用户名: 密码: 验证码:
副猪嗜血杆菌重要免疫原性相关蛋白发掘及GAPDH免疫调节机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副猪嗜血杆菌能够引起猪的多发性浆膜炎,关节炎和脑膜炎,已成为引起猪细菌性疾病最重要病原之一。仔猪感染副猪嗜血杆菌之后几天就可以发病,并经常引起死亡。从急性期发病康复的仔猪经常会出现慢性关节炎症状。抗生素治疗副猪嗜血杆菌有一定效果。但长期使用一方面导致细菌耐药情况严重,另一方面抗生素的滥用导致药物在动物食品的药物残留。因此,疫苗仍然是控制该病原菌最佳的手段。
     到目前为止,副猪嗜血杆菌共鉴定出15种血清型,每种血清型菌株的毒力又有差异。此外,还有很多菌株没有被定型。各种血清型之间的交叉免疫保护十分有限。当前使用的商业化灭活疫苗能够对同源血清型菌株感染提供一定的免疫保护,但不能提供异源血清型菌株感染的交叉保护。因此,急需研制开发出一种能够提供持久免疫保护和针对多种血清型菌株感染具有交叉免疫保护的新型疫苗。
     目前,关于副猪嗜血杆菌毒力相关因子很少被报道。外膜蛋白是细菌的表面重要组成部分,能够和宿主细胞发生互作,并诱导宿主产生保护性抗体和引起细胞免疫反应。因此针对靶向外膜蛋白发展疫苗非常有价值。本课题在实验室前期完成的副猪嗜血杆菌流行优势血清5型SH0165菌株全基因组序列基础上,基于生物信息学及SignalP2.0软件,预测了副猪嗜血杆菌可能的重要外膜蛋白。进一步将编码外膜蛋白基因克隆、表达纯化后利用动物感染模型进行了蛋白免疫原性研究。同时,开展了外膜蛋白的免疫生物学活性研究,并从中筛选到了一个能够促进B细胞和T细胞增值的蛋白3-磷酸甘油醛脱氢酶(GAPDH),可能是一个重要免疫调节蛋白,深入探讨了该免疫调节蛋白免疫调节的机理。构建了编码GAPDH蛋白的DNA疫苗,并开展了相关免疫原性及免疫保护研究。主要的研究内容包括如下:
     1.副猪嗜血杆菌SH0165菌株可能外膜蛋白预测、蛋白免疫原性和保护效力研究
     本研究首先利用SignalP2.0软件,通过同源相似性比对预测了cdtB, GAPDH, HPS-2037, OmpP1, HPS-0220, HPS-0675, HPS-1406,HPS-1834, OapA, IdgA等10个可能的外膜蛋白,克隆表达并纯化了10个外膜蛋白。将10种重组外膜蛋白免疫小鼠后28天进行了5×LD50剂量的攻击。结果表明, rGAPDH, rOapA和rHPS-0675三种重组蛋白具有很好的免疫保护效果,分别为75%,87.5%和75%。进一步将这三种蛋白单独或混合形式以猪为感染模型进行了免疫反应和保护效力研究。结果表明,三种蛋白都能够引起很好的体液免疫反应并分别提供70%,50%和70%的免疫保护,而混合蛋白免疫提供的免疫保护力最高,为80%。而3种蛋白产生的抗体和混合蛋白的抗体在全血杀菌试验中都能够抑制细菌的生长。研究结果进一步提示rGAPDH, rOapA和rHPS-0675重组蛋白能够介导针对副猪嗜血杆菌SH0165菌株感染的免疫保护,是重要的疫苗候选抗原,能够研制开发成一种多组分通用型亚单位疫苗。
     2.副猪嗜血杆菌3-磷酸甘油醛脱氢酶DNA疫苗的构建及免疫效力研究
     研究结果表明编码3-磷酸甘油醛脱氢酶的gapA基因广泛存在于15种标准血清型菌株中而且基因序列比较保守,前期研究也显示其是一种很好的疫苗候选抗原。因此我们进一步构建了GAPDH蛋白的DNA疫苗pCgap,并在小鼠感染模型中评价了该DNA疫苗免疫反应和针对血清4型菌株MD0322和血清5型菌株SH0165的攻击所提供的免疫效力。结果表明,DNA疫苗通过肌内免疫小鼠之后能够产生显著的抗体反应。而且产生的抗体具有杀菌作用。DNA疫苗免疫小鼠7天之后能够在肌肉、肝脏、脾脏和肾脏中检测到转录产物。IgG亚类分析表明DNA疫苗可以同时诱导Thl和Th2型免疫反应,但是IgGl型免疫反应强于IgG2a型免疫反应。此外,DNA疫苗能够提供分别针对血清4型菌株MD0322攻击的保护率83.3%和血清5型菌株SH0165攻击的保护率50%。免疫组免疫保护力显著高于阴性对照组和空白对照组。以上结果提示DNA疫苗pCgap为控制副猪嗜血杆菌的感染提供一个新的策略。
     3.副猪嗜血杆菌3-磷酸甘油醛脱氢酶(GAPDH)免疫调节机理研究
     研究表明,一些外膜蛋白通过修改宿主的免疫系统来影响细菌在体内定植能力并且可以刺激宿主产生IL-2或者IL-10的能力。因此,本研究探讨副猪嗜血杆菌外膜蛋白是否在参与调节宿主的免疫反应方面起着重要作用。通过将12种外膜蛋白(cdtB, GAPDH, HPS.2037, OmpP1, HPS-0220, HPS-0675, HPS.1406, HPS.1834, OapA,6PGD, HPS.1889, IdgA)体外刺激小鼠脾淋巴细胞,从中筛选到了外膜蛋白GAPDH能够显著上调脾脏细胞表面CD69分子的表达。通过MTT实验结果也表明GAPDH蛋白能够促进脾脏淋巴细胞的增值和B细胞的分化。进一步构建了GAPDH过表达菌株GAO,开展了过表达菌株小鼠体内定植、诱导宿主产生细胞因子、中性粒细胞所介导的杀伤和对宿主免疫相关基因表达的影响等实验。结果表明:GAPDH能够促进机体对副猪嗜血杆菌的清除和诱导机体产生IL-2。与野生菌株相比,过表达菌株GAO更容易被中性粒细胞和小鼠的巨噬细胞所杀伤。而且,机体感染过表达菌株GAO之后能够促进所检测的除了MHC Ⅱα分子以外IFN-γ, MHC Ⅰα, TCR1和TLR3分子免疫相关基因上调表达。总之,GAPDH蛋白参与了宿主免疫系统的调节,增强了宿主的免疫反应和对外源病原菌的清除能力。
Haemophilus parasuis (H. parasuis), the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. In naive pigs disease onset occurs few days after H. parasuis exposure and is usually lethal. These animals recovering from the acute phase of the disease can develop chronic arthritis.
     To date,15serovars of H. parasuis, which typically have a range of different virulence potentials, have been described. In addition, a high percentage of strains are non-serotypeable. To date, only a few virulence related factors have been reported in relation to the pathogenicity of Glasser's disease. Limited cross-protection among strains has complicated the control of Glasser's disease. Maternally derived antibodies also have an important role in protection, allowing the colonization of piglets and the development of a protective immune response without the induction of disease. Animals protected against H. parasuis infection after immunization with a bacterin may develop antibodies against outer membrane proteins (OMPs). The currently commercially available inactivated vaccine confers protection against homologous challenge, but further research is needed to develop a new generation of vaccine that can stimulate long-term immunity and provide cross-protection against infections by several H. parasuis serovars.
     The sequencing of H. parasuis SH0165has been completed by our group. The current knowledge of the genomic sequence of pathogenic bacteria has facilitated recent vaccine development. Because OMPs are the primary bacterial components that interact with host cells, targeting OMPs for the development of recombinant vaccines is of value. Based on this, we focused on putative OMPs of H. parasuis which were predicted by SignalP2.0software. They were cloned, expressed, and purified as HIS fusion proteins and screened for protective efficacy in a piglet model of infection. Furthermore, we have studied the immune biological activity of the OMPs and constructed a DNA vaccine to prevent and control the infection of H. parasuis. Below is detailed information on this study:
     1. Immunogenicity and protective efficacy of recombinant Haemophilus parasuis SH0165putative outer membrane proteins as vaccine candidates
     H. parasuis putative outer membrane proteins (OMPs) are potentially essential components of more effective vaccines. Recently, the genomic sequence of H. parasuis serovar5strain SH0165was completed in our laboratory, which allow us to target OMPs for the development of recombinant vaccines. In this study, we focused on10putative OMPs and all the putative OMPs were cloned, expressed and purified as HIS fusion proteins. Primary screening for immunoprotective potential was performed in mice challenged with an LD50challenge. Out of these10OMPs three fusion proteins rGAPDH, rOapA, and rHPS-0675were found to be protective in a mouse model of H. parasuis infection. We further evaluated the immune responses and protective efficacy of rGAPDH, rOapA, and rHPS-0675in pig models. All three proteins elicited humoral antibody responses and conferred different levels of protection against challenge with a lethal dose of H. parasuis SH0165in pig models. In addition, the antisera against the three individual proteins and the the synergistic protein efficiently inhibited bacterial growth in a whole blood assay. The data demonstrated that the three proteins showed high value individually and the combination of rGAPDH, rOapA, and rHPS-0675offered the best protection. Our results indicate that rGAPDH, rOapA, and rHPS-0675induced protection against H. parasuis SH0165infection, which may facilitate the development of a multi-component vaccine.
     2. Construction and immune effect of Haemophilus parasuis DNA vaccine encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mice
     In this study the gap A gene that encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be present and highly conserved in various serotypes of H. parasuis and we constructed a novel DNA vaccine encoding GAPDH (pCgap) to evaluate the immune response and protective efficacy against infection with H. parasuis MD0322serovar4or SH0165serovar5in mice. A significant antibody response against GAPDH was generated following pCgap intramuscular immunization; moreover, antibodies to the pCgap DNA vaccine were bactericidal, suggesting that it was expressed in vivo. The gapA transcript was detected in muscle, liver, spleen, and kidney of the mice seven days post-vaccination. The IgG subclass (IgGl and IgG2a) analysis indicated that the DNA vaccine induced both Thl and Th2immune responses, but the IgG1response was greater than the IgG2a response. Moreover, the groups vaccinated with the pCgap vaccine exhibited83.3%and50%protective efficacy against the H. parasuis MD0322serovar4or SH0165serovar5challenge, respectively. The pCgap DNA vaccine provided significantly greater protective efficacy compared to the negative control groups or blank control groups (P<0.05for both). Taken together, these findings indicate that the pCgap DNA vaccine provides a novel strategy against infection of H. parasuis and offer insight concerning the underlying immune mechanisms of a bacterial DNA vaccine.
     3. Multifunctional Glyceraldehyde-3-phosphate Dehydrogenase of Haemophilus parasuis enhances host immune response
     Some research showed that some OMPs of the diverse pathogenic microbes impact bacteria colonization by modulation of the host immune system. And these OMPs also elicit the production of IL-2and or IL-10in the host cells. So we studied whether the outer membrane proteins play an important role in regulating the host's immune response. In this study, the GAPDH protein was screened from12OMPs which had a significant B cell stimulatoty effect regulated CD69expression observed on lymphocytes. In the MTT assay the GAPDH protein induces lymphocyte proliferation and B cell differentiation. A H. parasuis strain GAO overexpressing GAPDH protein demonstrated that it can promote the clearance of body against H. parasuis and induce the host IL-2production. Compared with the WT strain, the GAO strain was less able to resist killing by PMN cells and the RAW cells. Furthermore, infection with the GAO strain significantly upregulated the expression of all the examined immune-related genes except that encoding MHC II a. Taken together, GAPDH protein involved in regulating the host immune defense system which promote the immune response and bacterial clearance in vivo.
引文
1. 金冬雁,黎孟枫等译。J.萨姆布鲁克,EF弗里奇,T曼尼阿蒂斯著。分子克隆实验指南。第二版。科学出版社,1989。
    2. Aarestrup FM, Seyfarth AM, Angen 0. Antimicrobial susceptibility of Haemophilus parasuis and Histophilus somni from pigs and cattle in Denmark. Vet Microbiol,2004,101(2):143-6
    3. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature,1996, 383(6603):787-93
    4. Ahn J, Hong M, Yoo S, Lee E, Won H, Yoon I, Jung JK, Lee H. Soluble expression of OmpA from Haemophilus parasuis in Escherichia coli and its protective effects in the mouse model of infection. J Microbiol Biotechnol,2012,22(9):1307-9
    5. Amano H, Shibata M, Kajio N, Morozumi T. Pathologic observations of pigs intranasally inoculated with serovars 1,4 and 5 of Haemophilus parasuis using immunoperoxidase method. J Vet Med Sci,1994,56:639-644
    6. Angen O, Oliveira S, Ahrens P, Svensmark B, Leser TD. Development of an improved species specific PCR test for detection of Haemophilus parasuis. Vet Microbiol,2007, H9(2-4):266-76
    7. Aragon V. Exposing serum susceptibility in Haemophilus parasuis. Vet J,2012, doi: 10.1016/j.tvjl.2012.10.032.
    8. Arking D, Tong Y, Stein DC. Analysis of lipooligosaccharide biosynthesis in the Neisseriaceae. J Bacteriol,2001,183:934-941
    9. Bak H, Riising HJ. Protection of vaccinated pigs against experimental infections with homologous and heterologous Haemophilus parasuis. Vet Rec,2002,151(17):502-5
    10. Baltes N, Hennig-Pauka I, Gerlach GF. Both transferrin bindingproteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection. FEMS Microbiol Lett,2002,209:283-287
    11. Baumann G, Bilkei G Effect of vaccinating sows and their piglets on the development of Glasser's disease induced by a virulent strain of Haemophilus parasuis serovar 5. Vet Rec,2002, 151(1):18-21
    12. Bergmann S, Rohde M, Hammerschmidt S. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun, 2004,72(4):2416-9,
    13. Bermudez-Fajardo A, Stark AK, El-Kadri R, Penichet ML, Holzle K, Wittenbrink MM, Holzle L, Oviedo-Orta E. The effect of Chlamydophila pneumoniae Major Outer Membrane Protein (MOMP) on macrophage and T cell-mediated immune responses. Immunobiology,2011, 216(1-2):152-63
    14. Biberstein EL, White DC. A proposal for the establishment of two new Haemophilus species. J Med Microbiol,1969,2:75-77
    15. Blanco I, Canals A, Evans G, Mellencamp MA, Cia C, Deeb N, Wang L, Galina-Pantoja L. Differences in susceptibility to Haemophilus parasuis infection in pigs. Can J Vet Res,2008, 72:228-235
    16. Borrego B, Argilaguet JM, Perez-Martin E, Dominguez J, Perez-Filgueira M, Escribano JM. A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class Ⅱ swine leukocyte antigens protects pigs against viral challenge. Antiviral Res,2011,92(2):359-63
    17. Bouchet B, Vanier G, Jacques M, Auger E, Gottschalk M. Studies on the interactions of Haemophilus parasuis with porcine epithelial tracheal cells:limited role of LOS in apoptosis and pro-inflammatory cytokine release. Microb Pathog,2009,46(2):108-13
    18. Bouchet B, Vanier G, Jacques M, Gottschalk M. Interactions of Haemophilus parasuis and its LOS with porcine brain microvascular endothelial cells. Vet Res,2008,39(5):42
    19. Cai X, Chen H, Blackall PJ, Yin Z, Wang L, Liu Z, Jin M. Serological characterization of Haemophilus parasuis isolates from China. Vet Microbiol,2005,111:231-236
    20. Cantini F, Savino S, Scarselli M, Masignani V, Pizza M, Romagnoli G. Solution structure of the immunodominant domain of protective antigen GNA1870 of Neisseria meningitidis. J Biol Chem, 2006,281(11):7220-7
    21. Castilla KS, de Gobbi DD, Moreno LZ, Paixao R, Coutinho TA, dos Santos JL, Moreno AM. Characterization of Haemophilus parasuis isolated from Brazilian swine through serotyping, AFLP and PFGE. Res Vet Sci,2012,92(3):366-71
    22. Cerda-Cuellar M, Aragon V. Serum-resistance in Haemophilus parasuis is associated with systemic disease in swine. Vet J,2008,175:384-389
    23. Chabot-Roy G, Willson P, Segura M, Lacouture S, Gottschalk M. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microb Pathog,2006,41(1):21-32
    24. Chen J, Lin L, Li N, She F. Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co-delivery of interleukin-2 and B subunit heat-labile toxin gene encoded plasmids. Microbiol Immunol,2012,56(2):85-92
    25. Chiang CH, Huang WF, Huang LP, Lin SF, Yang WJ. Immunogenicity and protective efficacy of ApxIA and ApxⅡA DNA vaccine against Actinobacillus pleuropneumoniae lethal challenge in murine model. Vaccine,2009,27:4565-70
    26. Chibani-Chennoufi S, Bruttin A, Dillmann M-L, Briissow H:Phage-host interaction:an ecological perspective. J Bacteriol,2004,186(12):3677-3686
    27. Confer AW, Ayalew S. The OmpA family of proteins:Roles in bacterial pathogenesis and immunity. Vet Microbiol,2012, doi:10.1016/j.vetmic.2012.08.019
    28. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms:a common cause of persistent infections. Science,1999,284(5418):1318-22
    29. Cotter TW, Ramsey KH, Miranpuri GS, Poulsen CE, Byrne GI. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect Immun,1997,65(6):2145-52
    30. Crocker PR, Varki A.Siglecs in the immune system. Immunology,2001,103:137-145
    31. Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. JImmunol Methods,1983,65(1-2):109-21
    32. de la Fuente AJ, Tucker AW, Navas J, Blanco M, Morris SJ, Gutierrez-Martin CB. Antimicrobial susceptibility patterns of Haemophilus parasuis from pigs in the United Kingdom and Spain. Vet Microbiol,2007,120(1-2):184-91
    33. del Rio ML, Gutierrez B, Gutierrez CB, Monter JL, Rodriguez Ferri EF. Evaluation of survival of Actinobacillus pleuropneumoniae and Haemophilus parasuis in four liquid media and two swab specimen transport systems. Am J Vet Res,2003,64:1176-1180
    34. Del Rio ML, Gutierrez CB, Rodriguez Ferri EF. Value of indirect hemagglutination and coagglutination tests for serotyping Haemophilus parasuis. JClin Microbiol,2003,41:880-882
    35. Doroud D, Vatanara A, Zahedifard F, Gholami E, Vahabpour R, Najafabadi AR, Rafati S. Cationic solid lipid nanoparticles loaded by cystein proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system:characterization and in vitro evaluations. J Control Release,2010, 148:105-11
    36. Erwin AL, Allen S, Ho DK, Bonthuis PJ, Jarisch J, Nelson KL, Tsao DL, Unrath WC, Watson ME Jr, Gibson BW, Apicella MA, Smith AL. Role of lgtC in resistance of nontypeable Haemophilus influenzae strain R2866 to human serum. Infect Immun,2006,74:6226-6235
    37. Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines:current progress. Clin Infect Dis,2011,53(3):296-302
    38. Frandoloso R, Martinez S, Rodriguez-Ferri EF, Garcia-Iglesias MJ, Perez-Martinez C, Martinez-Fernandez B, et al. Development and characterization of protective Haemophilus parasuis subunit vaccines based on native proteins with affinity to porcine transferrin and comparison with other subunit and commercial vaccines. Clin Vaccine Immunol,2011, 18(1):50-8
    39. Frandoloso R, Martinez-Martinez S, Yubero S, Rodriguez-Ferri EF, Gutierrez-Martin CB. New insights in cellular immune response in colostrum-deprived pigs after immunization with subunit and commercial vaccines against Glasser's disease. Cell Immunol,2012,277(1-2):74-82
    40. Fu S, Ou J, Zhang M, Xu J, Liu H, Liu J, Yuan F, Chen H, Bei W. The Live Attenuated Actinobacillus pleuropneumoniae Triple-Deletion Mutant AapxIC AapxIIC AapxⅣ-ORF1 Strain, SLW05, Immunizes Pigs against Lethal Challenge with Haemophilus parasuis. Clin Vaccine Immunol,2013,20(2):134-9
    41. Fu S, Yuan F, Zhang M, Tan C, Chen H, Bei W. Cloning, expression and characterization of a cell wall surface protein,6-phosphogluconate dehydrogenase, of Haemophilus parasuis. Res Vet Sci, 2012,93(1):57-62
    42. Furano K, Campagnari AA. Inactivation of the Moraxella catarrhalis 7169 ferric uptake regulator increases susceptibility to the bactericidal activity of normal human sera. Infect Immun, 2003,71(4):1843-8
    43. Gao W, Wortis HH, Pereira MA. The Trypanosoma cruzi transsialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion, Int Immunol,2002,14:299-308
    44. Garmory HS, Titball RW. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun,2004,72:6757-63
    45. Gieffers J, van Zandbergen G, Rupp J, Sayk F, Kruger S, Ehlers S, Solbach W, Maass M. Phagocytes transmit Chlamydia pneumoniae from the lungs to the vasculature. Eur Respir J, 2004,23(4):506-10
    46. Girard V, Mourez M, Adhesion mediated by autotransporters of Gram-negative bacteria: structural and functional features. Res Microbiol,2006,157:407-416
    47. Gronow S, Brabetz W, Lindner B, Brade H. OpsX from Haemophilus influenzae represents a novel type of heptosyltransferase I in lipopolysaccharide biosynthesis. J Bacteriol,2005, 187:6242-6247
    48. Haase EM, Campagnari AA, Sarwar J, Shero M, Wirth M, Cumming CU. Strain-specific and immunodominant surface epitopes of the P2 porin protein of nontypeable Haemophilus influenzae. Infect Immun,1991,59(4):1278-84
    49. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms:from the natural environment to infectious diseases. Nat Rev Microbiol,2004,2(2):95-108
    50. Hansen LM, Blanchard PC, Hirsh DC. Distribution of tet(H) among Pasteurella isolates from the United States and Canada. Antimicrob Agents Chemother,1996,40(6):1558-60
    51. Ho DK, Ram S, Nelson KL, Bonthuis PJ, Smith AL. LgtC expression modulates resistance to C4b deposition on an invasive nontypeable Haemophilus influenzae. J Immunol,2007, 178:1002-1012
    52. Huang SH, Stins MF, Kim KS. Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis. Microbes Infect,2000,2:1237-1244
    53. Jin H, Zhou R, Kang M, Luo R, Cai X, Chen H. Biofilm formation by field isolates and reference strains of Haemophilus parasuis. Vet Microbiol,2006,118(1-2):117-23
    54. Jolie RA, Mulks MH, Thacker BJ. Cross-protection experiments in pigs vaccinated with Actinobacillus pleuropneumoniae subtypes 1A and 1B. Vet Microbiol,1995,45:383-391
    55. Jung K, Chae C. In-situ hybridization for the detection of Haemophilus parasuis in naturally infected pigs. J Comp Pathol,2004,130(4):294-8
    56. Kang I, Kim D, Han K, Seo HW, Oh Y, Park C, Lee J, Gottschalk M, Chae C. Optimized protocol for multiplex nested polymerase chain reaction to detect and differentiate Haemophilus parasuis, Streptococcus suis, and Mycoplasma hyorhinis in formalin-fixed, paraffin-embedded tissues from pigs with polyserositis. Can J Vet Res,2012,76(3):195-200
    57. Kanipes MI, Holder LC, Corcoran AT, Moran AP, Guerry P. A deep-rough mutant of Campylobacter jejuni 81-176 is noninvasive for intestinal epithelial cells. Infect Immun,2004, 72:2452-2455
    58. Karalus RJ, Murphy TF. Purification and characterization of outer membrane protein P6, a vaccine antigen of non-typeable Haemophilus influenzae. FEMS Immunol Med Microbiol,1999, 26(2):159-66
    59. Kehrenberg C, Schulze-Tanzil G, Martel JL, Chaslus-Dancla E, Schwarz S. Antimicrobial resistance in pasteurella and mannheimia:epidemiology and genetic basis. Vet Res,2001, 32(3-4):323-39
    60. Khalid S, Bond PJ, Carpenter T, Sansom MS. OmpA:gating and dynamics via molecular dynamics simulations. Biochim Biophys Acta,2008,1778:1871-1880
    61. Khan MN, Bansal A, Shukla D, Paliwal P, Sarada SK, Mustoori SR. Immuno-genicity and protective efficacy of DnaJ (hsp40) of Streptococcus pneumoniae against lethal infection in mice. Vaccine,2006,24(37-39):6225-31
    62. Kielstein P, Rabbach A. Serological typing and identification of immunogenic cross reactions of Haemophilus parasuis. Mh Vet Med,1991,46:586-589
    63. Kielstein P, Rapp-Gabrielson VJ. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. JClin Microbiol,1992,30:862-865
    64. Kielstein P, Wuthe H, Angen O, Mutters R, Ahrens P. Phenotypic and genetic characterization of NAD-dependent Pasteurellaceae from the respiratory tract of pigs and their possible pathogenetic importance. Vet Microbiol,2001,81:243-255
    65. Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem,2005, 30(3):142-50
    66. Kirkwood N, Rawluk A, Cegielski C, Otto J. Effect of pig age and autogenous sow vaccination on nasal mucosal colonization of pigs by Haemophilus parasuis. J Swine Health Prod,2001, 9:77-79
    67. Klena JD, Gray SA, Konkel ME. Cloning, sequencing, and characterization of the lipopolysaccharide biosynthetic enzyme heptosyltransferase I gene (waaC) from Campylobacter jejuni and Campylobacter coli. Gene,1998,222:177-185
    68. Krishnan S, Prasadarao NV. Outer membrane protein A and OprF-versatile roles in Gram-negative bacterial infections. FEBS J,2012,279:919-930
    69. Lancashire JF, Terry TD, Blackall PJ, Jennings MP. Plasmid-encoded Tet B tetracycline resistance in Haemophilus parasuis. Antimicrob Agents Chemother,2005,49(5):1927-31
    70. Landis ED, Purcell MK, Thorgaard GH, Wheeler PA, Hansen JD. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus. Mol Immunol 2000,45(6):1646-57
    71. Lewis PA, Shope RE. Swine influenza. Ⅱ. Haemophilic bacillus from the respiratory tract of infected swine. JExp Med,1931,54:361-371
    72. Lichtensteiger CA, Vimr ER. Purification and renaturation of membrane neuraminidase from Haemophilus parasuis. Vet Microbiol,2003,93(1):79-87
    73. Lu YC, Li MC, Chen YM, Chu CY, Lin SF, Yang WJ. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge. Vaccine,2011,29:7740-6
    74. Madureira P, Baptista M, Vieira M, Magalhaes V, Camelo A, Oliveira L, Ribeiro A, Tavares D, Trieu-Cuot P, Vilanova M, Ferreira P. Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J Immunol,2007,178(3):1379-87
    75. Markowska-Daniel I, Urbaniak K, Stepniewska K, Pejsak Z. Antibiotic susceptibility of bacteria isolated from respiratory tract of pigs in Poland between 2004 and 2008. Pol J Vet Sci,2010, 13(1):29-36
    76. Martin de la Fuente AJ, Gutierrez Martin CB, Perez Martinez C, Garcia Iglesias MJ, Tejerina F, Rodriguez Ferri EF. Effect of different vaccine formulations on the development of Glasser's disease induced in pigs by experimental Haemophilus parasuis infection. J Comp Pathol,2009, 140(2-3):169-76
    77. Martinez-Martinez S, Frandoloso R, Ferri EF, Gil C, Hernandez-Haro C, Yubero S, Martin CB. Immunoproteomic analysis of the protective response obtained with subunit and commercial vaccines against Glasser's disease in pigs. Vet Immunol Immunopathol,2013,151(3-4):235-47
    78. Martinez-Moliner V, Soler-Llorens P, Moleres J, Garmendia J, Aragon V. Distribution of genes involved in sialic acid utilization in strains of Haemophilus parasuis. Microbiology,2012, 158(8):2117-24
    79. McPhee JB, Mena P, Zhang Y, Bliska JB. Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM. Infect Immun,2012, 80(7):2519-27
    80. Meier C, Oelschlaeger TA, Merkert H, Korhonen TK, Hacker J. Ability of Escherichia coli isolates that cause meningitis in newborns to invade epithelial and endothelial cells. Infect Immun, 1996,64(7):2391-9
    81. Miniats OP, Smart NL, Rosendal S. Cross protection among Haemophilus parasuis strains in immunized gnotobiotic pigs. Can J Vet Res,1991,55(1):37-41
    82. M(?)ller K, Fussing V, Grimont PA, Paster BJ, Dewhirst FE, Kilian M. Actinobacillus minor sp. nov., Actinobacillus porcinus sp. nov., and Actinobacillus indolicus sp. nov., three new V-factor dependent species from the respiratory tract of pigs. Int J Syst Bacteriol,1996,46:951-956
    83. Moller K, Kilian M. V-factor dependent members of the family Pasteurellaceae in the porcine upper respiratory tract. JClin Microbiol,1990,28:2711-2716
    84. Morgan GJ, Hatfull GF, Casjens S, Hendrix RW:Bacteriophage Mu genome sequence:analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. JMolBiol, 2002,317(3):337-359
    85. Morikoshi T, Kobayashi K, Kamino T, Owaki S, Hayashi S, Hirano S. Characterization of Haemophilus parasuis isolated in Japan. Nihon Juigaku Zasshi,1990,52:667-669
    86. Morozumi T, Nicolet J. Morphological variations of Haemophilus parasuis. J Clin Microbiol, 1986,23:138-142
    87. Morozumi T, Nicolet J. Some antigenic properties of Haemophilus parasuis and a proposal for serological classification. JClin Microbiol,1986b,23:1022-1023
    88. Morozumi T, Pauki S, Braun R, Nicolet J. Deoxyribonucleic acid relatedness among strains of Haemophilus parasuis and other Haemophilus spp. of swine. Int J Syst Bacteriol,1986,36: 17-19
    89. Mullins MA, Register KB, Bayles DO, Loving CL, Nicholson TL, Brockmeier SL, Dyer DW, Phillips GJ. Characterization and comparative analysis the genes encoding Haemophilus parasuis outer membrane proteins P2 and P5. J Bacteriol,2009,191:5988-6002
    90. Murphy TF, Kirkham C. Biofilm formation by nontypeable Haemophilus influenzae:strain variability, outer membrane antigen expression and role of pili. BMC Microbiol,2002,2:7
    91. Nielsen R, Danielson V. An outbreak of Gla"sser's disease. Studies on etiology, serology and the effect of vaccination. Nord Vet Med,1975,27:20-25
    92. Nielsen R. Pathogenicity and immunity studies of Haemophilus parasuis serotypes. Acta Vet Scand,1993,34:193-198
    93. Nielsen Rand, Danielsen V. An outbreak of Glassers disease. Nord Vet Med,1975,27:20-25
    94. Nikaido H, Rosenberg EY. Cir and Fiu proteins in the outer membrane of Escherichia coli catalyze transport of monomeric catechols:study with beta-lactam antibiotics containing catechol and analogous groups. J Bacteriol,1990,172:1361-1367
    95. Oliveira S, Batista L, Torremorell M, Pijoan C. Experimental colonization of piglets and gilts with systemic strains of Haemophilus parasuis and Streptococcus suis to prevent disease. Can J Vet Res,2001,65(3):161-7
    96. Oliveira S, Blackall PJ, Pijoan C. Characterization of the diversity of Haemophilus parasuis field isolates by use of serotyping and genotyping. Am J Vet Res,2003,64:435-442
    97. Oliveira S, Galina L, Pijoan C. Development of a PCR test to diagnose Haemophilus parasuis infections. J Vet Diagn Invest,2001,13:495-501
    98. Oliveira S, Pijoan C. Computer-based analysis of Haemophilus parasuis protein fingerprints. Can J Vet Res,2004a,68:71-75
    99. Oliveira S, Pijoan C. Diagnosis of Haemophilus parasuis in affected herds and use of epidemiologial data to control disease. J Swine Health Prod,2002,10(5):221-5
    100. Oliveira S, Pijoan C. Haemophilus parasuis:new trends on diagnosis, epidemiology and control. Vet Microbiol,2004,99:1-12
    101. Olvera A, Ballester M, Nofrarias M, Sibila M, Aragon V. Differences in phagocytosis susceptibility in Haemophilus parasuis strains. Vet Res,2009,40(3):24
    102. Olvera A, Calsamiglia M, Aragon V. Genotypic Diversity of Haemophilus parasuis Field Strains. Appl Environ Microbiol,2006,72:3984-3992
    103. Olvera A, Pina S, Perez-Simo M, Aragon V, Segales J, Bensaid A. Immunogenicity and protection against Haemophilus parasuis infection after vaccination with recombinant virulence associated trimeric autotransporters (VtaA). Vaccine,2011,29(15):2797-802
    104. Olvera A, Pina S, Perez-Simo M, Oliveira S, Bensaid A. Virulence-associated trimeric autotransporters of Haemophilus parasuis are antigenic proteins expressed in vivo. Vet Res,2010, 41(3):26
    105. Pan S, World CJ, Kovacs CJ, Berk BC. Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells. Arterioscler Thromb Vasc Biol, 2009,29(6):895-901
    106. Pijoan C, Torremorell M, Solano G. Colonization patterns by the bacterial flora of young pigs. Proc Am Assoc Swine Pract,1997,463-46
    107. Pina S, Olvera A, Barcelo A, Bensaid A, Trimeric autotransporters of Haemophilus parasuis: generation of an extensive passenger domain repertoire specific for pathogenic strains. J Bacteriol,2009,191:576-587
    108. Plant L, Sundqvist J, Zughaier S, Lovkvist L, Stephens DS, Jonsson AB. Lipooligosaccharide structure contributes to multiple steps in the virulence of Neisseria meningitidis. Infect Immun, 2006,74:1360-1367
    109. Potera C. Forging a link between biofilms and disease. Science,1999,283(5409):1837-1839
    110. Prasadarao NV, Lysenko E, Wass CA, Kim KS, Weiser JN. Opacity-associated protein A contributes to the binding of Haemophilus influenzae to chang epithelial cells. Infect Immun, 1999,67(8):4153-6
    111. Prideaux CT, Pierce L, Krywult J, Hodgson AL. Protection of mice against challenge with homologous and heterologous serovars of Actinobacillus pleuropneumoniae after live vaccination. Curr Microbiol,1998,37(5):324-32
    112. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem,2002,71:635-700
    113. Rafiee M, Blackall PJ. Establishment, validation and use of the Kielstein-Rapp-Gabrielson serotyping scheme for Haemophilus parasuis. Aust Vet J,2000,78:172-174
    114. Rapp-Gabrielson J, Gordon K, Jeffrey C, Stephen M. Haemophilus parasuis:Immunity in swine after vaccination. Vet M,1997,92:83-90
    115. Rapp-Gabrielson VJ, Gabrielson DA. Prevalence of Haemophilus parasuis serovars among isolates from swine. Am J Vet Res,1992,53:659-664
    116. Rapp-Gabrielson VJ, Oliveira R, Pijoan C. Haemophilus parasuis. In:Straw, Zimmerman, D'Allaire, Taylor (Eds.), Diseases of swine. Blackwell Publishing,2006,681-690
    117. Rappuoli R, Covacci A. Reverse vaccinology and genomics. Science,2003,302(5645):602
    118. Reina-San-Martin B, Cosson A, Minoprio P. Lymphocyte polyclonal activation:a pitfall for vaccine design against infectious agents. Parasitol Today,2000,16(2):62-7
    119. Rodriguez A, Rottenberg M, Tjarnlund A, Fernandez C. Immunoglobulin A and CD8 T-cell mucosal immune defenses protect against intranasal infection with Chlamydia pneumoniae. ScandJImmunol,2006,63(3):177-83
    120. Rubies X, Kielstein P, Costa L, Riera P, Artigas C, Espuna E. Prevalence of Haemophilus parasuis serovars isolated in Spain from 1993 to 1997. Vet Microbiol,1999,66:245-248
    121. Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines,2012,11(2):189-209
    122. Sack M, Baltes N. Identification of novel potential virulence-associated factors in Haemophilus parasuis. Vet Microbiol,2009,136(3-4):382-6
    123. Santema W, Hensen S, Rutten V, Koets A. Heat shock protein 70 subunit vaccination against bovine paratuberculosis does not interfere with current immunodiagnostic assays for bovine tuberculosis. Vaccine,2009,27(17):2312-9
    124. Segales J, Domingo M, Balasch M, Solano GI, Pijoan C. Ultrastructural study of alveolar macrophages infected in vitro with porcine reproductive and respiratory syndrome (PRRS) virus, with and without Haemophilus parasuis. J Comp Pathol,1998,118:231-243
    125. Segales J, Domingo M, Solano GI, Pijoan C. Immunohistochemical detection of Haemophilus parasuis serovar 5 in formalin-fixed, paraffin-embedded tissues of experimentally infected swine. J Vet Diagn Invest,1997,9:237-243
    126. Shaw J, Grand V, Durling L, Crane D, Caldwell HD. Dendritic cells pulsed with a recombinant chlamydial major outer membrane protein antigen elicit a CD4(+) type 2 rather than type 1 immune response that is not protective. Infect Immun,2002,70(3):1097-105
    127. Shenker BJ, Hoffmaster RH, Zekavat A, Yamaguchi N, Lally ET. Induction of apoptosis in human T cells by Actinobacillus actinomycetemcomitans cytolethal distending toxin is a consequence of G2 arrest of the cell cycle. J Immunol,2001,167:435-441
    128. Si Y, Yuan F, Chang H, Liu X, Li H, Cai K, Xu Z, Huang Q, Bei W, Chen H. Contribution of glutamine synthetase to the virulence of Streptococcus suis serotype 2. Vet Microbiol,2009, 139(1-2):80-8
    129. Silva AJ, Benitez JA. Thl-type immune response to a Coccidioides immitis antigen delivered by an attenuated strain of the non-invasive enteropathogen Vibrio cholerae. FEMS Immunol Med Microbiol,2005,43(3):393-8
    130. Solano GI, Segales J, Collins JE, Molitor TW, Pijoan C. Porcine reproductive and respiratory syndrome virus (PRRSV) interaction with Haemophilus parasuis. Vet Microbiol,1997,55: 247-257
    131. Stagg AJ, Elsley WA, Pickett MA, Ward ME, Knight SC. Primary human T-cell responses to the major outer membrane protein of Chlamydia trachomatis. Immunology,1993,79(1):1-9
    132. Stevens MK, Latimer JL, Lumbley SR, Ward CK, Cope LD, Lagergard T, Hansen EJ. Characterization of a Haemophilus ducreyi mutant deficient in expression of cytolethal distending toxin. Infect Immun,1999,67:3900-3908
    133. Sun Y, Hu YH, Liu CS, Sun L. Construction and analysis of an experimental Streptococcus iniae DNA vaccine. Vaccine,2010,28:3905-12
    134. Sun Y, Liu CS, Sun L. Construction and analysis of the immune effect of an Edwardsiella tarda DNA vaccine encoding a D 15-like surface antigen. Fish Shellfish Immunol,2011,30:273-9
    135. Swords WE, Buscher BA, Ver Steeg Ii K, Preston A, Nichols WA, Weiser JN, Gibson BW, Apicella MA. Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol Microbiol, 2000,37,13-27
    136. Szczesny P, Lupas A, Domain annotation of trimeric autotransporter adhesins-daTAA, Bioinformatics,2008,24:1251-1256
    137. Tadjine M, Mittal KR, Bourdon S, Gottschalk M. Production and characterization of murine monoclonal antibodies against Haemophilus parasuis and study of their protective role in mice. Microbiology,2004,150(12):3935-45
    138. Takahashi K, Naga S, Yagihashi T, Ikehata T, Nakano Y, Senna K, Maruyama T, Murofushi J. A cross-protection experiment in pigs vaccinated with Haemophilus parasuis serovars 2 and 5 bacterins, and evaluation of a bivalent vaccine under laboratory and field conditions. J Vet Med Sci,2001,63(5):487-91
    139. Tavares D, Ferreira P, Arala-Chaves M. Increased resistance in BALB/c mice to reinfection with Candida albicans is due to immunoneutralization of a virulence-associated immunomodulatory protein. Microbiology,2003,149:333-339
    140. Thomas WR, Callow MG, Dilworth RJ, Audesho AA. Expression in Escherichia coli of a high-molecular-weight protective surface antigen found in nontypeable and type b Haemophilus influenzae. Infect Immun,1990,58(6):1909-13
    141. Throm RE, Spinola SM. Transcription of candidate virulence genes of Haemophilus ducreyi during infection of human volunteers. Infect Immun,2001,69:1483-1487
    142. Tian H, Fu F, Li X, Chen X, Wang W, Lang Y, Cong F, Liu C, Tong G, Li X. Identification of the immunogenic outer membrane protein A antigen of Haemophilus parasuis by a proteomics approach and passive immunization with monoclonal antibodies in mice. Clin Vaccine Immunol, 2011,18(10):1695-701
    143. Townsend GC, Scheld WM. In vitro models of the blood-brain barrier to study bacterial meningitis. Trends Microbiol,1995,3:441-445
    144. Townsend KM, Dawkins HJS, Zeng BJ, Watson MW, Papadimitriou JM. Cloning of a unique sequence specific to isolates of type Pasteurellamultocida. Res Vet Sci,1996,61(3):199-205
    145. Tullius MV, Phillips NJ, Scheffler NK, Samuels NM, Munson Jr RS Jr, Hansen EJ, Stevens-Riley M, Campagnari AA, Gibson BW. The lbgAB gene cluster of Haemophilus ducreyi encodes a beta-1,4-galactosyltransferase and an alpha-1,6-DD-heptosyltransferase involved in lipooligosaccharide biosynthesis. Infect Immun,2002,70:2853-2861
    146. Vahle JL, Haynes JS, Andrews JJ. Experimental reproduction of Haemophilus parasuis infection in swine:clinical, bacteriologic, and morphologic findings. J Vet Diagn Invest,1997,7:476-480
    147. Vanier G, Szczotka A, Friedl P, Lacouture S, Jacques M, Gottschalk M. Haemophilus parasuis invades porcine brain microvascular endothelial cells. Microbiology,2006,152;135-142
    148. Vilanova M, Teixeira L, Caramalho I, Torrado E, Marques A, Madureira P, Ribeiro A, Ferreira P, Gama M, Demengeot J. Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology,2004,111:334-342
    149. Vimr E, Lichtensteiger C, Steenbergen S Sialic acid metabolism's dual function in Haemophilus influenzae. Mol Microbiol,2000,36:1113-1123
    150. Vorachit M, Lam K, Jayanetra P, Costerton JW. Electron microscopy study of the mode of growth of Pseudomonas pseudomallei in vitro and in vivo. J Trop Med Hyg,1995,98(6):379-91
    151. Voyich JM, Sturdevant DE, Braughton KR, Kobayashi SD, Lei B, Virtaneva K, Dorward DW, Musser JM, DeLeo FR. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci USA,2003, 100(4):1996-2001
    152. Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol,2005,8:459-465
    153. Wang X, Xu X, Zhang S, Guo F, Cai X, Chen H. Identification and analysis of potential virulence-associated genes in Haemophilus parasuis based on genomic subtraction. Microb Pathog,2011,51(4):291-6
    154. Weiser JN, Chong ST, Greenberg D, Fong W. Identification and characterization of a cell envelope protein of Haemophilus influenzae contributing to phase variation in colony opacity and nasopharyngeal colonization. Mol Microbiol,1995,17(3):555-64
    155. Xu C, Zhang J, Zhao Z, Guo L, Zhang B, Feng S, Zhang L, Liao M. Antimicrobial susceptibility and PFGE genotyping of Haemophilus parasuis isolates from pigs in South China (2008-2010). J Vet Med Sci,2011,73(8):1061-5
    156. Xu C, Zhang L, Zhang B, Feng S, Zhou S, Li J, Zou Y, Liao M. Involvement of lipooligosaccharide heptose residues of Haemophilus parasuis SC096 strain in serum resistance, adhesion and invasion. Vet J,2013,195(2):200-4
    157. Yuan F, Fu S, Hu J, Li J, Chang H, Hu L, Chen H, Tian Y, Bei W. Evaluation of recombinant proteins of Haemophilus parasuis strain SH0165 as vaccine candidates in a mouse model. Res Vet Sci,2012,93(1):51-6
    158. Yue M, Yang F, Yang J, Bei W, Cai X, Chen L, et al. Complete genome sequence of Haemophilus parasuis SH0165. JBacteriol,2009,191:1359e60
    159. Zehr ES, Tabatabai LB, Bayles DO. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis. BMC Genomics,2012,13:331
    160. Zehr ES, Tabatabai LB. Detection of a bacteriophage gene encoding a Mu-like portal protein in Haemophilus parasuis reference strains and field isolates by nested polymerase chain reaction. J Vet Diagn Invest,2011,23(3):538-542
    161. Zhang B, Feng S, Xu C, Zhou S, He Y, Zhang L, Zhang J, Guo L, Liao M. Serum resistance in Haemophilus parasuis SC096 strain requires outer membrane protein P2 expression. FEMS Microbiol Lett,2012a,326:109-115
    162. Zhang B, He Y, Xu C, Xu L, Feng S, Liao M, Ren T. Cytolethal distending toxin (CDT) of the Haemophilus parasuis SC096 strain contributes to serum resistance and adherence to and invasion of PK-15 and PUVEC cells. Vet Microbiol,2012,157(1-2):237-42
    163. Zhang B, Xu C, Liao M. Outer membrane protein P2 of the Haemophilus parasuis SC096 strain contributes to adherence to porcine alveolar macrophages cells. Vet Microbiol,2012b, 158:226-227
    164. Zhang B, Xu C, Zhang L, Zhou S, Feng S, He Y, Liao M. Enhanced adherence to and invasion of PUVEC and PK-15 cells due to the overexpression of RfaD, ThyA and Mip in the AompP2 mutant of Haemophilus parasuis SC096 strain. Vet Microbiol,2013,162(2-4):713-23
    165. Zhang B, Xu C, Zhou S, Feng S, Zhang L, He Y, Liao M. Comparative proteomic analysis of a Haemophilus parasuis SC096 mutant deficient in the outer membrane protein P5. Microb Pathog, 2012c,52:117-124
    166. Zhang J, Xu C, Guo L, Shen H, Deng X, Ke C, Ke B, Zhang B, Li A, Ren T, Liao M. Prevalence and characterization of genotypic diversity of Haemophilus parasuis isolates from southern China. Can J Vet Res,2012,76(3):224-9
    167. Zhang JM, Shen HY, Liao M, Ren T, Guo LL, Xu CG, Feng SX, Fan HY, Li JY, Chen JD, Zhang B. Detection of Haemophilus parasuis isolates from South China by loop-mediated isothermal amplification and isolate characterisation. Onderstepoort J Vet Res,2012,79(1):1-6
    168. Zhao Y, Liu Q, Wang X, Zhou L, Wang Q, Zhang Y. Surface display of Aeromonas hydrophila GAPDH in attenuated Vibrio anguillarum to develop a Noval multivalent vector vaccine. Mar Biotechnol,2011,13(5):963-70
    169. Zhou M, Guo Y, Zhao J, Hu Q, Hu Y, Zhang A, Chen H, Jin M. Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine,2009,27(38):5271-7
    170. Zhou M, Zhang Q, Zhao J, Jin M. Haemophilus parasuis encodes two functional cytolethal distending toxins:CdtC contains an atypical cholesterol recognition/interaction region. PLoS One, 2012,7(3):e32580
    171. Zhou SM, Xu CG, Zhang B, Feng SX, Zhang LY, Zou Y, Liao M. Natural IgG antibodies in normal rabbit serum are involved in killing of the ompP2 mutant of Haemophilus parasuis SC096 strain via the classical complement pathway. Vet J,2012, http://dx.doi.org/10.1016/j.tvjl.2012.09.007
    172. Zhou X, Xu X, Zhao Y, Chen P, Zhang X, Chen H, Cai X. Distribution of antimicrobial resistance among different serovars of Haemophilus parasuis isolates. Vet Microbiol,2010,141(1-2):168-73
    173. Zou Y, Feng S, Xu C, Zhang B, Zhou S, Zhang L, He X, Li J, Yang Z, Liao M. The role of galU and galE of Haemophilus parasuis SC096 in serum resistance and biofilm formation. Vet Microbiol,2013,162(1):278-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700