用户名: 密码: 验证码:
变形镁合金的挤压工艺及其组织和力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有低密度,比强度、比刚度高,阻尼减震性良好,优良的机加工性能和可循环利用,在交通运输,航空航天,计算机通讯和消费电子产品等行业中具有广阔的应用前景,被誉为“21世纪最具发展前途的金属结构材料”,也成为近年来国内外材料界研究的热点之一。变形镁合金比传统铸造镁合金拥有更高的综合性能,应用范围也更加广泛。如何进一步提高变形镁合金的综合性能,满足某些结构件“以镁代铝”,甚至“代钢”的性能要求;减小各向异性,改善镁合金的室温塑性成形能力,简化产品制备工艺,提高生产效率,降低生产成本,扩大镁合金的应用范围是国内外研究的主要方向。
     本文针对常用ZK60商用镁合金不能满足高速挤压的需求,通过合金设计和高温热压缩实验,系统的研究了添加不同含量Ce和Cu元素(0.5,1.0,1.5wt.%)ZK60镁合金的高温塑性变形行为,获得了相关的流变应力应变曲线,并分别运用多步回归模型和人工神经网络模型构建了包含应变在内的本构关系方程。结合构建的合金热加工图详细研究了合金在压缩变形中的流变行为和显微组织演变特征。同时还通过挤压实验,系统的研究了两种合金元素和挤压工艺条件对材料组织和性能的影响。在此基础上,成功实现了ZK60-1Ce合金的10m/min高速挤压。
     研究发现,ZK60及其添加Ce、Cu元素后的合金在进行高温压缩热变形过程中的流变应力变化规律是先随着真应变的增加到达峰值后又逐渐降低至某一稳态值,表现出较明显的动态再结晶特征。当变形温度一定时,流变应力随应变速率的增大而增大;当应变速率一定时,流变应力随变形温度的升高而降低。在较高的温度和较低的应变速率下变形时,流变应力达到峰值后基本表现为稳态流变特征。基于双曲正弦本构关系模型,建立了固溶态ZK60合金的相关本构方程。同时采用多步回归模型和人工神经网络模型预测了ZK60及其添加Ce、Cu元素后合金的高温流变应力,两种模型的预测结果与实验值吻合的较好。ZK60的高温压缩变形是以位错攀移为控制机制。Ce和Cu元素的加入可提高合金的峰值应力、临界应力和门槛应力,且这些值都随着变形温度的增加而降低。绘制出ZK60及其添加Ce、Cu元素合金的热加工图,发现ZK60及ZK60-0.5Ce合金都在低温高应变速率区出现变形失稳,表现为试样表面出现裂纹,显微组织由孪生与局部流变带构成,同时也得到添加不同合金化元素后ZK60合金的最佳加工条件。添加小于1.0wt.%含量的Ce可提高ZK60合金的加工性能,但1.5wt.%的Ce则使得加工性能下降;Cu元素的加入不能有效改善ZK60合金的加工性能。ZK60合金和ZK60-0.5Ce合金再结晶过程中都是由交滑移所产生的机械回复位错控制着新界面的形成,但ZK60合金再结晶主要受界面形成所控制而ZK60-0.5Ce合金则受界面迁移所控制。合金在挤压过程中均发生了动态再结晶,且形成强烈的基面平行于挤压方向的纤维织构。ZK60合金中的主要第二相为Mg-Zn相;随Ce、Cu元素的加入出现Mg-Zn-Ce和Mg-Zn-Cu第二相,这些硬质相在随后的挤压过程中破碎并沿挤压方向分布,导致第二相粒子激发形核(PSN),促进动态再结晶过程,不同程度地细化晶粒并弱化织构;对比研究发现Ce元素和Cu元素的加入具有相似的效果。ZK60合金屈服强度随着Ce或Cu加入含量的增加大幅提高,而抗拉强度提高幅度并不明显;强度的提高主要归因于弥散强化、析出沉淀强化和晶界强化的综合作用;但合金化元素含量的升高导致大量硬质第二相颗粒生成,其在拉伸试验进行中很容易破裂并成为裂纹源,进而导致材料的延伸率下降。随着挤压温度的上升和挤压速度的提高,再结晶体积分数和平均晶粒尺寸均随之增大;另外,温度升高引起晶粒长大,带状组织的出现和孪生的发生致使合金强度呈现下降趋势;添加Ce元素虽可增强显微组织均匀性但同时发现含Ce合金较ZK60合金对挤压工艺条件更为敏感。本论文可以为改善镁合金的室温塑性成形能力,简化产品制备工艺,提高生产效率,降低生产成本奠定基础。
Magnesium alloys are considered to have the most promising development outlook as metallic structural materials in the21st century due to their high specific strength and specific stiffness, good damping capacity, excellent machinability and easy recycling. Magnesium alloy has become one of the hot topics in the field of materials research around the world. The principle direction to improve the integrated properties of Mg alloy is to satisfy the requirements of some structural materials, such as aluminum, or even steel. Researches which aim to increase the elongation, decrease the anisotropy and improve the plastic deformation capability, simplify fabrication technics, reduce manufacturing cost and expand the application of magnesium alloy are also paid worldwide attention.
     The applications of ZK60alloy processed by extrusion have been very limited due to their low extrusion speed. In this study, ZK60alloy was selected as base alloy and we designed the new ZK based Mg alloy by addition of different contents of Ce or Cu elements from0.5wt.%to1.5wt.%. The hot deformation behavior T4-treated ZK60alloy with/without Ce or Cu addition was investigated by compressive test using Gleeble3800thermal-simulator in the temperature range of523-673K and strain rate range of0.001-1s-1. In addition, the strain-dependent constitutive models were established by both regression model and feed-forward back-propagation artificial neural network (ANN) model. The rheological behavior and microstructural evolution during compression test were studied with the processing maps. In addition, this thesis also investigated the effects of alloy elements (Ce or Cu) and extrusion conditions on the microstructure and mechanical properties of ZK60alloy. Based on this, the ZK60-1Ce alloy was successfully extruded at high speed of10m/min.
     The results reveal that the flow stress of all alloys is significantly affected by both deformation temperature and strain rate. The flow stress increases with either decreasing deformation temperature or increasing strain rate. The flow stress tends to be constant after a peak value at high deformation temperature and low strain rate. The hot deformation behavior of T4-treated ZK60alloy can be described by the hyperbolic sine constitutive equation. The predicted data sets from both of regression model and ANN model showed good agreement with the experimental ones. The stress exponent n equals five, which implies that the controlled deformation mechanism of ZK60alloy is dislocation climb controlled by grain boundary diffusion. The peak stress, critical stress and threshold stress increases with increasing of content of Ce or Cu element in ZK60alloy, but decreases as the increasing of deformation temperature.
     From the processing maps of ZK60and ZK60-0.5Ce, the instability phenomenon can be found located in low temperature and high strain rate region. Samples deformed in this domain will lead to cracks generated at the surface, and the microstructure consisted of twining and local shear band. In addition, the optimum process parameter can also be obtained from the processing maps. The hot workability of ZK60alloy improves up to the addition of1.0wt.%Ce and then deteriorates. There is no obvious improvement of hot workability by addition of Cu. The formation of interface depends on the process of mechanical recovery by cross-slip of screw dislocations in both ZK60and ZK60-0.5Ce alloy. While the DRX of ZK60alloy and ZK60-0.5Ce is controlled by the interface formation and interface migration, respectively. DRX occurs during the extrusion and a strong basal texture is prone to be formed. The main phase in ZK60alloy is α-Mg and Mg-Zn phase, with addition of Ce or Cu. Mg-Zn-Ce and Mg-Zn-Cu phase are generated. Both Ce and Cu had an obvious influence, reducing the average grain size and weakening the basal fiber texture of the as-extruded alloys; these changes were attributed to the promotion of dynamic recrystallization (DRX) by particle stimulated nucleation (PSN). The yield and tensile strengths were improved by the Ce addition attributable to the combination of dispersion strengthening, precipitate strengthening and grain boundary strengthening, while the elongation was decreased due to the increase of large and fragile particles, which are considered as sources of cracks. The grain size and fraction of DRX increases with increasing of extrusion temperature and extrusion speed. The strength of the alloys decreases due to the presence of twinning and unDRX grains. Ce addition makes the microstructure more homogenized. And Ce added alloys significantly depend on the extrusion conditions. In summary, this thesis gives well understanding to the following aspects:improve the workability of Mg alloy at low temperature; simplify the fabrication process, decrease the production cost with enhanced productivity.
引文
1. 丁文江,曾小勤.中国Mg材料研发与应用.金属学报,2010,46:1450-1457.
    2. 张振亚.粉末热挤压制备高性能镁合金研究.山东大学.2010.
    3. 陈振华.变形镁合金.北京:化学工业出版社.2005.
    4. M. Michael, A.H. Baker. ASM specialty handbook magnesium and magnesium alloys. ASM International,1999.
    5. B.L. Mordike. T. Ebert. Magnesium:Properties-applications-potential. Mater Sci Eng A, 2001,302:37-45.
    6. 王迎新Mg-Al合金晶粒细化、热变形行为及加工工艺的研究.上海交通大学.2006.
    7. 罗守靖,田文彬,谢水生等.半固态加工技术及应用.中国有色金属学报,2000,10(6):765-773.
    8. G. Schindelbacher, R. Rosch, in "magnesium alloy and their applications", ed. B.L. Mordike and K.U. Kainer. Frankfurt, Werkstoff-Informationsgesellschaft.1998.247-251.
    9. T. Mukai, H. Watanabe, K. Higashi. Application of superplasticity in commercial magnesium alloy for fabrication of structural components. Materials Science and Technology.2000,16: 1314-1319.
    10.余琨,黎文献,王日初等.变形镁合金的研究、开发及应用.中国有色金属学报,2003,13(2):277-288.
    11.刘娟.镁合金锻造成形性研究及数值模拟[D].上海交通大学,博十毕业论文,2008.
    12.宋光铃.镁合金的腐蚀与防护.北京:化学工业出版社,2006.
    13. 《工程材料实用手册》编辑委员会.工程材料实用手册,第3卷,铝合金,镁合金(第2版).北京:中国标准出版社,2002;
    14. J. Davis, ASM Handbook, Vol.2:Properties and selection non-ferrous alloys and special purpose materials. ASM International,2005;
    15.陈洪美.铸轧镁合金的变形工艺及其组织和力学性能的研究[D].山东大学,博士毕业论文,2009.
    16. Y. Zhang, X. Q. Zeng, L.E Liu. et al. Effeets of Y on microstructure and mechanical Properties of hot-extruded Mg-Zn-Y-Zr alloys. Materials Science and Engineering A,2004, 373(1-2):320-327.
    17. Q.Li, Q,D.Wang, H.T.Zhou, et al. High strength extruded Mg-5Zn-2Nd-1.5Y-0.620.4Ca alloy produced by electromagnetic casting. Materials Letters,2005,59(19-20):2549-255
    18. Colleen Bettles, Matthew Barnett. Advances in wrought magnesium alloys:Fundamentals of processing, properties and applications. Published by Woodhead,2012.
    19. S. Kleiner and P.J. Uggowiter. Mechanical anisotropy of extruded Mg-6A1-Zn alloy. Materials Science and Engineering A,2004,379(1-2):258-263.
    20. C.Davies and M.Bamett. Expanding the extrusion limits of wrought Mg alloys. JOM.2004, 56(5):22-24.
    21.张青来,卢晨,丁文江.分流挤压镁合金管材工艺研究.轻合金加工技术,2003,31(10):28-30.
    22.袁广银,孙扬善,张为民.Bi对铸造镁合金组织和力学性能的影响.铸造,1998.5:5-7.
    23. C.J. Betties, M.A. Gibson. Current wrought magnesium alloys:Strengths and Weaknesses. JOM,2005,57(5):46-49.
    24. V. Vitek, M. Igarashi, Core structure of 1/3<11-20> screw dislocations on basal and prismatic planes in h.c.p. metals. An atomistic study, Philosophical Magazine A,1991,63: 1059-1075.
    25. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama and K. Higashi, The activity of non-basal slip system and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Materialia,2003.51:2055-2065.
    26. M.H. Yoo. Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A,1981.12:409-418.
    27.林金保.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究[D],上海交通大学,博士论文,2008.
    28. M R. Barnett. Twinning and ductility of magnesium alloys:Part Ⅰ:"Tension" twins. Materials Science and Engineering A.2007,464(1-2):1-7;
    29. M R. Barnett. Twinning and ductility of magnesium alloys:Part Ⅱ:"Contraction" twins. Materials Science and Engineering A,2007,464(1-2):8-16;
    30.丁文江等著.镁合金科学与技术.北京:科学出版社.2007.
    31. J.C. Tan, M.J. Tan. Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3A1-Zn alloy sheet. Materials Science and Engineering A.2002,337:121.
    32. J. Koike, R. Ohyama, T. Kobayashi. M. Suzuki, K. Maruyama. Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K. Mater. Trans..2003.44:445-451.
    33. E.O. Hall. The Deformation and Ageing of Mild Steel:HI Discussion of Results. Proc. Phys. Soc. B..1951.64:747-753.
    34. N.J. Petch. The cleavage strength of polycrystals. J. Iron Steel Inst.1953,173:25-28.
    35. W. Boas, G.J. Ogilvie. The plastic deformation of a crystal in a polycrystalline aggregates. Acta Metallurgica, 1954,2(5):655-659.
    36. B.Q. Han, D.C. Dunand. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Mater. Sci. Eng. A.2000.277:297-304.
    37. H.E. Friedrich. B.L. Mordike. Magnesium technology:Metallurgy. design data. applications. Germany:Springer-Velag.2006.
    38. L.L. Rokhlin. Magnesium alloys containing rare earth metals. London:Taylor and Francis. 2003.
    39.周佳Mg-Al-Ca-Sr镁合金热挤压组织演变及表面开裂仿真研究[D].湖南大学,博士论文,2012.
    40. L. Li, J. Zhou, J. Duszczyk. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion. Journal of Materials Processing Technology,2006,172:372-380.
    41. I.J. Beyerlein, C.N. Tome. A dislocation-based constitutive law for pure Zr including temperature effects. International Journal of Plasticity,2008.24:867-895.
    42. J. H. Hollonman. Tensile Deformation. Trans AIME,1945,162:268-290.
    43. D. C. Ludwigson. Modified stress-strain relation for fcc metals and alloys. Metallurgical Transactions,1971,2(10):2825-2828.
    44. E. Voce. The relationship between stress and strain for homogeneous deformation. J. Inst. Metals,1948,74:537-562.
    45. C. M. Sellars. Modelling microstructural development during hot rolling. Materials Science andTechnology,1990,6:1072-1081.
    46. C. M. Sellars. Computer modeling of hot-working processes. Materials Science and Technology.1985,1:325-332.
    47. H. Merking, U. F. Kocks. Kinetics of flow and strain hardening. Acta Metallurgica, 1981, 28:1865-1875.
    48. Y. Estrin, H. Merking. A unified phenomenological description of work hardening and creep based on one-parameter model. Acta Metallurgica,1984,32(1):57-70.
    49. Y. Estrin, H. Braasch, Y. Brechet. A dislocation density based constitutive model for cyclic deformation. Journal of Engineering Materials and Technology,1996,118(4):441-447.
    50. A. Laasraoui, J. J. Jonas. Recrystallization of austenite after defonnation at high temperature and strain rates-analysis and modeling. Metallurgical Transactions A,1991.22A(1):151-160.
    51. A. Laasraoui, J. J. Jonas. Prediction of steel flow stresses at high temperatures and strain rates. Metallurgical Transactions A,1991,22A(7):1545-1558.
    52. S. Serajzadeh, A. K. Taheri. An investigation on the effect of carbon and silicon on flow behavior of steel. Materials & Design,2002,23(3):271-276.
    53. S. Serajzadeh, A. K. Taheri. An investigation of the silicon role on austenite recrystallization. Materials Letters,2002,56(6):984-989.
    54. H. J. Frost, M. F. Ashby. Deformation mechanism maps[M]. Pergamon Press,1982.
    55. A. Galiyev, O. Sitdikov, R. Kaibyshev. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Materials Transactions,2003, 44(4):426-435.
    56. H. J. McQueen. Elevated-temperature deformation at forming rates of 10-2 to 102 s-1. Metallurgical and Materials Transactions A,2002, (33):345-362.
    57. H. Takuda. H. Fujimoto, N. Hatta. Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures. Journal of Materials Processing Technology,1998.80-81:513-516.
    58.张先宏.镁合金热变形过程试验研究和数值模拟[D].上海交通大学,博十毕业论文.上海,2003.
    59.周海涛Mg-6Al-1Zn合金高温塑性变形行为及管材热挤压研究[D].上海交通大学,上海,博士毕业论文,2004.
    60.丁汉林.AZ91镁合金高温变形行为的实验研究与数值模拟.上海交通大学.博士毕业论文,2007.
    61. L. Wang, Y. Fan. G. Huang, et al. Flow stress and softening behavior of wrought magnesium alloy AZ31B at elevated temperature. Transactions of Nonferrous Metals Society of China, 2003,13(2):335-338.
    62.覃银江,ZK60镁合金均匀化与热变形.中南大学,硕士毕业论文,2009.
    63.余晖Kim Youngmin于化顺You Bongsun闵光辉Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究.金属学报.48(9)2012:1123-1131.
    64.毛卫民,赵新兵.金属的再结晶和晶粒长大.北京:冶金工业出版社,1994:29-30.
    65.禹宝军.二相粒子材料动态再结晶行为的元胞自动机模型及其模拟研究.山东大学,.博十毕业论文,2012.
    66. R.O. Kaibyshev, A.M. Galiyev. On the possibility of superplasticity enhanced by dynamic recrystallization. Materials Science Forum.1997.243-245:131-136.
    67. O. Sitdikov, R. Kaibyshev, T Sakai. Dynamic recrystallization based on twinning in coarse-grained Mg. Materials Science Forum.2003,419-422:521-526.
    68. J. C. Tan. M. J. Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Materials Science and Engineering A,2003, 339:124-132.
    69. O. Sitdikov, R. Kaibyshev. Dynamic recrystallization in pure magnesium. Materials Transactions,2001.42(9):1928-1937.
    70. A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia,1999,47(14):3753-3758.
    71. H. J. McQueen. Initiating nucleation of dynamic recrystallization, primarily in polycrystals. Materials Science and Engineering A,1988,101:149-160.
    72. C. M. Sellars, J. A. Whiteman. Recrystallization and grain growth in hot rolling. Metal Science,1979,13(3-4):187-194.
    73.赵新海,虞松,赵国群.控制变形均匀性的锻造预制坯优化设计.模具技术,,2004,2:3-5.
    74. H. Watanabe, T Mkai, K. Ishilcawa. Di$'erential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties. Joural of Materials Science,2004,39(4):1477-1480.
    75.张青来,卢晨,朱燕萍等.轧制方式对AZ31镁合金薄板组织和性能的影响.有色金属学报,2004,14(3):391-397
    76.李英虹,许光明,郑佳伟等.双辊铸轧一热轧镁合金组织的试验研究.轻合金加工技术,2006,34(11):28-32.
    77.汪凌云,黄光杰,潘复生等.镁合金板材轧制工艺及组织性能分析.稀有金属材料与工程,2007,36(5):910-914.
    78.谢建新,刘建安.金属挤压理论与技术.北京.冶金工业出版社.2002.
    79.席海霞.ZK60镁合金挤压过程数值模拟研究.哈尔滨理工大学,硕士毕业论文,2009.
    80. D. L. Atwell M. R. Barnett. Extrusion Limits of Magnesium Alloys. Metallurical and Materials Transaction A,2007,38A:3032-3041.
    81. S.S. Park, W.N. Tang, B.S. You. Microstructure and mechanical properties of an indirect-extruded Mg-8Sn-lAl-lZn alloy, Materials Letters,2010,64:31-34.
    82. W.L. Cheng, H.S. Kim, B.S. You, B.H. Koo. S.S. Park. Strength and ductility of novel Mg-8Sn-1Al-1Zn alloys extruded at different speeds. Materials Letters,2011,65:1525-1527.
    83. H.K. Lin, J.C. Huang, T.G. Langdon. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater. Sci. Eng. A.2005, 402:250-257.
    84.常丽丽.变形镁合金AZ31的织构演变与力学性能[D].大边理工大学,博士毕业论文,2009.
    85. W. Hiroyuki, Y. Masahiro, T. Yorinobu, et al. Mechanical properties of Mg-Al-Ca alloy processed by hot extrusion. Materials Science and Engineering A,2007,454-455:384-388.
    86.胡红军,张丁菲,杨明波等.新型镁合金大变形技术的研究与验证.稀有金属材料与工程,2010,39(12):2147-2151.
    87. R. Raj. Development of a processing map for use in warm-forming and hot forming processes. Metallurgy Transaction A,1989,12A:1089-1097.
    88. Y. V. R. K. Prasad. Processing maps:a status report. Journal of Materials Engineering and Performance,2003.12:638-645.
    89. Y. V R. K. Prasad, S. Sasidhara, Hot working guide:.A compendium of processing maps, ASM International, Materials Park. Ohio,1997.
    90. B. Bozzini, E. Cerri. Numerical reliability of hot working processing maps. Materials Science and Engineering A,2002,328:344-347.
    91. P. S. Robi, U. S. Dixit. Application of neural networks in generating processing map for hot working. Journal of Materials Processing Technology,2003,142:289-294.
    92. G. Ganesan, K. Raghukandan, R. Karthikeyan, et al. Development of processing map for 6061 Al/15%SiCp through neural networks. Journal of Materials Processing Technology. 2005.166:423-429.
    93.唐伟能,陈荣石,韩恩厚Mg-Y-Nd-Zr合金的高温变形行为与热加工性能.金属学报.2006,42(10):1096-1100.
    94. Z.Y. Chen, Z.Q. Li. C. Yu. Hot deformation behavior of an extruded Mg-Li-Zn-RE alloy, Materials Science and Engineering A,2011,528(3):961-966.
    95. O. Sivakesavam. Y. V. R. K. Prasad. Hot deformation behavior of as-cast Mg-2Zn-1Mn alloy in compression a study with processing map. Materials Science and Engineering A,2003, 362(1-2):118-124.
    96. W.P. Peng. P.J. Li, P. Zeng. L.P. Lei. Hot deformation behavior and microstructure evolution of twin-roll-cast Mg-2.9Al-0.9Zn alloy:A study with processing map. Materials Science and Engineering A,2008.494(1-2):173-178.
    97. F.A. Slooff, J.S. Dzwonczyk, J. Zhou. J. Duszczyk, L. Katgerman. Hot workability analysis of extruded AZ magnesium alloys with processing maps. Materials Science and Engineering A,2010,527(3):735-744.
    98. H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, Q.D. Wang, Hot workability characteristics of magnesium alloy AZ80-A study using processing map. Materials Science and Engineering A,2010,527(7-8):2022-2026.
    99.范永革,汪凌云.AZ31镁合金的中温流变失稳特征.中国有色金属学报,2005,10(15):1603-1607.
    100. C.Y. Wang, X.J. Wang, H. Chang, K. Wu, M.Y. Zheng. Processing maps for hot working of ZK60 magnesium alloy. Materials Science and Engineering A,2007,464(1-2):52-58.
    101.郑从吉.ZK60变形镁合金的合金相研究.重庆大学,硕士毕业论文,2009.
    102. Bo-Young Hur, Ki-won Kim. New method for evaluation of pitting corrosion resistance of Mg alloys. Corrosion Reviews,1998,16(1-2):85-94.
    103. L. Wei, G.L. Duialop, H. Westengen. The intergranular microstmcture ofcast Mg-Zn and Mg-Zn-rare earth alloy. Metallurgical and Materials Transactions A,1995,26(8):1947-1955.
    104. D. Y. Maeng, T. S. Kim, J. H. Lee, et al. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys. Scripta Materialia,2000,43(5):385-389.
    105. J. Buha. Grain refinement and improved age hardening of Mg-Zn alloy by a trace amount of V. Acta Materialia,2008,56:3533-3542.
    106.张少卿.MB15镁合金的相组成及其微观形态.金属学报,1989,25(5):A346-A351.
    107.陶春虎,张少卿,鲁立奇Mg-Zn-Zr-RE系镁合金中的稀土相.中国稀土学报,1990,8(1):5257.
    108.李建平,曾昭文,杨忠等.Gd对ZK60镁合金显微组织的影响.西安工业大学学报,2007,27(2):142147.
    109.吴安如,夏长清,王银娜Mg-Ce-Zn-Zr合金的显微组织与力学性能.湖南工程学院学报,2005,15(1):3335.
    110. T. Mukai, M. Yarnanoi, H. Watanabe., et al. Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading. Materials transactions,2001, 42(7):1177-1181.
    11].郗雨林.张文兴,柴东琅,王秀苓.粉末冶金法制备MB15镁基复合材料组织及性能的研究.热加工工艺.2002(1):51-53.
    112.严峰,吴昆.赵敏SiCw/MB15镁基复合材料超塑性.材料工程,2000,3:32-35.
    113. H. Watanabe, T. Mukai, K. Higashi. Superplasticity in a ZK60 magnesium alloy at low temperatures. Scfipta Materialia,1999,40(4):477-484.
    114. A. Bussiba, A, Ben Artzy, A, Shtechman, et al. Grain refinement of AZ31 and ZK60 Mg alloys--towards superplasticity studies[J]. Materials Science and Engineering A,2001,302(1): 56-62.
    115. H. Watanabe, T, Mukai. K, Ishikawa. et al. Realization of high strain rate superplasticity at low temperatures in a Mg-Zn-Zr alloy. Materials Science and Engineering A,2001,307(1-2): 119-128.
    116. F.S. Pan., J. Zhang, J.F. Wang, M.B. Yang, E.H. Han. Key RD activities for new types of wrought Mg alloys in China, Trans. Nonferrous Met. Soc. China,2010,20:1249-1258.
    117.X. Li, C. Liu, T. Al-Samman, Microstructure and mechanical properties of Mg-12Gd-3Y-0.6Zr alloy upon conventional and hydrostatic extursion, Materials Letters, 2011.65:1726-1729.
    118. Y. Kawamura, K. Hayashi, A. Inoue. et al. Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600MPa. Materials Transactions, JIM,2001, 42(7):1172-1176;
    119. E. Abe. Y. Kawamura, K. Hayashi, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at.%Zn-2at.%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Materialia,2002,50(15):3845-3857;
    120. J. Bohlen. M.R. Nurmberg, J.W. Senn, D. Letzig. S.R. Agnew. The texture and anisotropy of magnesium-zinc-rear earth alloy sheets. Acta Mater.2007,55:2101-2112.
    121. L.W.F. Mackenzie. M.O. Pekguleryuz. The recrystallization texture of magnesium-zinc-cerium alloys, Scripta Mater.,2008 59:665-668.
    122. R.K. Mishra. A.K. Gupta, P.R. Rao, A.K. Sachdev. A.M. Kumar. A.A. Luo. Influence of cerium on the texture and ductility of magnesium extrusions. Scripta Mater.,2008, 59:562-565.
    123. S.W. Xu. K. Oh-ishi. H. Sunohara, S. Kamado. Extruded Mg-Zn-Ca-Mn alloys with low yield anisotropy. Materials Science and Engineering:A,2012,558:356-365.
    1. M. Michael, A.H. Baker, ASM specialty handbook magnesium and magnesium alloys. ASM International,1999.
    2.陈振华,等.变形镁合金.北京:化学工业出版社,2004.
    3.余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用.中国有色金属学报,2003,13(2):277-288.
    4. D.F. Zhang, F.G. Qi, W. Lan, G.L. Shi, X.B. Zhao. Effects of Ce addition on microstructure and mechanical properties of Mg-6Zn-1Mn alloy. Trans Nonferrous Met. Soc. China.,2011,21:703-710.
    5. S.W. Xu. K. Oh-ishi. S. Kamado, F. Uchida, T. Homma, K. Hono, High-strength extruded Mg-Al-Ca-Mn alloy. Script Mater.,2011,65:269-272.
    6. M. Sun, G. Wu, W. Wang, W. Ding. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy. Mater. Sci. Eng. A,2009,523(1-2):145-151.
    7. H.M. Zhu, G. Sha, J.W. Liu, C.L. Wu, C.P. Luo, Z.W. Liu, P.K. Zheng, S.P. Ringer. Microstructure and mechanical properties of Mg-6Zn-xCu-0.6Zr (wt.%) alloys. Journal of Alloys and Compounds,2011,509(8):3526-3531.
    8. K. Laue, H. Stenger, Extrusion:Processes, Machinery, Tooling, American Society for Metals, Ohio,1981.
    9.杨平.电子背散射衍射技术及其应用.北京:冶金工业出版社,2007.
    1. 刘娟.镁合金锻造成形性研究及数值模拟[D].上海交通大学,博十论文,2008.
    2. Y. Qin, Q. Pan, Y. He, W. Li, X. Liu, X. Fan. Modeling of Flow Stress Considering Dynamic Recrystallization for Magnesium Alloy ZK60. Materials and Manufacturing Processes,2010, 25:527-533.
    3. A. Galiyev. R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia,2001,49:1199-1207.
    4. L. Li, J. Zhou. J. Duszczyk. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion. Journal of Materials Processing Technology,2006,172:372-380.
    5. F. Slooff, J. Zhou, J. Duszczyk, L. Katgerman. Strain-dependent constitutive analysis of three wrought Mg-AI-Zn alloys. Journal of Materials Science,2008,43:7165-7170.
    6. 丁汉林.AZ91镁合金高温变形行为的实验研究与数值模拟[D].上海交通大学,博十论文,2007.
    7. E.I. Poliak, J.J. Jonas. A one-parmenter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Materialia,1996,44:127-136.
    8.王智祥,刘雪峰,谢建新.AZ91镁合金高温变形本构关系.金属学报,2008,44:1378-1383.
    9. H. J. McQueen, N. D. Ryan. Constitutive analysis in hot working. Mater Sci Eng A,2002,322: 43-63.
    10. Y. Estrin. H. Mecking. A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metallurgica, 1984,32:57-70.
    11. S.H. Zahiri, C.H.J. Davies, P.D. Hodgson A mechanical approach to quantify dynamic recrystallization in polycrystalline metals. Scripta Materialia,2005.52:299-304.
    12. R. Goetz, S. Semiatin. The adiabatic correction factor for deformation heating during the uniaxial compression test. Journal of Materials Engineering and Performance,2001,10: 710-717.
    13. Y. Deng, Z. Yin. Huang J. Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature. Mater Sci Eng A,2011,528:1780-1786.
    14. M. L. Ma, K. Zhang. X. G. Li, Y. J. Li, K. Zhang. Hot deformation behavior of rare earth magnesium alloy without pre-homogenization treatment. T Nonferr Metal Soc,2008; 18, Suppl: s132.
    15. M. T. Anaraki, M. Sanjari. A. Akbarzadeh. Modeling of high temperature rheological behavior of AZ61 Mg-alloy using inverse method and ANN. Materials & Design,2008. 29(9):1701-1706.
    16. M. S Chun, J. Biglou, J. G. Lenard, J. G. Kim. Using neural networks to predict parameters in the hot working of aluminum alloys. Journal of Materials Processing Technology.1998,86(1-3): 245-251.
    17. Z. Lu. Q. Pan, X. Liu, Y. Qin, Y. He, S. Cao. Artificial neural network prediction to the hot compressive deformation behavior of Al-Cu-Mg-Ag heat-resistant aluminum alloy. Mechanics Research Communications,2011,38(3):192-197.
    18. P. Cavaliere. Flow curve prediction of an Al-MMC under hot working conditions using neural networks. Computational Materials Science,2007.38(4):722-726.
    19. X. He, Z. Yu, X. Lai. Analysis of high temperature deformation behavior of a high Nb containing TiAl based alloy. Materials Letters.2008,62:4181-4183.
    20. N. S. Reddy, Y. H. Lee, C. H. Park, C. S. Lee. Prediction of flow stress in Ti-6A1-4V alloy with an equiaxed a+(3 microstructure by artificial neural networks. Materials Science and Engineering:A.2008,492(1-2):276-282.
    21. Z. Sun. H. Yang, Z. Tang. Microstructural evolution model of TA15 titanium alloy based on BP neural network method and application in isothermal deformation. Computational Materials Science,2010,50(2):308-318.
    22. P. F. Bariani, S. Bruschi, T. Dal Negro. Prediction of nickel-base superalloys'rheological behaviour under hot forging conditions using artificial neural networks. Journal of Materials Processing Technology,2004,152(3):395-400.
    23. Y. C. Lin, J. Zhang, J. Zhong. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Computational Materials Science,2008,43(4):752-758.
    24. A. Bahrami, S.H. Mousavi Anijdan, H. R. Madaah Hosseini, A. Shafyei, R. Narimani. Effective parameters modeling in compression of an austenitic stainless steel using artificial neural network. Computational Materials Science,2005,34(4):335-341.
    25. Y. Zhu, W. Zeng, Y. Sun, F. Feng, Y. Zhou. Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy. Computational Materials Science,2011,50(5):1785-1790.
    26. 覃银江.ZK60镁合金均匀化与热变形.中南大学.硕士论文,2009.
    27. Y. J. Qin, Q. L. Pan, Y. B. He, W. B. Li, X. Y. Liu, X. Pan. Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression Materials and Manufacturing Processes,2010,25(7):539-545.
    28. Z. Y. Ma, S. C. Tjong. Creep Defeomation Characteristics of Deformation of Discontinuously Reinforced Aluminium-Matrix Composites. Compos. Sci. Technol.,2001,61:771-786.
    29.王晓军.搅拌铸造SiC颗粒增强镁基复合材料高温变形行为研究[D].哈尔滨工业大学.博十论文,2008.
    1. Y. V. R. K. Prasad. Processing maps:A status report. Journal of Materials Engineering and Performance.2003,12(6):638-645.
    2.周佳Mg-Al-Ca-Sr镁合金热挤压组织演变及表面开裂仿真研究[D].湖南大学,博十论文,2012.
    3. 曾卫东.周义刚.周军,俞汉清 张学敏 徐斌.加工图理论研究进展.稀有金属材料与工程,2006,35(5):34-38.
    4. Z. Chen, Z. Li. C. Yu. Hot deformation behavior of an extruded Mg-Li-Zn-RE alloy. Mater. Sci Eng A,2011; 528:961-996.
    5. W. P. Peng, P. J. Li, P. Zeng. L. P. Lei.. Hot deformation behavior and microstructure evolution of twin-roll-cast Mg-2.9 Al-0.9 Zn alloy:A study with processing map. Mater Sci Eng A,2008,494:173-178.
    6. C. Poletti, H. Dieringa, F. Warchomicka. Local deformation and processing maps of as-cast AZ31 alloy. Mater Sci Eng A,2009.516:138-147.
    7. F. A. Slooff, J. S. Dzwonczyk, J. Zhou. J. Duszczyk. L. Katgerman. Hot workability analysis of extruded AZ magnesium alloys with processing maps. Mater. Sci Eng A.2010, 527:735-744.
    8. C. Y. Wang, X. J. Wang, H. Chang, K. Wu,, M. Y. Zheng. Processing maps for hot working of ZK60 magnesium alloy. Mater. Sci Eng A,2007; 464:52-58.
    9. Y. Wang, Y. Zhang, X. Zeng, W. Ding. Characterization of dynamic recrystallisation in as-homogenized Mg-Zn-Y-Zr alloy using processing map. J Mater Sci,2006,41: 3603-3608.
    10. H. T. Zhou, Q. B. Li, Z. K. Zhao, Z. C. Liu, S. F Wen, Q. D, Wang. Hot workability characteristics of magnesium alloy AZ80-A study using processing map. Mater Sci Eng A,2010; 527:2022-2026.
    11. P. V. Sivaprasad, S. Venugopal, S. Venugopal, V. Maduraimuthu, M. Vasudevan, S. L. Mannan, Y.V. R. K. Prasad, R. C. Chaturvedi.. Validation of processing maps for a 15Cr-15Ni-2.2Mo-0.3Ti austenitic stainless steel using hot forging and rolling tests. Journal of Materials Processing Technology,2003,132:262-268.
    12. T. Rajagopalachary, V. V. Kutumbarao. Intrinsic hot workability map for a titanium alloy IMI685. Scripta Material ia,1996,35(3):311-316.
    13. N. K. Park, J. T. Yeom, Y. S. Na. Characterization of deformation stability in hot forging of conventional Ti-6A1-4V using processing maps. Journal of Materials Processing Technology.2002,130-131:540-545.
    14.鲁世强,李鑫,王克鲁.董显娟,李臻熙,曹春晓.基于动态材料模型的材料热加工工艺优化方法.中国有色金属学报,2007,17:890-896.
    15.刘娟.镁合金锻造成形性研究及数值模拟[D].上海交通大学,博士论文,2008.
    16. F. Montheillet, J. J. Jonas, K. W. Neale. Modeling of dynamic material behavior:a critical evaluation ofthe dissipator power co-content approach. Metallurgical and Materials Transactions A,1996,27A:232-236.
    17. H. Ziegler. An introduction to thermomechanics. New York:North-holland publishing company-Amsterdam,1983.
    18. Prasad Y V R K, Sastry D H. et al. Processing maps for hot working of a P/M iron aluminide alloy. Intermetallics,2000,8:1067-1074.
    19. D. H. Sastry, Y. V. Prasad, K. I. Vasu. On the stacking fault energies of some close-packed hexagonal metals. Scripta Metall,1969,3:927.
    20. S.V.S. Narayana Murty, B. Nageswara Rao, B.P. Kashyap, Instability criteria for hot deformation of materials, International Materials Reviews,2000,45:15-26.
    21. S. L. Semiatin, G. D. Lahoti. The occurrence of shear bands in isothermal hot forging. Metall Trans A,1982, A13:275-288.
    22. H. L. Gegel. Synthesis of atomistic and continuum modeling to describe microstructure. computer simulation in materials science. OH:ASM,1986,291-344.
    23. J. C. Malas. V. Seetharaman. Using material behavior models to develop process control strategies. Journal of the Minerals, Metals and Materials Society,1992,6:8-13.
    24. S. V. S. Murty, B. N. Rao. On the development of instability criteria during hotworking with reference to IN 718. Mater Sci Eng A,1998, A254:76-82.
    25. J. M. Alexander. Mapping dynamic material behaviour. Modelling hot deformation of steels [M].Springer-Verlag, Berlin 1989,101-115.
    26. X. Ma, W.D. Zeng, Y. Sun, Y.Q. Zhao, S.L. Wang, Y.G. Zhou. A Comparative Study of Various Flow Instability Criteria in Processing Ma. Rare Metal Mat. Eng.2010,39: 756-761.
    27.栾娜.AZ80镁合金变形行为研究.硕士学位论文,湖南大学,2008
    28. L. Li, J. Zhou. J. Duszczyk. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion Journal of Materials Processing Technology,2006.172:372-380.
    29. B. Derby, M. F. Ashby. On dynamic recrystallisation Scripta Metallurgies,1987,21: 879-884.
    30.唐伟能,陈荣石,韩恩厚Mg-Y-Nd-Zr合金的高温变形行为与热加工性能.金属学报,2006,42:1096-1100.
    31. A. Galiyev. R. Kaibyshev, G. Gottstein.. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK.60. Acta Materialia.2001,49:1199-1207.
    32. N. Ravichandran. Application of dynamic recrystallization model for the prediction of microstructure during hot working. J.Mater Eng Perform.2003,12(6):653-655.
    1. R. W. Cahn师昌绪,柯俊.非铁合金的结构与性能.北京:科学出版社.1999:101.
    2. I. J. Polmear. Magnesium alloys and applications. Mater Sci Tech.,1994,10:1-1.
    3. B.L. Mordike, T. Ebert. Magnesium:Properties-applications-potential. Mater. Sci. Eng. A, 2001,302:37-45.
    4. 张振亚.粉末热挤压制备高性能镁合金研究.山东大学.2010.
    5. 陈洪美.铸轧镁合金的变形工艺及其组织和力学性能的研究.山东大学,博士学位论文,2009.
    6. K. Yu, W. Li, J. Zhao, Z. Ma, R. Wang. Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy. Scripta Mater.2003,48:1319-1323.
    7. C.J. Bettles, M.A. Gibson. Current wrought magnesium alloys:Strengths and weaknesses. JOM.2005.57:46-49.
    8. D.F. Zhang. F.G. Qi. W. Lan, G.L. Shi, X.B. Zhao. Effects of Ce addition on microstructure and mechanical properties of Mg-6Zn-1Mn alloy. Trans Nonferrous Met. Soc. China.,2011, 21:703-710.
    9. R.K. Mishra, A.K. Gupta, P. R. Rao. A.K. Sachdev, A. M. Kumar, A.A. Luo. Influence of cerium on the texture and ductility of magnesium extrusions. Scripta Mater.,2008.59: 562-565.
    10. L.W.F. Mackenzie, M.O. Pekguleryuz. The recrystallization and texture of magnesium-zinc-cerium. Scripta Mater.,2008,59:665-668.
    11. N. Stanford, D. Atwell, A. Beer, C. Davies, M.R. Barnett. Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater.,2008, 59:772-775.
    12. J. Bohlen, M.R. Nurnberg, J. W. Senn. D. Letzig, S.R. Agnew. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta Mater.,2007,55:2101-2112.
    13. A. Wu, C. Xia, J. Wang. Distribution, evolution and the effects of rare earths Ce and Y on the mechanical properties of ZK60 alloys. J. Univ. Sci. Technol. B,2006,13:424-428.
    14. C.Q. Xia, Y.N. Wang, A.R. Wu, Y. Gu. Effects of cerium on microstructure and mechanical properties of ZK60 alloy. J. Cent. South Univ. Technol.,2005,12:515-520.
    15. C.J. Ma, M.P. Liu, G.H. Wu, W.J. Ding, Y.P. Zhu. Tensile properties of extruded ZK60-RE alloys. Mater. Sci. Eng. A.2003.349:207-212.
    16.余琨,黎文献,王日初,巢国辉,稀土Ce和Nd对AZ31镁合金耐蚀性能的影响,材料保护,2007,40(11):6-9.
    17. Y. Fan, G. H. Wu, C. Q. Zhai. Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy. Mater Sci Eng A,2006,433: 208-215.
    18. S.W. Xu, K. Oh-ishi, H. Sunohara, S. Kamado, Extruded Mg-Zn-Ca-Mn alloys with low yield anisotropyMaterials Science and Engineering:A 558,2012.356-365.
    19. S.W. Xu, K. Oh-ishi, S. Kamado, F. Uchida. T. Homma, K. Hono, High-strength extruded Mg-Al-Ca-Mn alloy. Script Mater.,2011,65:269-272.
    20. M. Sun, G. Wu, W. Wang, W. Ding. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy. Mater. Sci. Eng. A, 2009,523(1-2):145-151.
    21. J. Buha, T. Ohkubo, Natural Aging in Mg-Zn(-Cu) Alloys. Metallurgical and Materials Transactions A,2008,39:2259-2273.
    22. H.M. Zhu, G. Sha, J.W. Liu. C.L. Wu, C.P. Luo, Z.W. Liu, P.K. ZHeng, S.P. Ringer. Microstructure and mechanical properties of Mg-6Zn-xCu-0.6Zr (wt.%) alloys. Journal of Alloys and Compounds,2011,509(8):3526-3531.
    23.宋光铃.镁合金腐蚀与防护.化学工业出版社.2006.
    24. L.Y. Wei, G.L. Dunlop, H. Westengen. Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys. Metall Mater Trans A.1995,26(7):1705-1716.
    25. A. Luo, W. Wu, R. Mishra, L. Jin, A. Sachdev, W. Ding. Microstructure and Mechanical Properties of Extruded Magnesium-Aluminum-Cerium Alloy Tubes. Metall. Mater. Trans. A, 2010.41:2662-2674.
    26. D. Kevorkov, M. Pekguleryuz. Experimental study of the Ce-Mg-Zn phase diagram at
    350℃ via diffusion couple techniques J Alloys Compd.2009,478:427-436.
    27. J.H. Kim. N.E. Kang, C.D. Yim, B.K. Kim.Effect of calcium content on the microstructural evolution and mechanical properties of wrought Mg-3Al-1Zn alloy. Mater. Sci. Eng. A, 2009.525:18-29.
    28. F.J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena,2nd edition, Elsevier, Oxford,2004.
    29. J.D. Robson. D.T. Henry, B. Davis. Particle effects on recrystallization in magnesium-manganese alloys:Particle-stimulated nucleation. Acta Mater.,2009.57: 2739-2747.
    30. S. Wang. R. Ma, L. Yang, Y. Wang. Y. Wang. Precipitates effect on microstructure of as-deformed and as-annealed AZ41 magnesium alloys by adding Mn and Ca. J. Mater. Sci. 2011,46:3060-3065.
    31. S.W. Xu, K. Oh-ishi. S. Kamado. T. Homma. Twins, recrystallization and texture evolution of a Mg-5.99 Zn-1.76 Ca-0.35 Mn (wt.%) alloy during indirect extrusion process. Scripta Mater.2011,65:875-878.
    32. A. Galiyev. R. Kaibyshev, G. Gottstein,. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia,2001.49:1199-1207.
    33. C.H. Park, C.-S. Oh, S. Kim. Dynamic recrystallization of the H-and O-tempered Mg AZ31 sheets at elevated temperatures. Mater. Sci. Eng. A,2012,542:127-139.
    34. S.S. Park, B.S. You. D.J. Yoon. J. Effect of the extrusion conditions on the texture and mechanical properties of indirect-extruded Mg-3Al-1Zn alloy. Mater. Process. Tech..2009, 209:5940-5943.
    35. N. Stanford, M.R. Barnett. The origin of rare earth texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A,2008,496:399-408.
    36. N. Stanford. Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study. Mater. Sci. Eng. A,2010,527:2669-2677.
    37. W.L. Cheng, H.S. Kim, B.S. You, B.H. Koo, S.S. Park. Strength and ductility of novel Mg-8Sn-1Al-1Zn alloys extruded at different speeds. Mater. Letters,2011,65:1525-1527.
    38. X. Gao, J.F. Nie. Characterization of strengthening precipitate phases in a Mg-Zn alloy. Scripta Mater.,2007,56:645-648.
    39. K. Oh-ishi, C.L. Mendis, T. Homma, S. Kamado, T. Ohkubo, K. Hono. Bimodally grained microstructure development during hot extrusion of Mg-2.4Zn-0.1 Ag-0.1 Ca-0.16 Zr (at.%) alloys. Acta Mater.,2009,57:5593-5604.
    40. M.A. Meyers, O. Vohringer, V.A. Lubarda. The onset of twinning in metals:a constitutive description. Acta Mater,2001,49:4025-4039.
    41. R.W. Armstrong, P.J. Worthington. Metallurgical Effects at High Strain Rates, New York, 1973.
    42. S.H. Park, S.G. Hong, J.H. Lee, C.S. Lee. Multiple twinning modes in rolled Mg-3Al-1Zn alloy and their selection mechanism. Mater. Sci. Eng. A,2012,532:401-406.
    43. C. Chiu, A. Kozlov, J. Grobner, R. Schmid-etzer. Thermodynamics and constitution of Mg-Zn-Ce alloys. Magnesium technology,2010,23-26.
    44. E. Orowan, Symposium on Internal Stresses in Metals and Alloys, Institute of Metals, London,1948.
    45. J.F. Nie. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Mater.2003,48:1009-1015.
    46. M. Mabuchi. K. Higashi. Strengthening mechanisms of Mg-Si alloys. Acta Mater.,1996.44: 4611-4618.
    47. T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa, K. Higashi. Platform Science and Technology for Advanced Magnesium Alloys. Effect of Grain Refinement on Tensile Ductility in ZK60 Magnesium Alloy under Dynamic Loading. Mater. Trans.,2001.42: 1177-1181.
    48.禹宝军.二相粒子材料动态再结晶行为的元胞自动机模型及其模拟研究.山东大学.2012.
    49.陈振华.变形镁合金.北京:化学工业出版社,2005.
    50. Q. Ma, H. El Kadiri, A.L. Oppedal, J.C. Baird, M.F. Horstemeyer. M. Cherkaoui. Twinning and double twinning upon compression of prismatic textures in an AM30 magnesium alloy. Scripta Mater.,2011,64:813-816.
    51. M.R. Barnett. Twinning and the ductility of magnesium alloys:Part II. "Contraction" twins. Mater Sci Eng A,2007,464:8-16.
    52. Kim S.I.. Yoo, Y.C., Dynamic recrystallization behavior of AISI stainless steel. Mater Sci Eng A.2001,311:108-113
    53. Wei Li Cheng. Microstructures and deformation behavior of Mg-Sn based alloy. Changwon National University, Doctor thesis,2011.
    54. Y.N.Wang, J.C Huang. The role of twinning and untwining in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta Mater..2007.55:897-905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700