用户名: 密码: 验证码:
西安市表层土壤重金属污染的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西安市地处关中平原,是中国西部地区的核心城市。随着西安城市化进程的不断推进,尤其是国际化大都市的建设,人类活动排放的大量污染物进入城市生态环境,造成城市环境污染,城市土壤成为污染物的主要承载介质之一。本文以西安市三环内的表层土壤为研究对象,通过多种实验手段测定土壤的理化性质、重金属全量和存在形态,运用SPSS、GIS、Excel、Matlab等软件,利用地统计学的空间变异函数和克里格插值方法,研究西安市表层土壤中重金属的空间分布特征,采用污染负荷指数、潜在生态危害指数等模型研究西安市表层土壤中重金属的污染特征、环境风险及综合污染的空间差异,探究土壤重金属来源研究的新方法,为西安城市土壤环境管理提供借鉴。通过以上的研究,得到以下研究结论:
     1.西安市表层土壤的理化性质具有一定的空间差异,与城市绿地类型以及城市化水平具有一定关系。西安市表层土壤中As、Ba、Co、Cr、Cs、Cu、Mn、Ni、 Pb、Sn、Sr、V、Zn等13种重金属元素的平均值分别是褐土背景值的0.99、1.20、1.46、1.35、1.08、1.67、1.05、1.10、2.12、2.28、1.48、1.00和1.71倍,As、Cu、 Pb、Zn、Cr、Ni的平均含量均远低于国家土壤环境质量三级标准(GB15618-1995)的含量值。在不同绿地类型土壤中,Pb、Zn、Cu、Sn、Cr的含量差异较大;而As、Co、Cs、V、Ni、Mn、Sr、Ba等元素在不同绿地类型土壤中的变化不大,且Mn、Ni、V的平均含量均略高于褐土背景值。
     2.形态分析表明,重金属的迁移顺序为Pb(60.79%)>Mn(60.12%)>Zn(46.64%)>Cr(44.55%)>Co(41.59%)>Ni(32.75%)>Cu(31.43%),其中60%以上的Pb、Mn可以迁移,危害较大,都应成为优先防控对象。
     3.由于不同城市区域中人类活动的密集程度和重金属元素的来源不同等原因,重金属在不同圈层的累积程度不同。城墙内区域和城墙至二环区域的土壤中Cr、Cu、Co较为稳定而Pb、Mn、Zn三种元素的活性较强,易被迁移转化;二环至三环的区域土壤中Cu、Ni、Zn较为稳定而Mn、Pb的稳定态含量较低。行政区功能特征的不同导致土壤重金属的累积和赋存形态也具有较大的差异。西安市三环内表层土壤中所研究13种元素的含量与采样点到市中心的距离呈非线性关系。基于GIS的分析表明,不同重金属元素在西安市的空间分布规律不同。As、Mn、 Ni、V具有相似的空间分布趋势,尤其是Mn、Ni、V的最高值和最低值出现的区域具有相同性。西安市表层土壤Cu、Pb的空间分布特征相近,高值区均分布在交通密集,且工业企业分布众多的城市中心区域和传统工业密集的城西区域;低值区主要分布在交通流量相对小、人口密度低、工业企业分布较少的东南曲江旅游度假区和东北浐灞生态新区;西安市表层土壤Sn含量的空间分布特征不明显。元素Ba则表现出城西较高、城中较低、城东北较高的空间分布特征;土壤Zn含量的高值区具有交通密度较大,城市道路与铁路混合分布的特征,且布局较多的工业企业,西安市传统工业区土壤Zn含量也较高,低值区主要分布在西安市东北的浐灞生态区和东南的曲江度假旅游区。土壤Co的空间分布表现为城西和城东北较高而东南较低的特征,两倍于褐土背景值的区域主要分布在城东北区域和城西车城附近;元素Cr含量的低值区分布在西安市东北的浐灞生态新区,高值区分布在西安市西郊工业区;西安市表层土壤Sr的含量的空间分布特征为自西北向东南递减,东南的曲江旅游度假区的土壤Sr含量较低。西安市三环内大多数地区的土壤Cs含量低于褐土背景值而城市北部和西南部的局部地区的Cs含量略高于褐土背景值。此外,同一元素的不同赋存形态的空间分布也存在差异。
     4.污染评价结果表明,西安市表层土壤重金属的PLI为1.27,属于中度污染水平,存在空间区域上的差异。西安市表层土壤中Mn、V受人类活动影响程度较轻,As、Ba、Co、Cr、Cs、Cu、Ni、Pb、Sn、Sr、Zn等11种重金属元素的污染的区域差异较大,西安市域内均存在不同范围和程度的累积,尤其是人类活动对重金属Cu、Pb、Sn等元素的累积影响较大,存在污染较严重的局部地区。西安市表层土壤总体上存在中等程度的潜在生态危害,272个样品中分别有95.58%、1.84%、1.84%、0.74%的样品存在中等程度、轻微程度、较高程度、高的潜在生态危害。西安市表层土壤中重金属的单项潜在生态危害指数的平均值按照以下顺序减小:As(9.90)>Cu(8.38)>Pb(7.37)>Co(7.29)>V(5.68)>Ni(5.51)>Zn(4.11)>Cr(2.71)>Mn(1.05),所有元素均存在轻微潜在生态危害。
     5.来源分析表明,多元统计分析方法将13种元素归为五类,基于最小生成树的分类模型与其分类结果相同,即As-Mn-Ni-V、Ba-Zn、Co-Cr-Sr、Cu-Pb-Sn、Cs,说明最小生成树分类模型在土壤来源分类领域具有一定应用价值。利用GIS将因子分析结果插值得到五个因子的空间分布图,与交通分布图和企业分布图相叠加,解析西安市表层土壤重金属的来源。第一组元素As-Mn-Ni-V主要受自然因素——成土母质的影响,为自然因子。第二组元素Cu、Pb、Sn在城市土壤中的累积主要来源于城市交通活动。第三组元素Ba-Zn被看作是交通活动、工业生产活动和居民活动综合作用的结果,为综合因子。第四组元素Co、Cr、Sr在城市土壤中的累积主要受工业生产活动的影响,为工业因子。第五组元素Cs的累积既受自然因素的影响也受多种人类活动的作用,为混合因子。
Xi'an city, located in the Guanzhong Plain, is the core city of western China. With the urbanization of Xi'an city, especially the construction of the international metropolis, the emissions of pollutants from human activities into the urban ecological environment caused some urban environment pollution, and urban soil was one of bearing medium. In this paper, the physical and chemical properties, concentrations and chemical speciation of heavy metals were measured with a variety of experimental methods. The contamination characteristics and environmental ecological risks of heavy metals in Xi'an topsoil were evaluated based on the pollution load index and potential ecological hazard index. The Kriging interpolation methods with GIS were used to studying the characteristics of the spatial distribution of heavy metals and integrated pollution level in Xi'an urban topsoil. Combined statistical and mathematical methods, the main source of heavy metal accumulation in the surface soil from Xi'an city were sorted out. And a new research method had been done to probe the sources of heavy metals in topsoil. The conclusions would provide some reference for the soil environment management of Xi'an city. Through the above research work, the following conclusions as follows:
     1) Some spatial differences with related to greenland types and the level of urbanization, were found in the physical and chemical properties of the topsoil from Xi'an city. The average concentrations of As, Ba, Co, Cr, Cs, Cu, Mn, Ni, Pb, Sn, Sr, V and Zn in Xi'an topsoil were0.99,1.20,1.46,1.35,1.08,1.67,1.05,1.10,2.12,2.28,1.48,1.00and1.71times soil background values of cinnamon soil, respectively. The average concentrations of As, Cu, Pb, Zn, Cr, Ni were below the three national soil environmental quality standard (GB15618-1995). Some significant difference were found in the concentrations of Pb, Zn, Cu, Sn, Cr in those soil from different types greenland, but that of As, Co, Cs, V, Ni, Mn, Sr and Ba were little difference. The concentrations of Mn, Ni, V were slightly higher than the background values of cinnamon soil.
     2) The results of chemical speciation analysis showed that the migration of heavy metals was in the order of Pb (60.79%)> Mn (60.12%)> Zn (46.64%)> Cr (44.55%)> Co (41.59%)> Ni (32.75%)> Cu (31.43%). And Pb and Mn should become a priority objects to be prevented and controlled, of which more than60%of the concentrations of Pb, Mn could be migrated and cause some harm for ecological environment.
     3) The study results of spatial distribution showed that the accumulation of heavy metals in different spheres were different due to varying intensive degrees of human activities and different sources of heavy metals. It should be paid attention that Cr, Cu and Co were relatively stable and Pb, Mn and Zn were converse and easy migration in those areas within the city walls and from the city wall to the Second Ringroad. It was more stable for Cu, Ni, Zn, but lower concentrations of stable states for Mn and Pb in the area from the Second Ringroad to the Third Ringroad. The different features of the different administrative area of Xi'an city resulted in the greater difference in the concentrations and chemical speciation of heavy metals. The concentrations of As, Ba, Co, Cr, Cs, Cu, Mn, Ni, Pb, Sn, Sr, V and Zn in topsoil inside Third Ringroad in Xi'an city showed the non-linear relationship with the distance from the center of the city.
     The characteristics of spatial distribution of every element were different based on the spatial analysis of GIS and geostatistical model. The spatial distribution characteristics of As, Mn, Ni and V content are similar, and the highest and lowest values of Mn, Ni and V appears to the same area. The spatial distribution characteristics of Cu and Pb in the topsoil in Xi'an are similar. Their high-value areas were distributed in those area of the city center and traditional industries intensive western region with heavily traffic and a large number of industrial enterprises, and low value areas were mainly distributed in Qujiang Resort District in southeast of city and Chanba ecological District in northeast of city with the low traffic, low population density and less distribution of industrial enterprises. The spatial distribution characteristic of the concentrations of Sn was not obvious, and the overall level was much higher than the background value of cinnamon soil. For Ba, the concentration was higher in the western region and northeast region, but the lower in middle region. The high value area of Zn had the characteristics of the high traffic density (mixing distribution of urban road and rail) and the intensive industrial enterprises. And the concentration of Zn in topsoil from Xi'an traditional industrial zone was also higher, but that from Chanba ecological District in the northeast and the Qujiang vacation area in the southeast of the city were lower. The spatial distribution characteristics of Co in topsoil manifested as higher in the western and northeastern regions and the lower in southeast of the city. Those areas of the concentrations twice the background value of cinnamon soil were mainly located in the northeast region and western car-city nearby. The low concentration areas of Cr was distributed Chanba Ecological District in the northeast of Xi'an city, and high-value areas were located in the western industrial district of Xi'an, surrounding the railway line distribution. The concentrations of Sr in topsoil within the Third Ringroad in Xi'an city decreased from northwest of the city to southeast of the city, and that was lower in topsoil from Qujiang tourist Resort in the southeast of city. The concentrations of Cs were lower than the background value of cinnamon soil in most parts of city, but slightly higher than the background value of cinnamon soil in the local area of the north and southwest of the city. And the characteristic of spatial distribution of different speciation of the same element were different.
     4) The pollution evaluation results showed that PLI was1.27, indicating moderately polluted level in Xi'an topsoil. The contaminations of Mn and V were affected to a lesser extent by human activities. There were large regional differences in the contaminations of As, Ba, Co, Cr, Cs, Cu, Ni, Pb, Sn, Sr, Zn in the surface soil of Xi'an city, and the extent of the accumulation of these elements were different. Some sever pollution area for Cu, Pb, Sn, which related to larger cumulative impact of human activities were found. The results of ecological risk analysis showed that there was moderate potential ecological harm in Xi'an topsoil generally. And there were moderate, slight degree, higher degree, high potential ecological risk in95.58%、1.84%、1.84%、0.74%of272samples, respectively. The average individual potential ecological risk index of heavy metals in the surface soil of Xi'an reduced in the following order:As (9.90)>Cu (8.38)>Pb (7.37)>Co (7.29)>V (5.68)>Ni (5.51)>Zn (4.11)>Cr (2.71)>Mn(1.05). And there was slight potential ecological harm for all elements.
     5) All elements were grouped into five categories using multivariate statistical analysis. There were the same classification results based on minimum spanning tree classification model, which were As-Mn-Ni-V, Ba, Zn, Co-Cr-Sr, Cu-Pb-Sn, Cs. Therefore the classification model based minimum spanning tree was a valuable research method for the field of soil source classification. The GIS interpolation maps with five factors from factors analysis, overlaying traffic maps and enterprises maps were used for analyzing the sources of heavy metals in Xi'an urban topsoil. The first set of elements (As-Mn-Ni-V) was natural factors, which were mainly affected by the soil parent material. The accumulation of second set of elements (Cu, Pb, Sn) in urban soils were mainly related with urban traffic, which was traffic factor. The third group of elements (Ba, Zn), as the result of the combined affects of the industrial production activities, traffic emission and the activities of citizens, was comprehensive factor. The fourth set of elements (Co, Cr, and Sr) in urban soils was mainly affected by the impact of the industrial production activities, which was industrial factor. The fifth group element, Cs, which was affected by natural factors and human activities, was the blending factor.
引文
[1]郭文婧.“毒地”开发呼唤中国版“棕色地块法”[J].资源与人居环境,2012,(7):54-55.
    [2]Bockheim, J. G. Nature and properties of highly-disturbed urban soils, Philadelphia, Pennsylvania. Paper presented before Division S-5, Soil Genesis, Morphology and Classification, Annual Meeting of the Soil Science Society of America, Chicago, IL.1974.
    [3]黄勇,郭庆荣,任海,等.城市土壤重金属污染研究综述[J].热带地理,2005,25(1):14-18.
    [4]Kimpe D. C. R., Morel J. L.. Urban soil management:a growing concern[J]. Soil Science,2000,165(1):31-40.
    [5]张甘霖,吴运金,龚子同.城市土壤——城市环境保护的生态屏障[J].自然杂志,2006,28(4):205-209.
    [6]张甘霖,赵玉国,杨金玲,等.城市土壤环境问题及其研究进展[J].土壤学报,2007,44(5):925-933.
    [7]孙炳彦.都市土壤中重金属含量对城市大气污染水平的依赖性[J].环境科学动态,1999,(2):29-30.
    [8]刘育红,赵微,肖龙盛.西宁市不同功能区土壤重金属铬和镍的形态研究[J].湖北农业科学,2012,51(13):2695-2697.
    [9]卢瑛,甘海华,张波,等.深圳城市绿地土壤重金属含量及化学形态分布[J].环境化学,2009,28(2):284-288.
    [10]刘玉燕,刘敏.上海城市土壤中重金属含量及赋存形态[J].城市环境与城市生态,2008,21(2):34-37.
    [11]符娟林,章明奎,厉仁安.杭州市居民区土壤重金属形态和酸可溶性研究[J].科技通报,2004,20(1):6-10.
    [12]钟晓兰,周生路,黄明丽,等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273.
    [13]钱翌,张玮,冉德超.青岛城市土壤重金属的形态分布及影响因素分析[J].环境化学,2011,30(3):652-657.
    [14]郑顺安,郑向群,张铁亮,等.土壤重金属形态研究动态及展望.2011中国环境科学学会学术年会.2011中国环境科学学会学术年会论文集(第二卷) [C].北京:中国环境科学出版社,2011:670-674.
    [15]王鹏,贾学秀,涂明,等.北京某道路外侧土壤重金属形态特征与污染评价[J].环境科学与技术,2012,35(6):165-172.
    [16]Alov N. V, Bulgachev R. V., Oskolok K. V.. Features of technogenic metal pollution of roadside soil according to x-ray fluorescence monitoring data[J]. Journal of Soils and Sediments,2001,1:164-167.
    [17]Banat K. M., Howari F. M., Al-Hamad A. A.. Heavy metals in urban soils of central Jordan:Should we worry about their environmental risks [J]. Environmental Research,2005,97:258-273.
    [18]Maas S., Scheifler R., Benslama M., et al. Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria[J]. Environmental Pollution,2010,158:2294-2301.
    [19]Dankoub Z., Ayoubi S., Khademi H., et al. Spatial distribution of magnetic properties and selected heavy metals in Calcareous soils as affected by land use in the Isfahan Region, Central Iran[J]. Pedosphere,2012,22(1):33-47.
    [20]Manta D. S, Angelone M., Bellanca A., et al. Heavy metals in urban soils:A case study from the city of Palermo (Sicily), Italy [J]. Science of the Total Environment, 2002,300(1):229-243.
    [21]Iqbal J., Shah M.H.. Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan[J]. Journal of Hazardous Materials,2011, 192(2):887-898.
    [22]Madrid L., Diaz-Barrientos E, Madrid F., et al. Distribution of heavy metal contents of urban soils in parks of Seville[J]. Chemosphere,2002,49:1301-1308.
    [23]Christoforidis A., Stamatis N., Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece[J]. Geoderma,2009,151:257-263.
    [24]Batjargala T., Otgonjargala E., Baeka K., et al. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia[J]. Journal of Hazardous Materials,2010,184 (1-3):872-876.
    [25]Morton-Bermea O., Hern a ndez-Alvarez E., Gonz a lez-Hern a ndez G., et al. Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City [J]. Journal of Geochemical Exploration,2009,101(3):218-224.
    [26]柳云龙,章立佳,韩晓非,等.上海城市样带土壤重金属空间变异特征及污染评价[J].环境科学,2012,33(2):599-605.
    [27]吴新民,李恋卿,潘根兴,等.南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征[J].环境科学,2003,24(3):105-111.
    [28]卢瑛,尹伟,张波,等.广州城市土壤砷的含量及其污染评价[J].安全与环境学报,2010,10(1):110-113.
    [29]卓文珊,唐建锋,管东生.广州市城区土壤重金属空间分布特征及其污染评价[J].中山大学学报(自然科学版),2009,48(4):47-51.
    [30]古德宁,李立平,邢维芹,等.郑州市城市土壤重金属分布和土壤质量评价[J].土壤通报,2009,40(4):921-925.
    [31]崔邢涛,染文楼,郭海全,等.石家庄城市土壤重金属污染及潜在生态危害评价[J].现代地质,2011,25(1):169-175.
    [32]刘勇,岳玲玲,李晋昌.太原市土壤重金属污染及其潜在生态风险评价[J].环境科学学报,2011,31(6):1285-1293.
    [33]余菲,肖玲,康苗苗,等.贵阳市中心城区土壤重金属污染现状及其评价[J].城市环境与城市生态,2011,24(3):5-8.
    [34]赵翠翠,南忠仁,王胜利,等.兰州市主城区土壤重金属空间分布特征及污染评价[J].城市环境与城市生态,2010,23(3):5-8.
    [35]刘宝庆,陈红路,郑雄.南宁市城区土壤重金属污染特征及评价.中国环境科学学会学术年会论文集(第二卷)[C].北京:中国环境科学出版社,2011:795-801.
    [36]孟昭虹,周嘉,郑元福,等.哈尔滨市城市土壤重金属生态风险评价[J].水土保持研究,2009,16(2):152-155.
    [37]崔邢涛,栾文楼,牛彦斌,等.唐山城市土壤重金属污染及潜在生态危害评价[J].中国地质,2011,38(5):1379-1386.
    [38]马建华,李灿,陈云增.土地利用与经济增长对城市土壤重金属污染的影响——以开封市为例[J].土壤学报,2011,48(4):743-750.
    [39]郭广慧,张航程,彭颖.基于GIS的宜宾城市土壤Pb含量空间分布特征及污染评价[J].环境科学学报,2011,31(1):164-171.
    [40]林晓峰.泉州市城市表层土壤重金属污染评价研究[D].泉州,华侨大学,2011.
    [41]王海东,方凤满,谢宏芳,等.芜湖市区土壤重金属污染评价及来源分析[J].城市环境与城市生态,2010,23(4):36-40.
    [42]郭岩,杨国义,董巧香,等.汕头市典型区域土壤重金属污染特征及评价[J].环 境科学,2007,28(5):1067-1074.
    [43]廖晓勇,陈同斌,武斌,等.典型矿业城市的土壤重金属分布特征与复合污染评价——以”镍都”金昌市为例[J].地理研究,2006,25(5):843-852.
    [44]徐清,张立新,刘素红,等.表层土壤重金属污染及潜在生态风险评价——包头市不同功能区案例研究[J].自然灾害学报,2008,17(6):6-12.
    [45]汤洁,陈初雨,李海毅,等.大庆市建成区土壤重金属潜在生态危害和健康风险评价[J].地理科学,2011,31(1):117-122.
    [46]吴新民,潘根兴.城市不同功能区土壤重金属分布初探[J].土壤学报,2005,42(3): 513-517.
    [47]钱翌,赵世刚.青岛市不同生态功能区表层土壤重金属污染初步评价[J].中国农学通报,2010,26(9):352-356.
    [48]王美青,章明奎.杭州市城市和郊区土壤重金属含量形态的研究[J].环境科学学报,2002,22(5):603-608.
    [49]张久明迟风琴宿庆瑞,等.哈尔滨市城市土壤重金属空间分布特征及相关分析[J].东北农业大学学报,2010,41(7):56-61.
    [50]李增福,朱继业,王腊春.合肥市城市土壤重金属元素含量及空间分布特征[J].城市环境与城市生态,2009,22(3):24-27.
    [51]刘玉燕,刘敏,刘浩峰.乌鲁木齐城市土壤中重金属含量与影响机制探讨[J].干旱区地理,2007,30(4):552-556.
    [52]贾华清,章明奎.杭州市城市土壤重金属的积累和释放潜力及其空间分异[J].浙江大学学报(农业与生命科学版),2007,33(6):677-684.
    [53]黄顺生,吴新民,颜朝阳,等.南京城市土壤重金属含量及空间分布特征[J].城市环境与城市生态,2007,20(2):1-4.
    [54]Li X.D., Lee S.L., Wong S.C., et. al. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach[J]. Environmental Pollution, 2004,129:113-124.
    [55]Tao S.. Kriging and mapping of copper, lead, and mercury contents in surface soil in Shenzhen area[J]. Water Air Soil Pollut,1995,83:161-72.
    [56]Mielke H.W., Gonzales C.R., Smith M.K.. et al. Quantities and associations of lead, zinc, cadmium, manganese, chromium, nickel, vanadium, and copper in fresh Mississippi delta alluvium and New Orleans alluvial soils[J]. Science of the Total Environment,2000,246:249-259.
    [57]Facchinelli E. Sacchi L.. Mallen. Multivariate statistical and GIS based approach to identify heavy metal sources in soils[J]. Environ Pollut,2001,114:313-324.
    [58]Norra S., Webe A. R., Kramer U., et al. Mapping of trace metals in urban soils, [J]. J Soil Sediment,2001,1:77-97.
    [59]Romic M., Romic D.. Heavy metals distribution in agricultural topsoils in urban area[J]. Environ Geo,2003,143:795-805.
    [60]Kring D. G.. A statistical approach to some basic mine valuation problems on the Wit-watersrand. J. Chem. Met[J]. Mining Soc. S. Africa,1951,52:119-139.
    [61]张慧文,马剑英,张自文,等.地统计学在土壤科学中的应用[J].兰州大学学报(自然科学版),2009,45(6):14-20.
    [62]Korre A.. Statistical and spatial assessment of soil heavy metal contamination in areas of poorly recorded, complex sources of pollution Part 2:Canonical correlation analysis and GIS for the assessment of contamination sources, Stochastic [J]. Environmental Research and Risk Assessment,1999,13:288-316.
    [63]McGrath D., Zhang C. S., Carton O. T.. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland[J]. Environmental pollution, 2004,127:239-248.
    [64]徐尚平,陶澍,徐福留,等.内蒙土壤微量元素含量的空间结构特征[J].地理学报,2000,55(3):338-344.
    [65]董来启,韩春建,吴克宁,等.郑州市土壤重金属空间分布特征及其影响因素定量研究[J].河南农业科学,2010,(8):64-68.
    [66]胡克林,张凤荣,吕贻忠,等.北京市大兴区土壤重金属含量的空间分布特征[J].环境科学学报,2004,24(3):463-468.
    [67]Groenigen J. W., Stein A., Zuurbier R.. Optimization of environmental sampling using interactive GIS [J]. Soil Technology,1997,10:83-97.
    [68]Chang Y.H., Scrimshaw M.D., Emmerson, R.H.C., et. al. Geostatistical analysis of sampling uncertainty at the Tollesbury managed retreat site in Blackwater Estuary, Essex, UK:kriging and cokriging approach to minimise sampling density[J]. Sci. Total Environ,1998,221:43-57.
    [69]阎波杰,潘瑜春,赵春江.区域土壤重金属空间变异及合理采样数确定[J].农业工程学报,2008,S2.
    [70]樊燕,刘洪斌,武伟.土壤重金属污染现状评价及其合理采样数的研究[J].土壤通报,2008,39(2):369-374.
    [71]陈涛,施加春,刘杏梅,等.杭州市城乡结合带蔬菜地土壤铅铜含量的时空变 异研究[J].土壤学报,2008,45(4):608-615.
    [72]疏志明,王雄军,赖健清,等.分形理论在太原盆地土壤重金属元素分析中的应用[J].物探与化探,2009,33(2):157-160.
    [73]王学松,秦勇.利用对数正态分布图解析徐州城市土壤中重金属元素来源和确定地球化学背景值[J].地球化学,2007,36(1):98-102.
    [74]杨忠平,卢文喜,刘新荣,等.长春市城区表层土壤重金属污染来源解析[J].城市环境与城市生态,2009,22(5):29-33.
    [75]王雄军,赖健清,鲁艳红,等.基于因子分析法研究太原市土壤重金属污染的主要来源[J].生态环境,2008,17(2):671-676.
    [76]段慧敏,朱丽东,李凤全,等.浙江省永康城市土壤重金属元素富集特征[J].土壤通报,2012,(4):956-961.
    [77]Mmolowa K. B., Likuku A. S., Gaboutloeloe G. K.. Assessment of heavy metal pollution in soils along major roadside areas in Botswana, African[J]. Journal of Environmental Science and Technology,2011,5(3):186-196.
    [78]Ljung K., Selinus O., Otabbong E.. Metals in soils of children's urban environments in the small northern European city of Uppsala[J]. Science of the Total Environment,2006,366:749-759.
    [79]Andersson M., Ottesen R. T., Langedal M.. Geochemistry of urban surface soils Monitoring in Trondheim, Norway[J]. Geoderma,2010,156(3-4):112-118.
    [80]Acosta J.A., Faz A., Martinez-Martinez S., et al. Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain) [J]. Applied Geochemistry,2011,26,(3):405-414.
    [81]章明奎,王美青.杭州市城市土壤重金属的潜在可淋洗性研究[J].土壤学报,2003,40(6):915-920.
    [82]李佑国,房世波,潘剑君,等.城市化进程中的南京市土壤重金属污染调查[J].四川师范大学学报自然科学版,2004,27(1):93-96.
    [83]徐明星,周生路,王晓瑞,等.长江三角洲典型区社会经济发展对土壤重金属累积的影响[J].地理科学,2010,30(6):880-885.
    [84]陈景辉.西安城市路边土壤重金属污染与天然放射性水平研究[D].陕西师范大学,2011年.
    [85]张丽.西安市未央区土壤重金属污染状况的调查分析[J].农业环境与发展,2007,(3):103-105.
    [86]任伟琴,梅凡民,陈敏.西安灌区土壤重金属形态特征及生态风险评价[J].环 境化学,2009,28(3):451-452.
    [87]梅凡民,陈敏,朱海波.西安市不同灌溉类型农田土壤重金属污染状况研究[J].水土保持研究,2008,14(4):247-249.
    [88]庞奖励,黄春长,孙根年.西安污灌土中重金属的含量及对蔬菜影响的研究[J].陕西师范大学学报(自然科学版),2001,29(2):86-91.
    [89]易秀.西安市污灌区土壤中重金属潜在生态危害评价[J].干旱区资源与环境,2007,21(3):118-120.
    [90]邢闪.西安北郊原污灌区重金属元素污染特征及评价研究[D].陕西师范大学,2012.
    [91]贾锐鱼,杨索,林有红.西安市南、北郊土壤重金属含量及对小青菜影响对比[J].安徽农业科学,2011,39(20):12164-12165.
    [92]王凌青.西安市郊区农田土壤重金属污染及形态分析[D].西安:陕西师范大学,2007.
    [93]阴雷鹏,赵景波.西安市主要功能区表层土壤重金属污染现状评价[J].陕西师范大学学报:自然科学版,2006(3):109-112.
    [94]Li X.P., Feng L.N.. Spatial distribution of hazardous elements in urban topsoils surrounding Xi'an industrial areas, (NW, China):Controlling factors and contamination assessments [J]. Journal of Hazardous Materials,2010,174:662-669.
    [95]孙先锋,徐甜甜,董亚朋,等.西安市兴庆宫公园土壤中重金属含量研究及污染评价[J].城市环境与城市生态,2012,25(1):28-30.
    [96]徐甜甜,孙先锋,沈旭丰,等.西安市革命公园土壤重金属含量及污染评价[J].西安工程大学学报,2011,4:523-526.
    [97]孙先锋,吕小明,孙鹏.西安市长乐公园土壤重金属测定及分析评价[J].西安工程大学学报,2008,6:339-342.
    [98]孙先锋,徐甜甜,王敏,等.西安市城墙内公园土壤重金属含量水平及污染评价[J].城市环境与城市生态,2011,3:1-4.
    [99]康丹.西安城市公园不同粒径土壤中重金属污染研究[D].陕西师范大学,2010.
    [100]西安市统计局.西安市2010统计年鉴[M],中国统计出版社,北京,2010.
    [101]郭笑笑,刘丛强,朱兆洲等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.
    [102]Muller G.. Index of geo-accumulation in sediments of the Rhine river[J]. Geojournal,1969,2:108-118.
    [103]Ji YQ., Feng Y.C., Wu, J.H., etal. Using geo-accumulation index to study source profiles of soil dust in China[J]. Journal of Environment Science,2008,20: 571-578.
    [104]Krishna A.K., Govil P.K.. Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India[J]. Environmental Geology,2008,154:1465-1472.
    [105]Wei B.G, Jiang F.Q., Li, X.M., etal. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China[J]. Microchemical Journal,2009,93:147-152.
    [106]徐燕,李淑芹,郭书海,等.土壤重金属污染评价方法的比较[J].安徽农业科学,2008,36(11):4615-4617.
    [107]郭跃品,吴国爱,付杨荣,等.海南省胡椒种植基地土壤中重金属元素污染评价[J].地质科技情报,2007,26(4):91-96.
    [108]Canbay M., Aydin A., Kurtulus C.. Magnetic susceptibility and heavy-metal contamination in topsoils along the Izmit Gulf coastal area and IZAYTAS (Turkey) [J]. Journal of Applied Geophysics,2010,70(1):46-57.
    [109]Chan L. S., Ng S. L., Davis A. M., et. al. Magnetic properties and heavy-metal contents of contaminated seabed sediments of Penny's bay, Hong Kong[J]. Marine Pollution Bulletin,2001,42(7),569-583.
    [110]汤洁,天琴,李海毅,等.哈尔滨市表土重金属地球化学基线的确定及污染程度评价[J].生态环境学报,2010,19(10):2408-2413.
    [111]Hakanson L.. An ecological risk index for aquatic pollution control a sediment to logical approach [J]. Water Research,1980,14(8):975-1001.
    [112]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [113]雷凯,卢新卫,王利军,等.渭河西安段表层沉积物重金属元素分布及潜在生态风险评价[J].地质科技情报,2008,27(3):83-87.
    [114]孟宪林,郭威.改进层次分析法在土壤重金属污染评价中的应用[J].环境保护科学,2001,27(103):34-36.
    [115]李向,管涛,徐清.基于BP神经网络的土壤重金属污染评价方法——以包头土壤环境质量评价为例[J].中国农学通报,2012,28(2):250-256.
    [116]谢贤平,赵玉.用改进灰色聚类法综合评价土壤重金属污染[J].矿冶,1996,5(3):100-104.
    [117]郭冬艳,李月芬,王冬艳,等.鞍山市铁矿区复垦土壤重金属污染评价[J].吉林农业大学学报,2011,33(5):551-557.
    [118]Zhang C.. Using multivariate analysis and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland[J]. Environmental Pollution., 2006,142:501-511.
    [119]Chen T., Liu X., Zhu M., etal. Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China[J]. Environmental Pollution,2008,151:67-78.
    [120]Boruvka L., Vacek O., Jehlicka J.. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils[J]. Geoderma,2005,128: 289-300.
    [121]Luo W., Wang T., Lu Y., etal. Landscape ecology of the Guanting Reservoir, Beijing, China:multivariate and geostatistical analyses of metals in soils[J]. Environmental Pollution,2007,146:567-576.
    [122]Franco-Uria A., Lopez-Mateo C., Roca E., etal. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain[J]. Journal of Hazardous Materials,2009,165:1008-1015.
    [123]Sollitto D., Romic M., Castrignano A., etal. Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics[J]. Catena,2010,80:182-194.
    [124]Sun Y.B., Zhou Q.X., Xie X.K., etal. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China[J]. Journal of Hazardous Materials,2010,174:455-462.
    [125]Tume P., Bech J., Reverter F., etal. Concentration and distribution of twelve metals in Central Catalonia surface soils[J]. J. Geochem. Explor,2011,109:92-103.
    [126]Xia X., Chen X., Liu R., etal. Heavy metals in urban soils with various types of land use in Beijing, China[J]. Journal of Hazardous Materials,2011,186: 2043-2050.
    [127]Yang Z.P., Lu W.X., Long, Y.Q., etal. Assessment of heavy metals contamination in urban topsoil from Changchun City, China[J]. J. Geochem. Explor,2011,108: 27-38.
    [128]王利东,李朝奎,李吟.基于地统计学模型的惠州市土壤重金属污染评价[J].矿业工程研究,2011,26(1):65-70.
    [129]马建华,李灿,陈云增.土地利用与经济增长对城市土壤重金属污染的影响——以开封市为例[J].土壤学报,2011,48(4):743-750.
    [130]陈秀端,卢新卫,杨光.城市表层土壤磁化率与重金属含量分布的相关性研究[J].环境科学,2013,34(3):1086-1093.
    [131]郭鹏.郭平.康春莉,等.城市土壤吸附重金属动力学特征及其与土壤理化性质的关系[J].环境保护科学,2008,34(6):23-28.
    [132]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):534-545.
    [133]于瑞莲,胡恭任,林燕萍,等.泉州城市表层土壤中金属元素来源分析[J].矿物学报,2012,32(1):156-165.
    [134]Guo GH., Wu F.C., Xie F.Z.. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China[J]. Journal of Environmental Sciences,2012,24(3):410-418.
    [135]Cai L.H., Zhou L.C., Xu Y.Z., etal. Heavy metal concentrations of agricultural soils and vegetables from Dongguan, Guangdong[J]. Journal of Geographical Sciences,2010,20(1):121-134.
    [136]Li X., Poon C., Liu P.S.. Heavy metal contamination of urban soils and street dusts in Hong Kong [J]. Applied Geochemistry,2001,16:1361-1368.
    [137]王学松,秦勇.徐州城市表层土壤中重金属的富积、分布特征与环境风险[J].中国矿业大学学报,2006,35(1):84-88.
    [138]左倬,王金凤,由文辉.上海城市不同绿地类型土壤重金属污染研究[J].生态科学,2008,27(1):12-16.
    [139]王志坤,付巧玲,宁福政.洛阳牡丹立地地球化学特征[J].物探与化探,2008,32(1):412-416.
    [140]武永锋,刘丛强,涂成龙.贵阳市土壤重金属污染及其潜在生态风险评价[J].矿物岩石地球化学通报,2007,26(3):254-257.
    [141]Zhang C.S.. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland[J]. Environmental Pollution, 2006a,142:501-511.
    [142]Cicchella D., De Vivo B., Lima A., et al. Heavy metal pollution and Pb isotopes in urban soils of Napoli, Italy [J]. Geochemistry:Exploration, Environment, Analysis,2008,8:103-112.
    [143]Norra S., Lanka-Panditha M., Kramar U., etal. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany[J]. Applied Geochemistry,2008,21:2064-2081.
    [144]Zhang C., Fay D., McGrath D., etal. Statistical analyses of geochemical variables insoils of Ireland[J]. Geoderma,2008,146(1-2):378-390.
    [145]Thornton I.. Metal contamination of soils in urban areas. In:Bullock P, Gregory P J. Soils in the Urban Environment. Blackwell,1991:47-75.
    [146]Navas A., Machin J.. Spatial distribution of heavy metals and arsenic in soils of Aragon:controlling factors and environmental implications[J]. Applied Geochemistry,2002,17:961-973.
    [147]Han Y.M., Du P.X., Cao J.J., et al. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China[J]. Science of the Total Environment,2006,355:176-186.
    [148]黄静,卢新卫,翟雨翔.西安市公园土壤重金属元素含量水平及风险评价[J].地质科技情报,2009,28(4):127-130.
    [149]陈敏,梅凡民.朱海波西安市郊区农业土壤中重金属污染状况研究[J].纺织高校基础科学学报,2007,20(1):88-91.
    [150]中国环境监测总站.中国土壤元素背景值[M].北京:中国科学出版社,1990.
    [151]陈同斌,黄铭洪.香港土壤中的重金属含量及其污染现状[J].地理学报,1997,52(3):228-236.
    [152]段雪梅,蔡焕兴,巢文军..南京市表层土壤重金属污染特征及污染来源[J].环境科学与管理,2010,35(10):31-34.
    [153]杨苏才,曾静静,王胜利,等.兰州市表层土壤Cu、Zn、Pb污染评价及成因分析[J].干旱区资源与环境,2004,18(8):28-31.
    [154]康玲芬,李锋瑞,化伟,等.不同土地利用方式对城市土壤质量的影响[J].生态科学,2006,25(1):59-63.
    [155]王学松.城市表层土壤重金属富集淋滤特征与磁学响应[M].北京:中国环境科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700