用户名: 密码: 验证码:
N18锆合金板材加工过程中微观组织及织构演变的定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以国产N18新型锆合金为研究对象,主要采用电子通道衬度像(ECC)、电子背散射衍射(EBSD)技术、X射线衍射(XRD)以及透射电子显微镜(TEM)等分析技术,系统研究了锆合金在加工过程(β相淬火、热轧、冷轧及退火)中的微观组织及织构的演变规律。针对两种不同初始取向的样品,采用实验观测以及晶体塑性模拟分析了初始取向对锆合金冷轧变形机制的影响,在此基础上对锆合金冷轧织构的形成机理进行了探讨。通过研究两种冷轧变形量的N18锆合金板材在退火过程中的再结晶行为,分析了锆合金的再结晶机制。
     基于晶内取向差转轴(In-Grain misorientation axis,IGMA)方法,分析了晶粒内不同滑移系的开启对IGMA分布的影响,提出了IGMA与Schmid因子相结合的方法可较好地判断锆合金变形时开启的滑移系类型。
     系统定量地表征了N18锆合金板材加工过程的显微组织及织构演变,结果表明N18板材加工过程的组织演变规律为:板条魏氏组织(β相淬火)→纤维组织+难变形晶粒(热轧)→不均匀再结晶组织(热轧退火)→不均匀形变组织(两次冷轧)→均匀再结晶组织(最终退火);N18板材织构演变规律为:β相淬火的随机织构经热轧形成沿横向倾斜的双峰基面织构,随后的加工过程均保留这种织构,轧制板材以<1010>方向平行于轧向(<1010>//RD)的双峰基面织构为主,而退火板材以<1120>方向平行于轧向(<1120>//RD)的双峰基面织构为主。
     通过两种初始取向的N18锆合金冷轧过程显微组织及织构的研究,利用IGMA方法确定了N18合金冷轧时开启的滑移系类型,结果表明0°板材主要依靠柱面滑移、{1011}锥面滑移以及基面滑移变形;90°板材变形初期主要依靠柱面滑移和{1012}拉伸孪生变形,变形后期出现了{1011}锥面滑移和基面滑移;随着应变量的增加,两种板材中柱面滑移和{1012}拉伸孪生的开启量减少,{1011}锥面滑移和基面滑移的开启量逐渐增加。
     采用松弛约束模型模拟了0°和90°板材在冷轧过程的织构演变,确定了柱面滑移、基面滑移、{1011}锥面滑移和{1012}拉伸孪生的临界剪切应力比值为1:5:9:2;通过对比不同变形方式启动时模拟织构的差异,揭示了锆合金的双峰基面织构是由{1012}拉伸孪生、{1011}锥面滑移和基面滑移共同作用的结果,而<1010>//RD织构是由柱面滑移引起的。
     通过对50%、85%两个变形量下N18锆合金冷轧板材初次再结晶行为的研究,结果表明两种冷轧板材的初始织构都是<1010>//RD的双峰基面织构,50%板材初次再结晶后的织构转变为<1120>//RD的双峰基面织构,85%板材初次再结晶后的织构中包含<1120>//RD和<1010>//RD两类织构;通过分析再结晶晶粒的形核和长大,揭示了两种板材的再结晶织构是由<1010>//RD晶粒的择优形核以及<1120>//RD晶粒的择优长大两方面共同控制的。
This thesis reports a quantitative investigation of microstructure and textureevolution during fabrication of N18zirconium alloy sheets, which are used as structuralmaterials in nuclear power reactors. Microstructure evolution was observed by electronchanneling contrast (ECC) images and electron backscatter diffraction (EBSD)technology in a scanning electron microscopy (SEM). Local crystallographicorientations were measured by EBSD technology and the macro-texture was examinedby X-ray diffraction technology. Second phase particles were identified usingtransmission electron microscope (TEM). Combining experimental investigations withcrystal plasticity simulation using a relaxed constraint (RC) model, two sheets withdifferent initial orientations were selected to study the effect of the initial orientation onthe deformation mechanism and the texture formation during cold rolling.Recrystallization behavior during primary recrystallization of cold rolled sheets after50%and85%reductions was also presented.
     In order to identify activated slip systems in the N18zirconium alloy, a methodcombining in-grain misorientation axes (IGMA) distributions with Schmid factoranalyses was employed, based on detailed studies of the effect of each slip system onthe IGMA distribution.
     The microstructure and texture evolution during fabrication of N18alloy sheetshave been quantitatively investigated. It is found that the microstructure evolves from aweave Widmans tten structure of β quenching stage to heterogeneous deformationstructures associated after hot and cold rolling and then to a fully recrystallized structureafter final annealing. The texture evolution can be summarized that a random textureformed by β quenching transforms into a tilt basal texture after hot rolling, which keepsstable during the following fabrications. The texture of the rolling sheets is mainlycharacterized as <1010> direction parallel to rolling direction (<1010>//RD) while thetexture of the annealing sheets is <1120> direction parallel to rolling direction(<1120>//RD).
     The effect of the initial orientation on the deformation mechanism during coldrolling has been analyzed. The results show that the0°sheets were deformed mainly byprismatic slip,{1011} pyramidal slip and basal slip. Prismatic slip and {1012}tensile twinning were the dominant deformation mechanisms for the90°sheets at low strain while {1011} pyramidal slip and basal slip were also observed in higherstrained samples. The slip identification results indicate that {1011} pyramidal slip and basal slip were enhanced with increasing deformation strain in both sheets.
     Texture evolution of the0°and90°sheets during cold rolling was simulated usinga relaxed consistent model. The ratio of critical resolved shear stress of prismatic slip,{1011} pyramidal slip, basal slip and {1012} tensile twinning was indentifiedas1:5:9:2. The formation of the double tilt basal texture was ascribed to {1012} tensiletwining,{1011} pyramidal slip and basal slip, while the <1010>//RD texturewas interpreted as a result of prismatic slip.
     After primary recrystallization, the final texture of the50%cold-rolled sheetschanges into a dominant texture with <1120> direction parallel to the rolling direction(<1120>//RD), while the85%cold-rolled sheets display a mixed texture with<1120>//RD and <1010>//RD. The texture differences of the two materials werediscussed based on the preferred nucleation of <1010>//RD grains and preferredgrowth of <1120>//RD grains.
引文
[1]刘建章.核结构材料[M].北京:化学工业出版社,2007.
    [2]扎依莫夫斯基,姚敏智.核动力用锆合金[M].北京:原子能出版社,1988.
    [3] K. Linga Murty,I. Charit. Texture development and anisotropic deformation of zircaloys[J].Prog. Nucl. Energy2006,48:325-359.
    [4]赵文金,周邦新,苗志,等.我国高性能锆合金的发展[J].原子能科学技术,2005,39:2-9.
    [5]周邦新.改善锆合金耐腐蚀性能的概述[J].金属热处理学报,1997,18:8-15.
    [6] D. Srivastava,G.K. Dey,S. Banerjee. Evolution of microstructure during fabrication of Zr-2.5wt pct Nb alloy pressure tubes[J]. Metall. Mater. Trans. A1995,26A:2707-2718.
    [7] K.V.M. Krishna,S.K. Sahoo,I. Samajdar, et al. Microstructural and textural developmentsduring Zircaloy-4fuel tube fabrication[J]. J. Nucl. Mater.2008,383:78-85.
    [8] M.K. Kumar,C. Vanitha,I. Samajdar, et al. Textural and microstructural developmentsduring fabrication of Zr-2.5Nb pressure tubes[J]. J. Nucl. Mater.2004,335:48-58.
    [9]薛祥义,邱军,李佩志.锡含量对锆-锡合金性能的影响[J].稀有金属材料与工程,1996,3:14-17.
    [10] J.K. Chakravartty,R. Kapoor,S. Banerjee, et al. Characterization of hot deformation behaviorof Zr-1Nb-1Sn alloy[J]. J. Nucl. Mater.2007,362:75-86.
    [11]周军,李中奎,张建军,等.基于Matlab的热加工图的数值构造方法[J].稀有金属,2007,31:49-52.
    [12]王蕊宁,奚正平,赵永庆,等. Zr-4合金的热变形和加工图[J].稀有金属材料与工程,2007,36:808-812.
    [13]李佩志,丁学锋,邱军.锆-4合金的疖状腐蚀[J].稀有金属材料与工程,1992,6:51-56.
    [14] R.A. Holt. The beta to alpha phase transformation in zircaloy-4[J]. J. Nucl. Mater.1970,35:322-334.
    [15] T. E. Perez, M. E. Saggese. Welding Structures in Gas Tungsten Arc-Welded Zircaloy-4[J].Metallography1982,15:43-52
    [16]王卫国,周邦新.锆合金板织构的控制[J].核动力工程,1994,15:158-163.
    [17]王卫国,周邦新.轧制温度对Zr-4合金板织构的影响[J].核动力工程,1996,17:255-261.
    [18]彭倩,赵文金. Zr-4合金板α相高温区轧制的织构演化[J].核动力工程,2003,24:133-136.
    [19]彭倩,刘彦章,赵文金,等.热轧温度对N18新锆合金板材织构的影响[J].核动力工程,2005,26:65-69.
    [20] M.K. Kumar,I. Samajdar,N. Venkatramani, et al. Explaining absence of texture developmentin cold rolled two-phase Zr-2.5wt%Nb alloy[J]. Acta Mater.2003,51:625-640.
    [21] M.K. Kumar, C. Vanitha, I. Samajdar, et al. Deformation texture and microtexturedevelopments in a cold rolled single phase hexagonal Zircaloy2[J]. Mater. Sci. Tech.2006,22:331-342.
    [22] S.K. Sahoo,V.D. Hiwarkar,I. Samajdar, et al. Heterogeneous deformation in single-phaseZircaloy2[J]. Scripta Mater.2007,56:963-966.
    [23] R.A. Holt. Recovery of cold-work in extruded Zr-2.5wt%Nb[J]. J. Nucl. Mater.1976,59:234-242.
    [24] V.D. Hiwarkar,S.K. Sahoo,I. Samajdar, et al. Annealing of cold worked two-phase Zr-2.5Nb--Associated microstructural developments[J]. J. Nucl. Mater.2009,384:30-37.
    [25] A. Akhtar,A. Teghtsoonian. Plastic deformation of zirconium single crystals[J]. Acta Metall.1971,19:655-663.
    [26] A. Akhtar. Compression of zirconium single crystals parallel to the c-axis[J]. J. Nucl. Mater.1973,47:79-86.
    [27] A. Akhtar. Basal slip in zirconium[J]. Acta Metall.1973,21:1-11.
    [28] A. Akhtar. Prismatic slip in zirconium single crystals at elevated temperatures[J]. Metall.Mater. Trans. A1975,6:1217-1222.
    [29] G.W. Groves,A. Kelly. Independent slip systems in crystals[J]. Philos. Mag. A1963,8:877-887.
    [30] M.J. Philippe,M. Serghat,P. Van Houtte, et al. Modelling of texture evolution for materialsof hexagonal symmetry--II. application to zirconium and titanium α or near α alloys[J]. ActaMetall. Mater.1995,43:1619-1630.
    [31] R.J. McCabe,E.K. Cerreta,A. Misra, et al. Effects of texture, temperature and strain on thedeformation modes of zirconium[J]. Philos. Mag. A2006,86:3595-3611.
    [32] J.E. Bailey. Electron microscope studies of dislocations in deformed zirconium[J]. J. Nucl.Mater.1962,7:300-310.
    [33] J.I. Dickson,G.B. Craig. Room-temperature basal slip in zirconium[J]. J. Nucl. Mater.1971,40:346-348.
    [34] J.I. Dickson,A. Dedo,G.B. Craig. Etching dislocations in zirconium[J]. J. Nucl. Mater.1971,38:116-117.
    [35] L. Xiao,H. Gu. Dislocation structures in zirconium and zircaloy-4fatigued at differenttemperatures[J]. Metall. Mater. Trans. A1997,28:1021-1033.
    [36] F. Xu,R.A. Holt,M.R. Daymond. Evidence for basal slip in Zircaloy-2at roomtemperature from polycrystalline modeling[J]. J. Nucl. Mater.2008,373:217-225.
    [37] G.G. Yapici,C.N. Tomé,I.J. Beyerlein, et al. Plastic flow anisotropy of pure zirconium aftersevere plastic deformation at room temperature[J]. Acta Mater.2009,57:4855-4865.
    [38] M. Fregonese,C. Regnard,L. Rouillon, et al. Failure Mechanisms of Irradiated Zr AlloysRelated to PCI: Activated Slip Systems, Localized Strains, and Iodine-Induced StressCorrosion Cracking[C]. Zirconium in the Nuclear Industry:12th International Symposium,ASTM STP1354,2000:377-396.
    [39] C.N. Tomé,R.A. Lebensohn,U.F. Kocks. A model for texture development dominated bydeformation twinning: Application to zirconium alloys[J]. Acta Metall. Mater.1991,39:2667-2680.
    [40] M.J. Philippe,C. Esling,B. Hocheid. Role of Twinning in Texture Development and inPlastic Deformation of Hexagonal Materials[J]. Texture. Microstructure.1988,7:265-301.
    [41] P. Sanchez,A. Pochettino,T. Chauveau, et al. Torsion texture development of zirconiumalloys[J]. J. Nucl. Mater.2001,298:329-339.
    [42] M.H. Yoo. Slip, twinning, and fracture in hexagonal close-packed metals[J]. Metall. Trans. A1981, V12:409-418.
    [43] H. Numakura,Y. Minonishi,M. Koiwa.{10-11}<11-23>slip in titanium polycrystals at roomtemperature[J]. Scripta Metall.1986,20:1581-1586.
    [44] H. Numakura,Y. Minonishi,M. Koiwa.<-1-123>{10-11} slip in zirconium[J]. Philos. Mag.A1991,63:1077-1084.
    [45] M.H. Yoo,S.R. Agnew,J.R. Morris, et al. Non-basal slip systems in HCP metals and alloys:source mechanisms[J]. Mater. Sci. Eng. A2001,319-321:87-92.
    [46] M.H. Yoo,J. Morris,K. Ho, et al. Nonbasal deformation modes of HCP metals and alloys:Role of dislocation source and mobility[J]. Metall. Mater. Trans. A2002,33:813-822.
    [47] R.A. Holt,M. Griffiths,R.W. Gilbert. c-Component dislocations in Zr-2.5wt%Nb Alloy[J].J. Nucl. Mater.1987,149:51-56.
    [48] N. Paton,W. Backofen. Plastic deformation of titanium at elevated temperatures[J]. Metall.Mater. Trans. B1970,1:2839-2847.
    [49] A. Roviglione,J.D. Hermida. Pyramidal slip in the orientation distribution function analysisof ZRY-4tubes[J]. Scripta Mater.1996,34:1615-1620.
    [50] M.H. Yoo,J.K. Lee. Deformation twinning in h.c.p. metals and alloys[J]. Philos. Mag. A1991,63:987-1000.
    [51] E.Tenckhoff. The development of the deformation texture in zirconium during rolling insequential passes[J]. Metall. Trans. A1978,9:1401-1412.
    [52] B.A. Cheadle,C.E. Ells,W. Evans. The development of texture in zirconium alloy tubes[J]. J.Nucl. Mater.1967,23:199-208.
    [53] R.G. Ballinger,G.E. Lucas,R.M. Pelloux. The effect of plastic strain on the evolution ofcrystallographic texture in Zircaloy-2[J]. J. Nucl. Mater.1984,126:53-69.
    [54] R.J. McCabe,G. Proust,E.K. Cerreta, et al. Quantitative analysis of deformation twinning inzirconium[J]. International Journal of Plasticity2009,25:454-472.
    [55] Y. Chun,M. Battaini,C. Davies, et al. Distribution Characteristics of In-Grain MisorientationAxes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active SlipModes[J]. Metall. Mater. Trans. A2010,41:3473-3487.
    [56] M.J. Philippe,F. Wagner,F.E. Mellab, et al. Modelling of texture evolution for materials ofhexagonal symmetry--I. Application to zinc alloys[J]. Acta Metall. Mater.1994,42:239-250.
    [57] A. Salinas-Rodriguez. Grain size effects on the texture evolution of [alpha]-Zr[J]. Acta Metall.Mater.1995,43:485-498.
    [58] J.J. Fundenberger,M.J. Philippe,F. Wagner, et al. Modelling and prediction of mechanicalproperties for materials with hexagonal symmetry (zinc, titanium and zirconium alloys)[J].Acta Mater.1997,45:4041-4055.
    [59] J.D. Eshelby. The Deformation of the Elastic Field of an Ellipsoidal Inclusion and RelatedProblems[J]. Proceedings of the Royal Society of London. Series A, Mathematical andPhysical Sciences1957,241:376-396.
    [60] R.A. Lebensohn,C.N. Tomé. A self-consistent anisotropic approach for the simulation ofplastic deformation and texture development of polycrystals: Application to zirconiumalloys[J]. Acta Metall. Mater.1993,41:2611-2624.
    [61] P. Van Houtte. Simulation of the rolling and shear texture of brass by the Taylor theoryadapted for mechanical twinning[J]. Acta Metall.1978,26:591-604.
    [62] R.A. Lebensohn,C.N. Tomé. A self-consistent viscoplastic model: prediction of rollingtextures of anisotropic polycrystals[J]. Mater. Sci. Eng. A1994,175:71-82.
    [63] A. Salinas Rodriguez,J.J. Jonas. Evolution of textures in zirconium alloys deformeduniaxially at elevated temperatures[J]. Metall. Trans. A1992,23:271-293.
    [64] R.A. Lebensohn,M.I. González,C.N. Tomé, et al. Measurement and prediction of texturedevelopment during a rolling sequence of Zircaloy-4tubes[J]. J. Nucl. Mater.1996,229:57-64.
    [65] H. Francillette,B. Bacroix,M. Gasperini, et al. Grain orientation effects in Zr702[alpha]polycrystalline samples deformed in channel die compression at room temperature[J]. ActaMater.1998,46:4131-4142.
    [66] J. Martin,R. Reed-Hill. A study of basal slip kink bands in polycrystalline zirconium[J].Trans. AIME1964,230.
    [67] J.W. Christian,S. Mahajan. Deformation twinning[J]. Prog. Mater. Sci.1995,39:1-157.
    [68] E.J. Rapperport. Room temperature deformation processes in zirconium[J]. Acta Metall.1959,7:254-260.
    [69] B.L. Averbach,M.B. Bever,M.F. Comerford, et al. X-ray and calorimetric investigations ofcold working and annealing of a gold-silver alloy[J]. Acta Metall.1956,4:477-484.
    [70]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [71] F. Humphreys,M. Hatherly. Recrystallization and Related Annealing Phenomena (SecondEdition)[M]. Oxford: Elsevier,2003.
    [72] D. Turnbull,J.C. Fisher. Rate of Nucleation in Condensed Systems[J]. J. Chem. Phys.1949,17:71-73.
    [73]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998.
    [74] P.A. Beck,P.R. Sperry. Strain induced grain boundary migration in high purity aluminum[J].J. Appl. Phys.1950,21:150-152.
    [75] S.P. Bellier,R.D. Doherty. The structure of deformed aluminium and its recrystallization-investigations with transmission Kossel diffraction[J]. Acta Metall.1977,25:521-538.
    [76] R. Higginson,P. Bate. Substructure drag effects and recrystallization textures in aluminium[J].Acta Mater.1999,47:1079-1090.
    [77] K.Y. Zhu,D. Chaubet,B. Bacroix, et al. A study of recovery and primary recrystallizationmechanisms in a Zr-2Hf alloy[J]. Acta Mater.2005,53:5131-5140.
    [78] J. Hjelen,R. rsund,E. Nes. On the origin of recrystallization textures in aluminium[J]. ActaMetall. Mater.1991,39:1377-1404.
    [79] X.L. Li,W. Liu,A. Godfrey, et al. Development of the cube texture at low annealingtemperatures in highly rolled pure nickel[J]. Acta Mater.2007,55:3531-3540.
    [80] E.L. Maksimova,L.S. Shvindlerman,B.B. Straumal. Transformation of∑17special tiltboundaries to general boundaries in tin[J]. Acta Metall.1988,36:1573-1583.
    [81] G. Ibe,K. Lücke. Recrystallization, Grain Growth and Textures[M], Ohio: Metals Park,1966.
    [82] K.Y. Zhu,B. Bacroix,T. Chauveau, et al. Texture Evolution and Associated Nucleation andGrowth Mechanisms during Annealing of a Zr Alloy[J]. Metall. Mater. Trans. A2009,40A:2423-2434.
    [83] I. Samajdar,B. Verlinden,P. Van Houtte, et al.[gamma]-Fibre recrystallization texture inIF-steel: an investigation on the recrystallization mechanisms[J]. Mater. Sci. Eng. A1997,238:343-350.
    [84] R.L. Higginson,M. Aindow,P.S. Bate. The effect of finely dispersed particles on primaryrecrystallisation textures in AlMnSi alloys[J]. Mater. Sci. Eng. A1997,225:9-21.
    [85] F.J. Humphreys, M.G. Ardakani. Grain boundary migration and Zener pinning inparticle-containing copper crystals[J]. Acta Mater.1996,44:2717-2727.
    [86] F.J. Humphreys. A unified theory of recovery, recrystallization and grain growth, based onthe stability and growth of cellular microstructures--II. The effect of second-phase particles[J].Acta Mater.1997,45:5031-5039.
    [87] S. Benum,E. Nes. Effect of precipitation on the evolution of cube recrystallisation texture[J].Acta Mater.1997,45:4593-4602.
    [88] D. Juul Jensen. Growth of nuclei with different crystallographic orientations duringrecrystallization[J]. Scripta Metall. Mater.1992,27:533-538.
    [89] D. Juul Jensen. Growth rates and misorientation relationships between growing nuclei/grainsand the surrounding deformed matrix during recrystallization[J]. Acta Metall. Mater.1995,43:4117-4129.
    [90] E.Tenckhoff,P.L. Rittenhouse. Annealing textures in zircaloy tubing[J]. J. Nucl. Mater.1970,35:14-23.
    [91] K. Okazaki,H. Conrad. Recrystallization and grain growth in titanium: I. characterization ofthe structure[J]. Metall. Mater. Trans. B1972,3:2411-2421.
    [92] N. Bozzolo,F. Wagner,N. Dewobroto, et al. Recrystallization textures in some hexagonalalloys[J]. Mater. Sci. Forum2002,408-412:901-906.
    [93] F. Wagner,N. Bozzolo,O. Van Landuyt, et al. Evolution of recrystallisation texture andmicrostructure in low alloyed titanium sheets[J]. Acta Mater.2002,50:1245-1259.
    [94] N. Bozzolo,N. Dewobroto,T. Grosdidier, et al. Grain growth texture evolution in zirconium(Zr702) and commercially pure titanium (T40)[J]. Mater. Sci. Forum2004,467-470:441-446.
    [95] N. Dewobroto,N. Bozzolo,P. Barberis, et al. Experimental investigations of recrystallizationtexture development in zirconium (Zr702)[J]. Mater. Sci. Forum2004,467-470:453-458.
    [96] N. Bozzolo,N. Dewobroto,T. Grosdidier, et al. Texture evolution during grain growth inrecrystallized commercially pure titanium[J]. Mater. Sci. Eng. A2005,397:346-355.
    [97] N. Dewobroto,N. Bozzolo,F. Wagner. Influence of deformation substructures on the earlymechanisms of recrystallization in cold-rolled titanium and zirconium[J]. Mater. Sci. Forum2005,495-497:711-716.
    [98] N. Bozzolo,F. Gerspach,G. Sawina, et al. Accuracy of orientation distribution functiondetermination based on EBSD data-A case study of a recrystallized low alloyed Zr sheet[J]. J.Microsc-Oxford.2007,227:275-283.
    [99] F. Gerspach,N. Bozzolo,F. Wagner. About texture stability during primary recrystallizationof cold-rolled low alloyed zirconium[J]. Scripta Mater.2009,60:203-206.
    [100] Y.B. Chun,S.L. Semiatin,S.K. Hwang. Monte Carlo modeling of microstructure evolutionduring the static recrystallization of cold-rolled, commercial-purity titanium[J]. Acta Mater.2006,54:3673-3689.
    [101] V.D. Hiwarkar,S.K. Sahoo,I. Samajdar, et al. Defining recrystallization in pilgeredZircaloy-4: From preferred nucleation to growth inhibition[J]. J. Nucl. Mater.2011,412:287-293.
    [102] C. Vanitha,M. Kiran Kumar,G.K. Dey, et al. Recrystallization texture development insingle-phase Zircaloy2[J]. Mater. Sci. Eng. A2009,519:51-60.
    [103] W. Liu,Q. Li,B. Zhou, et al. Effect of heat treatment on the microstructure and corrosionresistance of a Zr–Sn–Nb–Fe–Cr alloy[J]. J. Nucl. Mater.2005,341:97-102.
    [104] J.-Y. Park,B.-K. Choi,Y.H. Jeong, et al. Corrosion behavior of Zr alloys with a high Nbcontent[J]. J. Nucl. Mater.2005,340:237-246.
    [105]周邦新,姚美意,李强,等. Zr-Sn-Nb合金耐疖状腐蚀性能的研究[J].稀有金属材料与工程,2007,36:1317-1321.
    [106] Y. I. Jung,M. H. Lee,H. G. Kim, et al. Behavior of a recrystallization in HANA-4andHANA-6zirconium-based alloys[J]. J. Alloys Comp.2009,479:423-426.
    [107] F. J. Humphreys. Review Grain and subgrain characterisation by electron backscatterdiffraction[J]. Journal of Materials Science2001,36:3833-3854.
    [108]胡运明,陈道伦,苏会和,等.直接观察位铺结构的扫描电镜电子通道衬度技术[J].材料研究学报,1997,2:240-244.
    [109] G. Williamson,W. Hall. X-ray line broadening from filed aluminium and wolfram[J]. ActaMetall.1953,1:22-31.
    [110]姚宗勇,刘庆,G. Andrew,等.形变金属组织的EBSD取向分析研究[J].电子显微学报,2008,27:452-456.
    [111] C.E. Kril,R. Birringer. Estimating grain-size distributions in nanocrystalline materials fromX-ray diffraction profile analysis[J]. Philos. Mag. A1998,77:621-640.
    [112] N. Gey,M. Humbert,E. Gautier, et al. Analysis of the beta->alpha variant selection in a zy-4rod by means of specific crystal orientation maps[J]. Mater. Sci. Forum2002,408-412:1759-1764.
    [113] D.A. Hughes,N. Hansen. High angle boundaries formed by grain subdivision mechanisms[J].Acta Mater.1997,45:3871-3886.
    [114] P. Chemelle,D. Knorr,J. Van Der Sande, et al. Morphology and composition of second phaseparticles in zircaloy-2[J]. J. Nucl. Mater.1983,113:58-64.
    [115] N.V. Bangaru. An investigation of the microstructures of heat-treated Zircaloy-4[J]. J. Nucl.Mater.1985,131:280-290.
    [116] C. Toffolon, J.C. Brachet, C. Servant, et al. Experimental study and preliminarythermodynamic calculations of the pseudo-ternary Zr-Nb-Fe-(O,Sn) system[C]. Zirconium inthe Nuclear Industry:13thInternational Symposium,ASTM STP1423,2002:361-382.
    [117] P. Barberis,D. Charquet,V. Rebeyrolle. Ternary Zr-Nb-Fe(O) system: phase diagram at853K and corrosion behaviour in the domain Nb<0.8%[J]. J. Nucl. Mater.2004,326:163-174.
    [118] D. Charquet,R. Hahn,E. Ortlieb, et al. Solubility limits and formation of intermetallicprecipitates in ZrSnFeCr alloys[C] Zirconium in the Nuclear Industry:9thInternationalSymposium, ASTM STP10232,1989:405-422.
    [119] F. Garzarolli,H. Ruhmann,L. Van Swam. Alternative Zr Alloys with Irradiation ResistantPrecipitates for High Burnup BWR Application[C]. Zirconium in the Nuclear Industry:13thInternational Symposium,ASTM STP1423,2002:119-132.
    [120] W. GollI,I. Ray. The Behavior of Intermetallic Precipitates in Highly Irradiated BWR LTPCladding[C]. Zirconium in the Nuclear Industry:13thInternational Symposium,ASTM STP1423,2002:80-95.
    [121] Y.H. Jeong,H.G. Kim,T.H. Kim. Effect of beta phase, precipitate and Nb-concentration inmatrix on corrosion and oxide characteristics of Zr-xNb alloys[J]. J. Nucl. Mater.2003,317:1-12.
    [122] H.G. Kim,J.Y. Park,Y.H. Jeong. Phase boundary of the Zr-rich region in commercial gradeZr-Nb alloys[J]. J. Nucl. Mater.2005,347:140-150.
    [123]刘彦章,赵文金,彭倩,等.热加工对Zr-Sn-Nb合金显微组织的影响研究[J].核动力工程,2005,26:158-162.
    [124]赵文金,苗志,蒋宏曼,等. Zr-Sn-Nb合金的腐蚀行为研究[J].中国腐蚀与防护学报,2002,22:124-128.
    [125]李强,周邦新,姚美意,等.锆合金在550℃,25MPa超临界水中的腐蚀行为[J].稀有金属材料与工程,2007,253:1358-1361.
    [126]周邦新,姚美意,李强,等. Zr-Sn-Nb合金耐疖状腐蚀性能的研究[J].稀有金属材料与工程,2007,253:1317-1321.
    [127] J. Liang, Y. Tang, L. Nong, et al. Intermetallics and phase transformations of theZr-1.0Sn-0.3Nb-0.3Fe-0.1Cr alloy[J]. Rare Metals2008,27:468-472.
    [128] Y.Z. Liu,W.J. Zhao,Q. Peng, et al. Study of microstructure of Zr-Sn-Nb-Fe-Cr alloy in thetemperature range of750-820C[J]. Mater. Chem. Phys.2008,107:534-540.
    [129] S.K. Sahoo,V.D. Hiwarkar,A. Majumdar, et al. Presence and absence of significant twinning:Effects on cold deformed microstructures of single phase Zircaloy2[J]. Mater. Sci. Eng. A2009,518:47-55.
    [130] M. Battaini,E.V. Pereloma,C.H.J. Davies. Orientation Effect on Mechanical Properties ofCommercially Pure Titanium at Room Temperature[J]. Metall. Mater. Trans. A2007,38:276-285.
    [131] O. Castelnau,H. Francillette,B. Bacroix, et al. Texture dependent plastic behavior of Zr702at large strain[J]. J. Nucl. Mater.2001,297:14-26.
    [132] S.K. Sahoo,V.D. Hiwarkar,I. Samajdar, et al. Deformation twinning in zircaloy2[J]. Mater.Sci. Tech.2010,26:104-114.
    [133] N.P. Gurao,R. Kapoor,S. Suwas. Deformation behaviour of commercially pure titanium atextreme strain rates[J]. Acta Mater.2011,59:3431-3446.
    [134] S. Farenc,D. Caillard,A. Couret. An in situ study of prismatic glide in [alpha] titanium at lowtemperatures[J]. Acta Metall. Mater.1993,41:2701-2709.
    [135] G. Kaschner,G. Gray. The influence of crystallographic texture and interstitial impurities onthe mechanical behavior of zirconium[J]. Metall. Mater. Trans. A2000,31:1997-2003.
    [136] S. Godet,L. Jiang,A.A. Luo, et al. Use of Schmid factors to select extension twin variants inextruded magnesium alloy tubes[J]. Scripta Mater.2006,55:1055-1058.
    [137] I.J. Beyerlein,L. Capolungo,P.E. Marshall, et al. Statistical analyses of deformation twinningin magnesium[J]. Philos. Mag. A2010,90:2161-2190.
    [138] I.J. Beyerlein,R.J. McCabe,C.N. Tomé. Effect of microstructure on the nucleation ofdeformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study[J].J.Mech.Phys.Solids.2011,59:988-1003.
    [139] L. Capolungo,P.E. Marshall,R.J. McCabe, et al. Nucleation and growth of twins in Zr: Astatistical study[J]. Acta Mater.2009,57:6047-6056.
    [140] L. Wang,Y. Yang,P. Eisenlohr, et al. Twin Nucleation by Slip Transfer across GrainBoundaries in Commercial Purity Titanium[J]. Metall. Mater. Trans. A2010,41:421-430.
    [141] K.H. Kim,B.C. Suh,J.H. Bae, et al. Microstructure and texture evolution of Mg alloys duringtwin-roll casting and subsequent hot rolling[J]. Scripta Mater.2010,63:716-720.
    [142] J.H. Driver,A. Skalli,M. Wintenberger. A theoretical and experimental study of the plasticdeformation of f.c.c. crystals in plane strain compression[J]. Philos. Mag. A1984,49:505-524.
    [143] B. Orlans-Joliet,B. Bacroix,F. Montheillet, et al. Yield surfaces of b.c.c. crystals for slip onthe {110}<111> and {112}<111> systems[J]. Acta Metall.1988,36:1365-1380.
    [144] A. Chapuis,J.H. Driver. Temperature dependency of slip and twinning in plane straincompressed magnesium single crystals[J]. Acta Mater.2011,59:1986-1994.
    [145] G.I. Taylor. Plastic Strain in Metals[J]. J. Inst. Met.1938,62:307-324.
    [146] J.F.W. Bishop,R. Hill. XLVI. A theory of the plastic distortion of a polycrystalline aggregateunder combined stresses[J]. Philos. Mag.1951,42:414-427.
    [147]刘庆.镁合金塑性变形机理研究进展[J].金属学报,2010,11:1458-1472.
    [148] S.K. Sahoo,V.D. Hiwarkar,K.V. Mani Krishna, et al. Grain fragmentation and twinning indeformed Zircaloy2: Response to positron lifetime measurements[J]. Mater. Sci. Eng. A2010,527:1427-1435.
    [149] S. Kim. Deformation twinning and texture variation in Zr-2.5pct Nb alloy during rolling[J].Metall. Mater. Trans. A2006,37:59-68.
    [150] H.P. Lee,C. Esling,H.J. Bunge. Deveopment of the Rolling Texture in Titanium[J]. Texture.Microstructure.1988,7:317-337.
    [151] R.G. Ballinger,R.M. Pelloux. The effect of anisotropy on the mechanical behavior ofZircaloy-2[J]. J. Nucl. Mater.1981,97:231-253.
    [152] R.J. McCabe,E.K. Cerreta,A. Misra, et al. Effects of texture, temperature and strain on thedeformation modes of zirconium[J]. Philos. Mag. A2006,86:3595-3611.
    [153] H. Francillette,B. Bacroix,M. Gasperini, et al. Effect of initial textures on deformationmechanisms and texture evolutions of Zr[alpha] polycrystals deformed by channel-diecompression tests[J]. Mater. Sci. Eng. A1997,234-236:974-977.
    [154] M.K. Kumar,I. Samajdar,N. Venkatramani, et al. Explaining absence of texture developmentin cold rolled two-phase Zr-2.5wt%Nb alloy[J]. Acta Mater.2003,51:625-640.
    [155] F. Xu,R.A. Holt,M.R. Daymond. Modeling texture evolution during uni-axial deformation ofZircaloy-2[J]. J. Nucl. Mater.2009,394:9-19.
    [156] D.O. Hobson. Textures in deformed zirconium single crystals[J]. Trans. Met. Soc. AIME1968,242:1105-1110.
    [157] D. Chaubet,B. Bacroix,J.L. Bechade. An EBSD study of static recrystallization ofcold-rolled zircaloy-4sheets[J]. Mater Sci Forum2002,408-412:797-802.
    [158] M. H. Dislocation wall and cell structures and long-range internal stresses in deformed metalcrystals[J]. Acta Metall.1983,31:1367-1379.
    [159] Q. Liu,D. Juul Jensen,N. Hansen. Effect of grain orientation on deformation structure incold-rolled polycrystalline aluminium[J]. Acta Mater.1998,46:5819-5838.
    [160] B.L. Li,A. Godfrey,Q.C. Meng, et al. Microstructural evolution of IF-steel during coldrolling[J]. Acta Mater.2004,52:1069-1081.
    [161] I. Samajdar,B. Verlinden,L. Kestens, et al. Physical parameters related to the developmentsof recrystallization textures in an ultra low carbon steel[J]. Acta Mater.1998,47:55-65.
    [162] I. Samajdar,B. Verlinden,P. Van Houtte. Development of recrystallization texture in IF-steel:an effort to explain developments in global texture from microtextural studies[J]. Acta Mater.1998,46:2751-2763.
    [163] N. Rajmohan,Y. Hayakawa,J.A. Szpunar, et al. Neutron diffraction method for stored energymeasurement in interstitial free steel[J]. Acta Mater.1997,45:2485-2494.
    [164] N. Rajmohan,J.A. Szpunar. A new model for recrystallization of heavily cold-rolledaluminum using orientation-dependent stored energy[J]. Acta Mater.2000,48:3327-3340.
    [165] G. Guiglionda,A. Borbély,J.H. Driver. Orientation-dependent stored energies in hotdeformed Al–2.5%Mg and their influence on recrystallization[J]. Acta Mater.2004,52:3413-3423.
    [166] S.F. Castro,J. Gallego,F.J.G. Landgraf, et al. Orientation dependence of stored energy ofcold work in semi-processed electrical steels after temper rolling[J]. Mater. Sci. Eng. A2006,427:301-305.
    [167] O. Engler,H.E. Vatne,E. Nes. The roles of oriented nucleation and oriented growth onrecrystallization textures in commercial purity aluminium[J]. Mater. Sci. Eng. A1996,205:187-198.
    [168] B.J. Duggan,K. Lücke,G. K hlhoff, et al. On the origin of cube texture in copper[J]. ActaMetal. Mater.1993,41:1921-1927.
    [169] Q. Liu,X. Huang,D.J. Lloyd, et al. Microstructure and strength of commercial purityaluminium (AA1200) cold-rolled to large strains[J]. Acta Mater.2002,50:3789-3802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700