用户名: 密码: 验证码:
高应力软岩巷道变形破坏特征及让压支护机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的增加,高应力软岩巷道的支护与维护问题显得越来越突出,探索正确的软岩巷道围岩变形破坏及控制机理成为一个急需解决的问题。为此,本文基于大量软岩三轴压缩试验,首次提出软岩粘弹性塑性应变软化蠕变模型,并将其嵌入FLAC内置本构关系中,进而运用数值模拟等研究手段,系统分析了高应力软岩巷道变形破坏特征与让压支护机理,并将研究成果成功运用到高应力软岩巷道支护的工程实践,其主要创新性成果体现在如下五个方面:
     (1)基于软岩不同围压下常规三轴压缩试验曲线,建立了软岩峰后应变软化力学模型,通过莫尔应力圆确定了不同等效塑性剪切应变εps和不同围压σ3条件下软岩峰后的广义粘聚力c和广义内摩擦角? ,进而利用最小二乘曲面拟合得出了软岩峰后力学参数的软化规律,并将其嵌入FLAC内置应变软化本构关系中,通过数值验证,结果表明该应变软化模型能够准确地描述软岩的峰后力学特性。
     (2)依据软岩三轴压缩的分级加载蠕变试验曲线的规律与时效特征,首次提出了一种由经典Burgers粘弹性模型与应变软化塑性模型串联的软岩蠕变力学模型,并依据粘弹塑性力学的基本理论,推导了该模型的三维蠕变本构方程,进而借助非线性回归分析辨识了模型的7个参数。在此基础上,将该模型嵌入到FLAC内置蠕变本构关系中,通过数值验证,结果表明该模型能够更为完善地描述软岩蠕变三个阶段的力学性态
     (3)基于软岩粘弹塑性应变软化蠕变本构模型,运用FLAC2D数值模拟,系统研究了高垂直应力和高水平应力作用下软岩巷道的变形破坏特征,给出了围岩变形、应力、塑性区以及破碎区随着时间推移的变化规律。
     (4)运用数值模拟研究了不同支护强度对高应力软岩巷道围岩的控制作用,揭示了高应力软岩巷道围岩初期变形破坏具有不可克服性,据此提出了“让压”支护理念,并建立了支护体让压支护的力学模型,分析了不同自由让压距离和不同极限变形量对让压支护效果的影响。
     (5)针对霍州煤电集团李雅庄煤矿高应力软岩巷道支护存在的问题,提出了以高强让压锚杆与带肋锚索为核心的高阻让压支护体系,通过现场观测,结果表明该支护体系有效地控制了巷道围岩的剧烈变形和持续蠕变,巷道安全性大大提高。
With coal mining depth increase, the support and maintenance problem of high stress soft rock roadway becomes more and more prominent, the deformation and failure of surrounding rock and its control mechanism becomes a problem needing solve urgently. Therefore, based on the massive soft rock triaxial compressive test, viscoelastic plastic strain softening creep constitutive model of soft rock was first proposed in the paper, and the model was inserted to the FLAC built-in construction relations, then the deformation and failure mechanism and the yield pressure support mechanism of high stress soft rock roadway were analyzed by numerical simulation. The research production was successfully used in the project practice. Its main innovative achievement manifests in the following five aspects:
     (1)Based on curve of tri-axial compression test under different confining pressure, mechanics model of strain softening is builded, generalized cohesive force c and generalized internal friction angle ? of different equivalent plasticity shear strainεpsand different confining pressureσ3 is determined by Mohr stress circle, then softening rule of mechanic parameters on soft rock are embedded into the softening constitutive relation in FLAC simulation software, which are obtained by least surface fit and are approved be fit to describe the mechanic characteristics of soft rock after peak value.
     (2) Based on rules and ageing behavior of creep curve of soft rockmass sample under every level of load, a new creep mechanic model of soft rock series connected by classic visco-elasticity and plasticity mechanic model and strain softening mechanic model is builded up firstly, then the tri-dimension creep constitutive equations is deduced and the 7 parameters of the above model is identified by nonlinear regression analysis. Based on this, insert this model to FLAC built-in creep construction relations, through the numerical simulation, the result indicates that the model can describe the three stage mechanics conditions of soft rock.
     (3) Based on viscoelastic plastic strain softening creep constitutive model, the deformation and failure characters at the high vertical stress and the high level stress condition was analyzed using numerical simulation method. The evolution rule of the deformation, stress, plastic and crush zone along with time was got.
     (4)The control action at different support intensity for the high stress soft rock roadway was studied using numerical simulation. The result shows that the initial deformation of high stress soft rock roadway was insurmountable. So the“yield pressure support”is proposed. The yield pressure support mechanics model was established, and the support effects influenced by different yield distance and different limited deformation amount was analyzed.
     (5) Aims at the problem of high stress soft rock roadway in Li Yazhuang Coal Mine, Huozhou Coal Electricity Group, the high-resistance and yield stress support system taking high strength with yield stress function bolt and ribbed anchor as the core is proposed. Through the scene observation, the result indicates that the support system has controlled the roadway fierce deformation and continue creep effectively, and the roadway security enhances greatly.
引文
[1]康红普、王金华.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007
    [2]郜进海.薄层状巨厚复合顶板回采巷道锚杆锚索锚固理论及应用研究[D].太原:太原理工大学,2005
    [3]刘高.高地应力区结构性流变围岩稳定性研究[D].成都:成都理工大学,2001
    [4]于学馥,郑颖人等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [5]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986(3):77-85
    [6]刘夕才,林韵梅.软岩巷道弹塑性变形的理论分析[J].岩土力学,1994(2):27-35
    [7]刘夕才,林韵梅.软岩扩容性对巷道围岩特性曲线的影响[J].煤炭学报,1994(6):596-600
    [8]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995(3):304-310
    [9]范文,俞茂宏等.硐室形变围岩压力弹塑性分析的统一解[J].长安大学学报(自然科学版),2003,23(3):1-4
    [10]翟所业,贺宪国.巷道围岩塑性区的德鲁克-普拉格准则解[].地下空间与工程学报,2005,1(2):223-226
    [11]马士进.软岩巷道围岩扩容软化变形分析及模拟计算[D].阜新:辽宁工程技术大学,2001
    [12]王永岩.软岩巷道变形与压力分析控制及预测[D].阜新:辽宁工程技术大学,2001
    [13]程立朝,陆庭侃.膨胀特性对软岩巷道围岩变形规律的影响研究[J].河南理工大学学报,2006,25(6):461-464
    [13]高桐,谷栓成.锚喷支护与围岩相互作用关系问题的探讨[J].煤炭学报,1980(2):1-7
    [15]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993
    [16]刘夕才.软岩巷道的粘弹性流变分析[J].矿山压力与顶板管理,1997(1):29-31
    [17]张向东,李永靖等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639
    [18]万志军,周楚良等.软岩巷道围岩非线性流变数学力学模型[J].中国矿业大学学报,2004,33(4):468-472
    [19]万志军,周楚良,等.巷道/隧道围岩非线性流变数学力学模型及其初步应用[J].岩石力学与工程学报,2005,24(5):761-767
    [20]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,(1):1-8
    [21]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[[J].岩石力学与工程学报,1991,10(4):199-212
    [22]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中科院武汉岩土力学研究所,2005
    [23]雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989,( 1):1-11
    [24]缪协兴,陈智纯.软岩力学[M].徐州:中国矿业大学出版社,1995
    [25]张向东,李永靖,张树光.软岩蠕变理论及其工程应用[[J].岩石力学与工程学报,2004, 23(10):1635-1639
    [26]刘建忠,杨春和,李晓红.万开高速公路穿越煤系地层的隧道围岩蠕变特性的试验研究[J].岩石力学与工程学报,2004,23(22):3794-3798
    [27]丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数辨识[J].岩土力学,2004 25(增):37-40
    [28]陈沅江,吴超,潘长良.一种软岩结构面流变的新力学模型[J].矿山压力与顶板管理,2005, (3):43-45
    [29]陶波,伍法权.西原模型对岩石流变特性的适应性及其参数确定[J].岩石力学与工程学报,2005,24(17):3165-3171
    [30]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:同济大学,2007
    [31]巫德斌,徐卫亚,朱珍德.泥板岩流变试验与粘弹性本构模型研究[J].岩石力学与工程学报,2004 23(8): 1242-1246
    [32]徐卫亚,杨圣奇,杨松林.绿片岩三轴流变力学特性的研究(I):试验结果[J].岩土力学,2005,26(4):531-537
    [33]徐卫亚,杨圣奇,谢守益.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693-698
    [34]杨淑碧,徐进,董孝璧.红层地区砂泥岩互层状斜坡岩体流变特性研究[[J].地质灾害与环境保护,1996,7(2):12-24
    [35]杨建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院学报,1995, 8(2):77-80
    [36]徐平,丁秀丽,全海.溪洛渡水电站坝址区岩体蠕变特性试验研究[J].岩土力学,2003,24(增):220-226
    [37]郭志.临界等速流变剪应力的确定方法[[J].堪察科学技术,1994. (4): 24-26
    [38]张奇华,彭光忠.链子崖危岩体软弱夹层的蠕变性质研究[J].岩土力学,1997, 18(1):60-64
    [39]朱定华,陈国兴.南京红层软岩流变特性试验研究[[J].南京工业大学学报,2002,24(5):77-79
    [40]陈卫忠,杨建平等.裂隙岩体宏观力学参数研究[J].岩石力学与工程学报,2008,27(8):1569-1575
    [41]周创兵.裂隙岩体渗流场与应力场耦合分析分析研究[D].武汉:武汉大学,1996
    [42]周创兵.论岩体表征单元体积REV——岩体力学参数取值的一个基本问题[J].工程地质学报,1999,7(4):332-336
    [43]周创兵,陈益峰,姜清辉.岩体表征单元体与岩体力学参数[J].岩石力学与工程学报,2007, 29(8):1135-1142
    [44]张宜虎.岩体等效水力学参数研究[D].武汉:中国地质大学,2006
    [45]唐辉明,张宜虎,孙云志.岩体等效变形参数研究[J].地球科学——中国地质大学学报,2007,32(3):389-396
    [46]向文飞.裂隙岩体表征单元体及力学特性尺寸效应研究[D].武汉:武汉大学,2005
    [47]张红亮.节理岩体变形与强度的尺度效应及REV问题研究[D].武汉:中国科学院武汉岩土力学研究所,2007
    [48] Witherspoon A,Wang J C ,IWAY K,etc. Validity of cubic law for fluid flow in a deformable rock fracture[J].Water Resources Research,1980,16(6):1016-1024
    [49] Long J C S,Witherspoon P A. The relationship of the degree of interconnection to permeability in fractured networks[J].Journal of Geophysical Research,1985,(B4):3087-3097
    [50]伍佑伦.基于岩体断裂力学的巷道稳定性与锚喷支护机理研究[D].武汉,华中科技大学,2004
    [51]韩瑞庚.地下工程新奥法[M].科学出版社,1987
    [52] Barton. Nick, Grimstad, etc. Rock mass conditions dictate choice between NMT and NATM[J], Tunnels and Tunnelling,1994(10):39-42
    [53] Brown. E.T. Putting the NATM into Perspective,Tunnels and Tunneling,1990(S)
    [54]冯豫.我国软岩巷道支护的研究[J].矿山压力与顶板管理,1990,(2):1-5
    [55]陆家梁.软岩巷道支护原则及支护方法[J].软岩工程,1990,(3):20-24
    [56]郑雨天.关于软岩巷道地压与支护的基本观点[J],软岩巷道掘进与支护文集,1985(5):31-35
    [57]朱效嘉.锚杆支护理论进展[J].光爆锚喷,1996,(3):1-4
    [58]董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001
    [59]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002
    [60]何满潮.中国煤矿软岩巷道支护理论与实践[M].北京:中国矿业大学出版社,1996
    [61]方祖烈.拉压域特征及主次承载区的维护理论[J].世纪之交软岩工程技术现状与展望,北京:煤炭工业出版社,1999:48-51
    [62]李庶林等.应力控制技术及其应用综述[J],岩土力学,1997,18(1):90-96
    [63]钱鸣高等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [64]王悦汉,陆士良等.顶部卸压法维护软岩硐室[J].矿山压力与顶板管理,1992(2):4-10
    [65]康红普.顶部卸压法维护软岩硐室的模拟研究与实践[J.建井技术,1993,(3):32-35
    [66]康红普.软岩巷道底鼓的机理及防治[M].北京:煤炭工业出版社,1993
    [67]王襄禹,柏建彪等.高应力软岩巷道全断面松动卸压技术研究[J].采矿与安全工程学报,2008,25(1):37-41
    [68]王襄禹.高应力软岩巷道有控卸压与蠕变控制研究[D].徐州:中国矿业大学,2008
    [69]韩立军,蒋斌松等.构造复杂区域巷道控顶卸压原理与支护技术实践[J].岩石力学与工程学报,2005,24(S2):5409-5504
    [70]夏红兵,徐颖等.深部软岩巷道爆破卸压技术及工程应用研究[].安徽理工大学学报(自然科学版),2007,27(1):13-16
    [71]吕渊,徐颖.深井软岩大巷深孔爆破卸压机理及工程应用[J].煤矿爆破,2005(4):30-33
    [72]李金奎,崔世海.高应力软岩巷道基角深孔爆破卸压的试验研究[J].铁道建筑,2005(增):79-80
    [73]刘红岗,徐金海.煤巷钻孔卸压机理的数值模拟与应用[J].煤炭科技,2003(4):38-38
    [74]施德军,肖青林等.架棚支护巷道的卸压支护及锚、带加强支护实践[J].煤矿支护,2007(3):26-28
    [76]陈喜恩,王唐龙.深井高应力复合顶板巷道卸压让压综合支护技术[J].煤,2008,17(3):26-27
    [77]卢军明.松软煤层架棚巷道松帮让压支护技术[J].煤炭,2006(4):63
    [78]谢清孝,李维华等.动压区域内巷道“空帮让压”支护方式的研究与实施[J].山东煤炭科技,2007(4):76-78
    [79]武晓华.空帮让压技术在联合支护中的应用[J].中州煤炭,2008(4):86
    [80]张玉军,孙钧.锚固岩体的流变模型及计算方法[J].岩土工程学报,1994(5):33-45
    [81]袁溢.大变形巷道锚杆护表构件支护效应研究[D].成都:西南交通大学,2006
    [82]崔树江,陈东印.高地应力孤岛顺槽高强让压锚杆支护技术研究[J].岩土锚固工程,2007,(3):17-22
    [83]煤矿掘进技术译文集第一集(1976,锚杆支护,煤炭工业出版社,1~57,172,212-217,245~256,357~381;
    [84]李世平.岩石力学简明教程[M].北京:中国矿院出版社,1986
    [85]赖应得,崔兰秀等.能量支护学概论[J].山西煤炭,1994.5:17-23
    [86]李明远,王连国.软岩巷道锚注支护理论与实践[M].北京:煤炭工业出版社,2001
    [87]李大伟.深井软岩巷道二次支护围岩稳定原理与控制研究[D].徐州:中国矿业大学,2006
    [88]柏建彪.高应力软岩巷道耦合支护研究[J].中国矿业大学学报,2007,36(4):421-425
    [89]凌同华.软岩巷道变形的混沌研究.地下空间与工程学报,2007,3(3):420-423
    [90]张玉军,孙钧.锚固岩体的流变模型及计算方法[J].岩土工程学报,1994,No.5:33-45
    [92]何炳银,张士环,尹建国.高地压巷道锚索让压技术的探讨[J].煤炭工程,2005(9):22-25
    [93]袁溢.大变形巷道锚杆护表构件支护效应研究[D].成都:西南交通大学,2006
    [94]秦昊.巷道围岩失稳机制及冲击矿压机理研究[D].徐州:中国矿业大学,2008
    [95]高延法,张庆松.矿山岩体力学[M].徐州:中国矿业大学出版社,2000
    [96]付国彬.锚杆与围岩相互作用关系及锚固力的研究[D].徐州:中国矿业大学,1999
    [97]漆泰岳.锚杆与围岩相互作用的数值模拟[M].徐州:中国矿业大学出版社,2002
    [98]杨超.软岩巷道支护阻力与围压变形关系的研究[D].徐州:中国矿业大学,2000
    [99]李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学,1995
    [100]周维垣.高等岩石力学[M].北京:中国水利电力出版社,1990
    [101]漆泰岳.锚杆与围岩相互作用的数值模拟[M].徐州:中国矿业大学出版社,2002
    [102]陈庆敏.软岩巷道支护与围岩相互作用机理及支护技术的研究[D].徐州:中国矿业大学,1995
    [103]李世平.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995(2)
    [104]方德平.岩石应变软化的有限元计算[J].华侨大学学报(自然科学版),1991,12(2):177-181
    [105]方德平,汪浩.考虑岩石脆-塑过渡性的地下洞室受力分析[J].地下空间,1991,11(1):15-22
    [106]沈新普,岑章志,徐秉业.弹脆塑性软化本构理论的特点及其数值计算[J].清华大学学报,1995, 35(2):22-27
    [107]杨超,崔新明,徐水平.软岩应变软化数值模型的建立与研究[J].岩土力学,2002, 23(6):695-697
    [108]张帆,盛谦等.三峡花岗岩峰后力学特性及应变软化模型研究[J].岩石力学与工程学报,2008,27(S1):2651-2655
    [109] Li Xiao,He Yanan. Experimental study on the strain softening behavior of mudstone[J] .Int. Sump. on New Development of Rock Mech. & Eng.,Shenyang,China-NDRM`94,1994
    [110]徐金海.短壁开采覆岩关键层的粘弹性分析及应用研究[D].徐州:中国矿业大学,2004
    [111]刁心宏,王继飞.浅谈软岩流变性的研究[J].江西科学,2006,24(3):309-313
    [112]李东升,李德海,宋常胜.条带煤柱设计中极限平衡理论的修正应用[J].辽宁工程技术大学学报,2003,22(1):7-9
    [113]杜春志.煤层水压致裂理论及应用研究[J].徐州:中国矿业大学,2008
    [114]巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001
    [115]何满潮.软岩巷道工程概论[M].中国矿业大学出版社,1993
    [116]姚裕春.高水平应力软岩巷道围岩变形机理及支护对策[D].西安:西安科技学院,2002
    [117]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1983
    [118]孙广忠.岩体结构力学[M].北京:科学出版社,1989
    [119]侯朝炯,郭励生等.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999
    [120]李兴华.骑跨采动压巷道围岩流变变形机理研究[D].徐州:中国矿业大学,2008
    [121]姜耀东,刘文岗等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862
    [122]陈炎光、陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994
    [123]谭云亮,刘传孝.巷道围岩稳定性预测与控制[M].徐州:中国矿业大学出版社,1999
    [124]何满潮.软岩巷道工程概论[M].徐州:中国矿业大学出版社,1993
    [125]胡强,童忠访.非线性粘弹性材料的微分型本构方程[J].浙江大学学报(自然科学版),1989,23(4):475-484
    [126]翁翕.围岩与衬砌相互作用的粘弹性分析[J].工程力学,1997(增):546-551
    [127]何峰,王来贵.圆形巷道围岩的流变分析[J].西部探矿工程,2007(1):139-141
    [128]杨骁,程昌钧.粘弹性与弹性平面问题间的某些恒等关系[J].应力数学和力学,1997,18(12):1081-1088
    [129]魏培君,张双寅等.粘弹性力学的对应原理及其数值反演方法[J].工程力学,1999,29(3):317-327
    [130]付国彬.锚杆与围岩相互作用关系及锚固力的研究[D].徐州:中国矿业大学,1999
    [131]何满潮,景海河等.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62
    [132]王贵君,孙文若.粘弹粘塑性围岩流变特性解析[J].淮南矿业学院学报,1991,11(1-2):69-76
    [133]王彩根,马文顶等.软岩巷道合理支护强度的研究[J].岩石力学与工程学报,1998,17(1):51-58
    [134]王阁.预应力让压锚杆的数值模拟研究及其应用[D].青岛:山东科技大学,2007
    [135]李大伟.深井软岩巷道二次支护围岩稳定原理与控制研究[D].徐州:中国矿业大学,2006
    [136]柏建彪.高应力软岩巷道耦合支护研究[J].中国矿业大学学报,2007,36(4):421-425
    [137]张玉祥,陆士良.破裂岩石的力学性能及在深井软岩控制中的应用[M].岩石力学与工程学报,1998,17(6):622-627
    [138]张士林.控制极软巷道围岩大变形合理支护强度理论研究[J].金属矿山,2001(5):4-6
    [139]程家洋.让压支护技术在高压力、高变形巷道的应用[J].煤炭工程,2004(5):79-80
    [140]何炳银,张士环等.高地压巷道锚索让压支护技术的探讨[J].煤炭工程,2005(9):79-80
    [141]连传杰,徐卫亚等.一种新型让压管锚杆的变形特及其支护作用机理分析[J].防灾减灾工程学报,2008,28(2):242-247
    [142] Malan D F.Time-dependent behavior of deep level tabular excavations in hard rock[J].Rock Mechanics and Rock Engineering,1999,32(2):123-155
    [143] Grgic D, collapses Homand F,Hoxha D.A short-and of iron mines in Lorraine,France[J]. Long-term Computers rheological model to understand the and Geotechnics,2003,30 (7):557-570
    [144] Kawahara Mutsuto etc.Strain-softening finite element analysis of rock applied to tunnelexcavation.Proceedings of the International Symposium on Weak Rock,Tokyo,1981
    [14] Kitsutaka Yoshhinori.Fracture parameters by polylineat tension-softening annlysis.Journal of Engineering Mechanics,1997,123(5)
    [145] Kaiser P K,Guenot A,Morgenstern N R.Deformation of small tunnels;part IV-behavior during failure.Int J Rock Mech&Min Sci Geomech Abstr,1985,22:141-152
    [146]Fairhurst C.Deformation,yield,rupture and stability of excavations at great depth[A].In:Fairhust C ed.Rockburst and Seismacity in Mines[C].Rotterdam:A.A.Balkema,1990:1103-1114
    [147] P. Egger. Design and Construction Aspects of Deep Tunnels (with particular emphasis on strain softening rocks)[J]. Tunnelling and Underground Space Technology, 2000, 15(4):403-408
    [148] J.F. Shao, Q.Z. Zhu, K. Su. Modeling of creep in rock materials in terms of material degradation[J]. Computers and Geotechnics, 2003, 30:549-555
    [149] Pusch R.Mechanisms and consequences of creep in crystal line rock[A].In:Hudson J A ed.Comprehensive Rock Engineering[C].Oxford:Program on Press,1993:227-241
    [150] Kiyama H., Fujimara H., Nishimura T., et al. Theoretical construction of bearing characteristic curve in tunnelling[J]. J. Soc. Mat. Sci. Japan, 1992, 41(463): 417-423
    [151] Ladanyi B., Gill D. E.. Design of tunnel linings in a creeping rock[J]. Int. J. Min.& Geological Eng.,1988, 6: 113-126
    [152] Minh D. N., Habib P., Guerpillon Y.. Time dependent behaviour of a pilot tunnel driven in hard marls. ISRMBGS. Cambridge. 1984. 453-459
    [153] Chern, J.C., F.Y. Shiao, C.W.Yu. An empirical safety criterion for tunnel construction[C].In: Regional Symposium on Sedimentary Rock Engineering. Taipei, Taiwan. 1998:222-227
    [154] Kaiser P K,Guenot A,Morgenstern N R.Deformation of small tunnels part IV-behavior during failure.Int J Rock Mech&Min Sci Geomech Abstr,1985,22:141-152
    [155]Fairhurst .Deformation,yield,rupture and stability of excavations at great depth[A].In:Fairhust C ed.Rockburst and Seismacity inMines[C].Rotterdam:A.A.Balkema,1990:1103-1114.
    [156] Pusch R.Mechanisms and consequences of creep in crystal line rock[A].In:Hudson J A ed.Comprehensive Rock Engineering[C].Oxford:Program on Press,1993:227-241
    [157] I. Paraschiv-Munteanu, N.D. Cristescu. Stress relaxation during creep of rocks around deep boreholes[J]. International Journal of Engineering Science, 2001, 39: 737-754

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700