MRS Proceedings,2007,980:371-376.
    [47]张伟,刘咏,黄劲松,等.高铌TiAl高温合金的研究现状与展望[J].稀有金属快报,2007,(08):1-6.
    [48]史耀君,杜宇雷,陈光.高铌钛铝基合金研究进展[J].稀有金属,2007,(06):834-839.
    [49] Chen G L, Wang J G, Ni X D, et al. A new intermetallic compound inTiAl+Nb composition area of the Ti-Al-Nb ternary system[J]. Intermetallics,2005,13(3-4):329-336.
    [50] Raghavan V. Al-Nb-Ti (Aluminum-Niobium-Titanium)[J]. Journal of PhaseEquilibria and Diffusion,2005,26:360-368.
    [51] Yoshihara M, Kim Y W. Oxidation behavior of gamma alloys designed forhigh temperature applications[J]. Intermetallics,2005,13(9):952-958.
    [52]张宁,林均品,王艳丽,等.合金元素Y对高铌TiAl高温合金长期抗氧化性的影响[J].航空材料学报,2006,(06):42-45.
    [53] Herzig C, Przeorski T, Friesel M, et al. Tracer solute diffusion of Nb, Zr, Cr,Fe, and Ni in γ-TiAl: effect of preferential site occupation[J]. Intermetallics,2001,9(6):461-472.
    [54] Song X P, Chen G L. Determination of the stacking fault energy in high-Nbγ-TiAl[J]. J Mater Sci Lett,2001,20(7):659-661.
    [55] Chen G L, Lin J P, Song X P, et al. Development of high Nb containing hightemperature TiAl alloys. Kim Y W, Carneiro T. International Symposium onNiobium for High Temperature Applications, Araxa, MG, Brazil,2003:153-166.
    [56] McCullough C, Valencia J J, Levi C G, et al. Phase equilibria andsolidification in Ti-Al alloys[J]. Acta Metall,1989,37(5):1321-1336.
    [57] Imayev R M, Imayev V M, Oehring M, et al. Alloy design concepts forrefined gamma titanium aluminide based alloys[J]. Intermetallics.2007,15(4):451-460.
    [58] Naka S, Thomas M, Sanchez C, et al. Development of third generationcastable gamma titanium aluminides: role of solidification paths[M]. TMS,1997:313-322.
    [59] Singh A K, Muraleedharan K, Banerjee D. Solidification structure in a cast γalloy[J]. Scripta Mater,2003,48(6):767-772.
    [60] Jin Y, Wang J N, Yang J, et al. Microstructure refinement of cast TiAl alloysby β solidification[J]. Scripta Mater,2004,51(2):113-117.
    [61]许正芳,徐向俊,林均品,等.热处理对大尺寸铸态高Nb-TiAl合金组织中S-偏析的影响[J].航空材料学报,2007,(03):28-32.
    [62] Chen Y Y, Xiao S L, Kong F T, et al. Microstructure and interface reaction ofinvestment casting TiAl alloys[J]. T Nonferr Metal Soc,2006,(S3):1910-1914.
    [63] Küstner V, Oehring M, Chatterjee A, et al. An Investigation of MicrostructureFormation During Solidification of Gamma TitaniumAluminide Alloys. KimY W, Clemens H, Rosenberger A H. Gamma titanium aluminides2003,Warrendale, USA,2003, TMS:89-96.
    [64] Sun F S, Cao C X, Yan M G, et al. Alloying mechanism of beta stabilizers in aTiAl alloy[J]. Metall Mater Trans A,2001,32(7):1573-1589.
    [65] Li B H, Chen Y Y, Hou Z Q, et al. Microstructure and mechanical propertiesof as-cast Ti-43Al-9V-0.3Y alloy[J]. J Alloy Compd,2009,473(1-2):123-126.
    [66] Shao G, Tsakiropoulos P, Miodownik A P. Phase transformations inTi-40Al-10V[J]. Intermetallics,1995,3(4):315-325.
    [67] Oehring M, Stark A, Paul J D H, et al. Microstructural refinement ofboron-containing β-solidifying γ-titanium aluminide alloys through heattreatments in the β phase field[J]. Intermetallics,2013,32(0):12-20.
    [68] Wang Y, Wang J N, Yang J, et al. Control of a fine-grained microstructure forcast high-Cr TiAl alloys[J]. Mat Sci Eng A,2005,392(1-2):235-239.
    [69] Qiu C, Liu Y, Zhang W, et al. Development of a Nb-free TiAl-basedintermetallics with a low-temperature superplasticity[J]. Intermetallics,2012,27(0):46-52.
    [70] Kong F T, Xu X C, Chen Y Y, et al. Microstructure and mechanical propertiesof large size as-cast Ti-43Al-9V-0.2Y (at.%) alloy ingot from brim tocentre[J]. Mater Design,2012,33(0):485-490.
    [71] Wang J N, Yang J, Xia Q, et al. On the grain size refinement of TiAl alloys bycyclic heat treatment[J]. Mat Sci Eng: A,2002,329-331(0):118-123.
    [72] Schmoelzer T, Liss K-D, Zickler G A, et al. Phase fractions, transition andordering temperatures in TiAl-Nb-Mo alloys: An in-and ex-situ study[J].Intermetallics,2010,18:1544-1552.
    [73] Watson I J, Liss K-D, Clemens H, et al. In Situ Characterization of a Nb andMo Containing γ-TiAl Based Alloy Using Neutron Diffraction andHigh-Temperature Microscopy[J]. Adv Eng Mater,2009,11(11):932-937.
    [74] Zhang D, Arzt E, Clemens H. Characterization of controlled microstructuresin a γ-TiAl(Cr, Mo, Si, B) alloy[J]. Intermetallics,1999,7(10):1081-1087.
    [75] Zhang D, Dehm G, Clemens H. Effect of heat-treatments and hot-isostaticpressing on phase transformation and microstructure in a β/B2containingγ-TiAl based alloy[J]. Scripta Mater,2000,42(11):1065-1070.
    [76] Tetsui T. Development of a TiAl turbocharger for passenger vehicles[J]. MatSci Eng: A,2002,329-331(0):582-588.
    [77] Kong F T, Chen Y Y, Wang W, et al. Microstructures and mechanicalproperties of hot-pack rolled Ti-43Al-9V-Y alloy sheet[J]. T Nonferr MetalSoc,2009,19(5):1126-1130.
    [78] Güther V, Rothe C, Winter S, et al. Metallurgy, Microstructure and Propertiesof Intermetallic TiAl Ingots[J]. BHM Berg-und Hüttenm nnischeMonatshefte,2010,155(7):325-329.
    [79] Wang J N, Wang Y. An investigation of the origin of the superplasticity ofcast TiAl alloys[J]. Int J Plasticity,2006,22(8):1530-1548.
    [80] Wang Y, Wang J N, Yang J. Superplastic behavior of a high-Cr TiAl alloy inits cast state[J]. J Alloy Compd,2004,364(1-2):93-98.
    [81] Clemens H, Glatz W, Appel F. Tensile properties and strain rate sensitivity ofTi-47Al-2Cr-0.2Si sheet material with different microstructures[J]. ScriptaMater,1996,35(3):429-434.
    [82] Wang J N. An investigation of the deformation mechanism in grainsize-sensitive Newtonian creep[J]. Acta Mater,2000,48(7):1517-1531.
    [83] Nieh T G, Wang J N, Hsiung L M, et al. Low temperature superplasticity in aTiAl alloy with a metastable microstructure[J]. Scripta Mater,1997,37(6):773-779.
    [84] Su Y J, Kong F T, Chen Y Y, et al. Microstructure and mechanical propertiesof large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging[J].Intermetallics,2013,34(0):29-34.
    [85]陈玉勇,杨非,孔凡涛,等. TiAl合金的热加工、组织和性能[J].中国材料进展,2010,(03):12-17+15.
    [86] Wallgram W, Schm lzer T, Cha L M, et al. Technology and mechanicalproperties of advanced γ-TiAl based alloys[J]. International Journal ofMaterials Research,2009,8:1021-1030.
    [87]陈玉勇,张树志,孔凡涛,等.新型β-γ TiAl合金的研究进展[J].稀有金属,2012,(01):154-160.
    [88] Wu X, Hu D. Microstructural refinement in cast TiAl alloys by solid statetransformations[J]. Scripta Mater,2005,52(8):731-734.
    [89] Hu D, Huang A, Loretto M H, et al. Designing TiAl Alloys to TransformMassively during Slow Cooling. Nimomi M, Akiyama S, Ikeda M, et al. Ti-2007Science and Technology, Proc. of the11th World Conference onTitanium, Tokyo, Japan,2007, The Japan Institute of Metals:1317-1320.
    [90] Kumagai T, Abe E, Takeyama M, et al. Microstructural evolution ofmassively transformed γ-TiAl during isothermal aging[J]. Scripta Mater,1997,36(5):523-529.
    [91] Huang A, Loretto M H, Hu D, et al. The role of oxygen content and coolingrate on transformations in TiAl-based alloys[J]. Intermetallics,2006,14(7):838-847.
    [92] Saage H, Huang A J, Hu D, et al. Microstructures and tensile properties ofmassively transformed and aged Ti46Al8Nb and Ti46Al8Ta alloys[J].Intermetallics,2009,17(1-2):32-38.
    [93] Hu D. Effect of composition on grain refinement in TiAl-based alloys[J].Intermetallics,2001,9(12):1037-1043.
    [94] Usta M, Wolfe H, Duquette D J, et al. Thermo-mechanical grain refinement ingamma (γ) based TiAl intermetallics[J]. Mat Sci Eng: A,2003,359(1-2):168-177.
    [95] Clemens H, Bartels A, Bystrzanowski S, et al. Grain refinement inγ-TiAl-based alloys by solid state phase transformations[J]. Intermetallics,2006,14(12):1380-1385.
    [96] Cheng T T. The mechanism of grain refinement in TiAl alloys by boronaddition-an alternative hypothesis[J]. Intermetallics,2000,8(1):29-37.
    [97] Wang Y, Wang J N, Xia Q, et al. Microstructure refinement of a TiAl alloy byHeat treatment[J]. Mat Sci Eng: A,2000,293(1-2):102-106.
    [98] Yang J, Wang J N, Xia Q, et al. Effect of cooling rate on the grain refinementof TiAl-based alloys by rapid heat treatment[J]. Mater Lett,2000,46(4):193-197.
    [99] Wang W D, Ma Y C, Chen B, et al. Effects of Boron Addition on GrainRefinement in TiAl-based Alloys[J]. J Mater Sci Technol,2010,26(7):639-647.
    [100] Hu D, Yang C, Huang A, et al. Grain refinement in beta-solidifyingTi44Al8Nb1B[J]. Intermetallics,2012,23(0):49-56.
    [101] Hu D, Yang C, Huang A, et al. Solidification and grain refinement inTi45Al2Mn2Nb1B[J]. Intermetallics,2012,22(0):68-76.
    [102] Yang C, Hu D, Huang A, et al. Solidification and grain refinement inTi45Al2Mn2Nb1B subjected to fast cooling[J]. Intermetallics,2013,32(0):64-71.
    [103] Larsen D E, Christodoulou L, Kampe S L, et al. Investment-cast processing ofXDTM near-γ titanium aluminides[J]. Mat Sci Eng: A,1991,144(1-2):45-49.
    [104] Inkson B J, Boothroyd C B, Humphreys C J. Boron segregation in a (Fe, V, B)TiAl based alloy[J]. J. Phys. IV France,1993,3:397-402.
    [105]江治国,陈波,马颖澈,等.添加硼对铸造Ti-46.5Al-8Nb合金组织和性能的影响[J].金属学报,2007,(05):487-492.
    [106] Hu D, Jiang H, Wu X. Microstructure and tensile properties of castTi-44Al-4Nb-4Hf-0.1Si-0.1B alloy with refined lamellar microstructures[J].Intermetallics,2009,17(9):744-748.
    [107] Chen Y Y, Kong F T, Han J C, et al. Influence of yttrium on microstructure,mechanical properties and deformability of Ti-43Al-9V alloy[J].Intermetallics,2005,13(3-4):263-266.
    [108] Chen Y Y, Li B H, Kong F T, et al. Effects of minor yttrium addition onmicrostructure, mechanical properties and hot workability of Nb or Vcontaining TiAl alloys[J]. Mater Sci Forum,2007,539-543:1577-1582.
    [109] Chen Y Y, Li B H, Kong F T. Effects of minor yttrium addition on hotdeformability of lamellar Ti-45Al-5Nb alloy[J]. T Nonferr Metal Soc,2007,17(1):58-63.
    [110] Hickman B S. The formation of omega phase in titanium and zirconiumalloys: A review[J]. J Mater Sci,1969,4(6):554-563.
    [111] Shao G, Tsakiropoulos P. Prediction of ω phase formation in Ti-A-X alloys[J].Mat Sci Eng: A,2002,329-331(0):914-919.
    [112] Huang Z W. Ordered ω phases in a4Zr-4Nb-containing TiAl-based alloy[J].Acta Mater,2008,56(8):1689-1700.
    [113] Hatt B A, Roberts J A. The ω-phase in zirconium base alloys[J]. Acta Metall,1960,8(8):575-584.
    [114] De Fontaine D. Mechanical instabilities in the b.c.c. lattice and the beta toomega phase transformation[J]. Acta Metall,1970,18(2):275-279.
    [115] Shao G, Nguyen-Manh D, Pettifor D G, et al. ω-phase formation in a rapidlysolidified Cr-40at.%Al alloy[J]. Phil Mag Lett,2000,80(11):703-710.
    [116] Shao G, Tsakiropoulos P, Miodownik A P. Ordering and decomposition of theβ phase in melt-spun TiAl1-xVxalloys[J]. Mat Sci Eng: A,1996,216(1-2):1-10.
    [117] Huang Z W, Zhu D G. Thermal stability of Ti-44Al-8Nb-1B alloy[J].Intermetallics,2008,16(2):156-167.
    [118] Huang Z W, Voice W, Bowen P. Thermal exposure induced α2+γ→B2(ω) andα2→B2(ω) phase transformations in a high Nb fully lamellar TiAl alloy[J].Scripta Mater,2003,48(1):79-84.
    [119] Jiang H, Hu D, Wu X. Thermal stability of the omega phase in Zr-containingTiAl alloys[J]. J Alloy Compd,2009,475(1–2):134-138.
    [120] Stark A, Bartels A, Clemens H, et al. On the Formation of Ordered ω-phase inHigh Nb Containing γ-TiAl Based Alloys[J]. Adv Eng Mater,2008,10(10):929-934.
    [121] Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titaniumaluminides and their manufacturing techniques[J]. Prog Aerosp Sci,2012,55:1-16.
    [122] Chen Y Y, Yu H B, Zhang D L, et al. Effect of spark plasma sinteringtemperature on microstructure and mechanical properties of an ultrafinegrained TiAl intermetallic alloy[J]. Mat Sci Eng: A,2009,525(1-2):166-173.
    [123] Terner M, Biamino S, Epicoco P, et al. Electron Beam Melting of HighNiobium Containing TiAl Alloy: Feasibility Investigation[J]. Steel ResearchInternational,2012,83(10):943-949.
    [124] Biamino S, Penna A, Ackelid U, et al. Electron beam melting ofTi-48Al-2Cr-2Nb alloy: Microstructure and mechanical propertiesinvestigation[J]. Intermetallics,2011,19(6):776-781.
    [125] Wu G Q, Huang Z, Li Z F, et al. TEM observations of grain refinement oflaser surface melted γ-TiAl based alloy[J]. Mater Lett,2003,57(24-25):3810-3814.
    [126]王孟光,孙建科,陈志强. TiAl基合金的熔炼与铸造成形工艺研究现状[J].钛工业进展,2010,(04):1-4.
    [127]孔凡涛,陈玉勇,田竞,等. TiAl基金属间化合物研究进展[J].材料科学与工艺,2003,(04):441-444.
    [128] Sauthoff G. Titan-Aluminid-Legierungen-eine Werkstoffgruppe mit Zukunft,Vorwort[M]. Forschungszentrum Jülich-Projekttr ger Jülich (PTJ),2003(inGerman).
    [129] Paul J D H, Lorenz U, Oehring M, et al. Up-scaling the size of TiAlcomponents made via ingot metallurgy[J]. Intermetallics,2013,32(0):318-328.
    [130] Aguilar J, Schievenbusch A, K ttlitz O. Investment casting technology forproduction of TiAl low pressure turbine blades-Process engineering andparameter analysis[J]. Intermetallics,2011,19(6):757-761.
    [131] Chen Y Y, Chen Y F, Xiao S L, et al. Research on the Hot PrecisionProcessing of TiAl Alloys[J]. Mater Sci Forum,2009,620-622:407-412.
    [132] Paul J D H, Appel F, Lorenz U, et al. Novel forging route for large TiAl-parts.Kim Y-W, Lin J. Gamma (TiAl) Alloy Technology2012, Beijing,2012.
    [133]张英明,周廉,孙军,等.钛合金冷床熔炼技术进展[J].钛工业进展,2007,(04):27-30.
    [134]邹武装.冷床熔炼炉的最新发展[J].世界有色金属,2011,(09):48-50.
    [135]王万波,王宁,秦桂红,等.等离子冷床炉熔炼高密度夹杂物去除研究.第六届华东三省一市真空学术交流会,中国上海,2009:9.
    [136]张英明,周廉,孙军,等.钛合金电子束冷床熔炼研究进展[J].钛工业进展,2008,(04):14-19.
    [137]段军伟.冷床炉熔炼钛及钛合金技术及其应用[J].有色金属加工,2011,(01):53-57.
    [138] Chladil H F, Clemens H, Otto A, et al. Charakterisierung einer β-erstarrendenγ-TiAl-Basislegierung[J]. BHM Berg-und Hüttenm nnische Monatshefte.2006,151(9):356-361.
    [139] Xu X J, Lin J P, Wang Y L, et al. Effect of forging on microstructure andtensile properties of Ti-45Al-(8-9)Nb-(W,B,Y) alloy[J]. J Alloy Compd,2006,414(1-2):175-180.
    [140] Liu B, Liu Y, Zhang W, et al. Hot deformation behavior of TiAl alloysprepared by blended elemental powders[J]. Intermetallics,2011,19(2):154-159.
    [141] Zhang J, Zhang Z, Su X, et al. Microstructure preparation andhot-deformation of Ti-46.2Al-2.0V-1.0Cr-0.5Ni alloy[J]. Intermetallics,2000,8(4):321-326.
    [142] Li S, Su X, Han Y, et al. Simulation of hot deformation of TiAl based alloycontaining high Nb[J]. Intermetallics,2005,13(3-4):323-328.
    [143] Clemens H, Kestler H. Processing and Applications of Intermetallicγ-TiAl-Based Alloys[J]. Adv Eng Mater,2000,2(9):551-570.
    [144] Appel F, Oehring M, Paul J D H, et al. Physical aspects of hot-workinggamma-based titanium aluminides[J]. Intermetallics,2004,12(7-9):791-802.
    [145] Bartels A, Hartig C, Willems S, et al. Influence of the deformation conditionson the texture evolution in γ-TiAl[J]. Mat Sci Eng: A,1997,239-240:14-22.
    [146]王志韬.大尺寸TiAl基合金板材制备技术的研究[D].哈尔滨:哈尔滨工业大学硕士论文.2008.
    [147] Xu Z, Xu X, Lin J, et al. Homogenization treatment of high Nb containingTiAl alloys with as-cast and as-forged microstructures[J]. Rare Metals,2008,27(2):181-186.
    [148] Hecht U, Witusiewicz V, Drevermann A, et al. Grain refinement by low boronadditions in niobium-rich TiAl-based alloys[J]. Intermetallics,2008,16(8):969-978.
    [149] Gey N, Humbert M. Characterization of the variant selection occurring duringthe α→β→α phase transformations of a cold rolled titanium sheet[J]. ActaMater,2002,50(2):277-287.
    [150] Hu D, Wu X. Tensile ductility of cast TiAl alloys[J]. Mater Sci Forum,2010,638-642:1336-1341.
    [151] Maziasz P J, Ramanujan R V, Liu C T, et al. Effects of B and W alloyingadditions on the formation and stability of lamellar structures in two-phaseγ-TiAl[J]. Intermetallics,1997,5(2):83-95.
    [152]刘自成,林均品,陈国良.添加W对高铌TiAl合金组织和力学性能的影响[J].材料热处理学报,2001,(01):7-13.
    [153] Ramanujan R V. Phase transformations in γ based titanium aluminides[J].International Materials Reviews,2000,45:217-240.
    [154] Chen Y, Yang F, Kong F, et al. Constitution modeling and deformationbehavior of yttrium bearing TiAl alloy[J]. J Rare Earth,2011,29(2):114-118.
    [155]李晓磊,李金山,钟宏,等. VAR熔炼TiAl铸锭的成分分布及显微偏析[J].科技导报,2012,(06):24-29.
    [156]杨非,陈玉勇,蔡一湘,等l. β型γ-TiAl合金的制备及其反常屈服行为研究.低碳技术与材料产业发展研讨会,中国广东广州,2010:514-517.
    [157] Kumpfert J, Kim Y W, Dimiduk D M. Effect of microstructure on fatigue andtensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W[J].Mat Sci Eng: A,1995,192-193:465-473.
    [158] Zhu H, Seo D Y, Maruyama K, et al. Strengthening of a fully lamellarTiAl+W alloy by dynamic precipitation of β phase during long-term creep[J].Scripta Mater,2006,54(3):425-430.
    [159] Chladil H F, Clemens H, Zickler G A, et al. Experimental studies andthermodynamic simulation of phase transformations in high Nb containingγ-TiAl based alloys[J]. International Journal of Materials Research,2007,11:1131-1137.
    [160] Raghavan V. Al-Nb-Ti (Aluminum-Niobium-Titanium)[J]. Journal of PhaseEquilibria and Diffusion,2012,33(2):143-144.
    [161] Shu S, Lu J, Qiu F, et al. Effects of alloy elements (Mg, Zn, Sn) on themicrostructures and compression properties of high-volume-fraction TiCx/Alcomposites[J]. Scripta Mater,2010,63(12):1209-1211.
    [162] Appel F, Herrmann D, Fischer F D, et al. Role of vacancies in work hardeningand fatigue of TiAl alloys[J]. Int J Plasticity,2013,42(0):83-100.
    [163] Cheng L, Chang H, Tang B, et al. Deformation and dynamic recrystallizationbehavior of a high Nb containing TiAl alloy[J]. J Alloy Compd,2013,552(0):363-369.
    [164] Vanderschueren D, Nobuki M, Nakamura M. Superplasticity in a vanadiumalloyed gamma plus beta phased Ti-Al intermetallic[J]. Scr Metall Mater,1993,28(5):605-610.
    [165] Liu Y H, Gamsj ger E, Clemens H. Thermodynamic description ofniobium-rich γ-TiAl alloys[J]. International Journal of Materials Research,2011,102(6):692-695.
    [166] Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: IV.Experimental study and thermodynamic re-evaluation of the binary Al-Nb andternary Al-Nb-Ti systems[J]. J Alloy Compd,2009,472(1-2):133-161.
    [167] Chladil H F, Clemens H, Zickler G A, et al. Experimental studies andthermodynamic simulation of phase transformations in high Nb containingγ-TiAl based alloys[J]. International Journal of Materials Research,2007,11:1131-1137.
    [168] Appel F, Oehring M, Paul J D H. Nano-Scale Design of TiAl Alloys Based onβ-Phase Decomposition[J]. Adv Eng Mater,2006,8(5):371-376.
    [169] Appel F, Paul J D H, Oehring M. Phase transformations during creep of amultiphase TiAl-based alloy with a modulated microstructure[J]. Mat Sci Eng:A,2009,510–511(0):342-349.
    [170] Appel F, Oehring M, Pau J D H. A Novel in-situ Composite Structure in TiAlAlloys. Ninomi M S A, Ikeda M H M, K M. Ti-2007science and technology,Kyoto, Japan,2007, The Japan Institute of Metals:659-662.
    [171] Jabbar H, Monchoux J-P, Houdellier F, et al. Microstructure and mechanicalproperties of high niobium containing TiAl alloys elaborated by spark plasmasintering[J]. Intermetallics,2010,18(12):2312-2321.
    [172] Fukutomi H, Nomoto A, Osuga Y, et al. Analysis of dynamic recrystallizationmechanism in γ-TiAl intermetallic compound based on texturemeasurement[J]. Intermetallics,1996,4(Supplement1):49-55.
    [173] Cao G H, Kl den B, Rybacki E, et al. High strain torsion of a TiAl-basedalloy[J]. Mat Sci Eng: A,2008,483-484:512-516.
    [174] Zhang W J, Lorenz U, Appel F. Recovery, recrystallization and phasetransformations during thermomechanical processing and treatment ofTiAl-based alloys[J]. Acta Mater,2000,48(11):2803-2813.
    [175] Kim Y-W. Strength and ductility in TiAl alloys[J]. Intermetallics,1998,6(78):623-628.
    [176]刘自成,李书江,林均品,等.热处理工艺对Ti46Al8.5Nb0.2W合金层片组织结构参数的影响[J].金属热处理学报,2000,(01):1-5.
    [177]徐丽华,徐向俊,王艳丽,等.热处理对二次锻造高Nb-TiAl基合金组织的影响[J].航空材料学报,2005,(04):16-19.
    [178]李书江,刘自成,林均品,等.快速细化低铝含量钛铝合金铸态组织的热处理工艺[J].稀有金属,2001,(05):332-335.
    [179]高建峰,徐向俊,林均品,等.热变形高铌Ti-Al合金获取全片层组织的热处理工艺[J].金属热处理,2005,(06):62-65.
    [180] Takeyama M. Microstructural evolution and tensile properties oftitanium-rich TiAl alloy[J]. Mat Sci Eng: A,1992,152(1-2):269-276.
    [181] Denquin A, Naka S. Phase transformation mechanisms involved in two-phaseTiAl-based alloys-I. Lambellar structure formation[J]. Acta Mater,1996,44(1):343-352.
    [182]王克鲁,鲁世强,康永林,等. Ti3Al基合金的热变形行为及加工图[J].稀有金属材料与工程,2011,(09):1534-1539.
    [183] Long M, Rack H J. Thermo-mechanical stability of forgedTi-26Al-10Nb-3V-1Mo (at.%)[J]. Mat Sci Eng: A,1995,194(1):99-111.
    [184]王孟光,孙建科,陈志强. Ti3Al基合金室温塑性的改善方法[J].稀有金属快报,2007,(11):7-12.
    [185] Sagar P K. Effect of alloying elements and microstructure on the processingparameters of α2aluminide alloys[J]. Mat Sci Eng: A,2006,434(1-2):259-268.
    [186] Schloffer M, Iqbal F, Gabrisch H, et al. Microstructure development andhardness of a powder metallurgical multi phase γ-TiAl based alloy[J].Intermetallics,2012,22(0):231-240.
    [187] Niu H Z, Chen Y Y, Xiao S L, et al. Microstructure evolution and mechanicalproperties of a novel beta γ-TiAl alloy[J]. Intermetallics,2012,31(0):225-231.
    [188] Wang J G, Zhang L C, Chen G L, et al. Deformation-inducedγ α2phasetransformation in a hot-forged Ti-45Al-10Nb alloy[J]. Mat Sci Eng: A,1997,239-240:287-292.
    [189] Semiatin S L, Thomas J F, Dadras P. Processing-microstructure relationshipsfor Ti-6Al-2Sn-4Zr-2Mo-0.1Si[J]. Metall Trans A,1983,14(11):2363-2374.
    [190]孙新军.钛合金片层组织的等轴化规律及超细晶钛合金超塑性的研究[D].北京:清华大学博士学位论文.1999.
    [191]刘自成,张卫军,李书江,等. Ti45Al10Nb合金全片层组织韧脆转变机制的研究[J].稀有金属材料与工程,2000,(03):185-189.
    [192]王瑜,林栋梁,刘俊亮,等.应变速率对近全片层组织γ-TiAl合金韧脆转变温度的影响[J].金属学报,1997,33(10):1021-1027.
    [193]王瑜,林栋梁,刘俊亮,等. Ti-47Al-2Mn-2Nb-0.8TiB2合金韧脆转变温度及其应变速率敏感性[J].金属学报,1998,(03):255-262.
    [194] Bystrzanowski S, Bartels A, Stark A, et al. Evolution of microstructure andtexture in Ti-46Al-9Nb sheet material during tensile flow at elevatedtemperatures[J]. Intermetallics,2010,18(5):1046-1055.
    [195] Kim J H, Shin D H, Semiatin S L, et al. High temperature deformationbehavior of a γ TiAl alloy determined using the load-relaxation test[J]. MatSci Eng: A,2003,344(1-2):146-157.
    [196]牛红志. Ti-43Al-6(Nb, Mo)-B合金的热变形行为及组织性能研究[D].哈尔滨:哈尔滨工业大学博士.2013.
    [197]杨非,孔凡涛,陈玉勇,等. TiAl合金板材的制备及研究现状[J].材料工程,2010,(05):96-100.
    [198] Gao Y, Zhu J, Shen H, et al. Stress-induced phase transformation in two-phaseTiAl intermetallic alloys[J]. Scr Metall Mater,1993,28(5):651-656.
    [199] Zhang Y G, Tichelaar F D, Schapink F W, et al. An evidence of stress-inducedα2γtransformation in a γ-TiAl-based alloy[J]. Scr Metall Mater,1995,32(7):981-985.
    [200] Wang J G, Chen G L, Zhang L C, et al. Study on the stress-inducedγ α2transformation in a hot-deformed Ti-45Al-10Nb alloy by high-resolutiontransmission electron microscopy[J]. Mater Lett,1997,31(3-6):179-183.
    [201] Derder C, Bonnet R, Pénisson J M, et al. Evidence of Stress-Inducedα2γTransformation in a Ti-30at%Al Alloy[J]. Scripta Mater,1998,38(5):757-762.
    [202] Chen C L, Lu W, Cui Y Y, et al. Deformation-inducedγ α2phasetransformation in TiAl alloy compressed at room temperature[J].Intermetallics,2007,15(5-6):722-726.
    [203] Chen C L, Lu W, Sun D, et al. Deformation-inducedα2γphasetransformation in TiAl alloys[J]. Mater Charact,2010,61(11):1029-1034.
    [204] Zhang L C, Chen G L, Ye H Q. Substructures of deformation twins and twinintersections in a Ti-45Al-8Nb-2.5Mn alloy heavily deformed at roomtemperature[J]. Mat Sci Eng: A,2001,299(1-2):267-274.
    [205] Zhang L C, Chen G L, Wang J G, et al. Hot-deformation-induced α2/γinterfacial structure in a two-phase γ-TiAl-based alloy[J]. Mater Lett,1998,36(1-4):132-136.
    [206]夏爽,李慧,周邦新,等.金属材料中退火孪晶的控制及利用——晶界工程研究[J].自然杂志,2010,(02):94-129.
    [207]胡庚祥,蔡珣.材料科学基础[M].上海交通大学出版社,2000:194-196.
    [208]杨钢,孙利军,张丽娜,等.形变孪晶的消失与退火孪晶的形成机制[J].钢铁研究学报,2009,(02):39-43.
    [209] Zhang L, Aindow M. Morphology and interfacial structure of gammaprecipitates in the beta phase of a Ti-Al-Nb-Zr alloy[J]. J Mater Sci,2006,41(3):611-619.
    [210] Cheng T T, Loretto M H. The decomposition of the beta phase inTi-44Al-8Nb and Ti-44Al-4Nb-4Zr-0.2Si alloys[J]. Acta Mater,1998,46(13):4801-4819.
    [211] Cheng T T, Willis M R, Jones I P. Effects of major alloying additions on themicrostructure and mechanical properties of γ-TiAl[J]. Intermetallics,1999,7(1):89-99.
    [212] Bendersky L A, Boettinger W J, Burton B P, et al. The formation of orderedω-related phases in alloys of composition Ti4Al3Nb[J]. Acta Metall Mater,1990,38(6):931-943.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700