用户名: 密码: 验证码:
基于活菌内标的单核细胞增生李斯特菌荧光定量PCR方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核细胞增生李斯特菌(Listeria monocytogenes)是一种重要的食源性致病菌,广泛的分布于自然界,人体感染后的死亡率高达20%-30%。在美国每年约有2500起由单核细胞增生李斯特菌引起的食品中毒事件,其中致使患者死亡的高达500人(美国CDC),导致的经济损失高达23亿美元。近年来随着我国即食食品消费量的日益增加,单核细胞增生李斯特菌也逐渐成为威胁我国人民身体健康的主要食源性致病菌之一。因此,针对食品生产和消费中存在的单核细胞增生李斯特菌,建立一套快速、准确的检测方法非常必要。
     为解决传统PCR检测方法存在的不足,增加检测的准确性、可靠性和实用性,本文以单核细胞增生李斯特菌为研究对象,建立了一种广泛适用于食源性致病微生物检测的添加活菌内标的荧光定量PCR检测体系,可用于DNA提取前野生菌的准确定量和全程指示假阴性。主要研究内容和结果如下:
     1、四种细菌检测方法的比较:以单核细胞增生李斯特菌CMCC 54002作为待测菌株,比较了PCR检测方法与目前具有代表性的BIOLOG、VITEK和CRYSTAL3种微生物快速检测系统,并对本实验室保存的9株单核细胞增生李斯特菌做了血清学分型。结果表明:这3种微生物快速检测系统与PCR检测方法相比,其前处理过程时间长,需分离出纯的单菌落,并且都只能鉴定到李斯特菌属。PCR方法通过设计单核细胞增生李斯特菌种特异性引物,可快速的鉴定出单核细胞增生李斯特菌,并且无需纯化检测样品。通过对本实验室保存的9株单核细胞增生李斯特菌进行血清学分析,结果表明本实验室菌株涵盖了单核细胞增生李斯特菌主要的致病血清型(1/2a、4b、1/2c、3b)。
     2、扩增内标的设计:针对单核细胞增生李斯特菌主要毒力基因hly的保守序列,设计了一对特异性引物和相应的检测探针,并利用DNA序列随机改组软件,根据目标片断的序列特征,生成了1000组随机改组序列,然后通过荧光探针设计软件分析和BLAST-N比对筛选,找到了一条软件评分最高且与其它致病微生物基因组序列非同源的内标序列,该序列与目标片断具有相同长度(65 bp)和GC含量(55.4%),从而保证两者PCR扩增效率的一致性。
     3、活菌内标的构建:选用温敏型的穿梭质粒pKSV7来构建同源重组载体pKSV7-UIKD,该载体上连有上下游同源序列、扩增内标序列及卡那抗性基因,与质粒上自带的氯霉素抗性基因一起作为共同筛选标记,进行单核细胞增生李斯特菌双交换突变株的筛选,经过10轮培养和筛选,重组几率约为1.3%(4/300)。筛选出的双交换菌株用PCR、RT-PCR和测序分析进行了验证,结果表明成功获得了含扩增内标序列的hly基因缺失突变株LM-IAC,并作为活菌内标用于后续研究。
     4、准确测定野生菌DNA提取前菌体量的荧光定量PCR检测体系(LM-IACAQ-PCR assay)的建立:(1)评价了野生菌与活菌内标的DNA提取效率和PCR扩增效率,结果表明活菌内标与野生菌在10~9 cfu-10~5 cfu的范围内其DNA提取效率是相似的(约10%),同时两者具有相似的PCR扩增效率(野生菌1.05、活菌内标1.06)。(2)建立了根据活菌内标数量计算DNA提取前野生菌体量的线性回归方程y=-0.313x-0.0773,回归方程的相关系数R~2=0.9997,结果表明,根据该线性回归方程计算所得的DNA提取前野生菌菌体量与实际菌体含量基本一致,而由传统标准曲线法计算得到的菌体量要比实际量少一个数量级。
     5、全程指示假阴性的荧光定量PCR检测体系(LM-IAC EQ-PCR assay)的建立:(1)运用BIOLOG系统、VITEK系统比较了野生菌和活菌内标的生化特性,结果表明野生菌与活菌内标对检测板上的各项生化物质利用能力基本一致。(2)通过均匀设计试验评价了不同活菌内标加入量对野生菌在增菌培养中的影响,结果表明10~2 cfu-10~4 cfu的活菌内标接种量不影响野生菌的生长,其生长代时分别为49min(野生菌)和55 min(活菌内标)。(3)将10~3 cfu数量级的野生菌与活菌内标分别接入牛奶、鸡肉和腌肉样品,用UVM选择性增菌液培养,并以不添加食品样品的UVM纯培养为阳性对照,分别取增菌0 h、3 h、6 h的样品进行荧光PCR检测,结果表明阳性对照和牛奶样品中的野生菌和活菌内标不经过增菌培养即可检出,鸡肉样品经增菌3 h后野生菌和活菌内标方可检出,而腌肉样品要经增菌6 h后才可检出野生菌和活菌内标。这说明本研究建立的检测体系能够指示鸡肉和腌肉样品检测中的假阴性现象,有助于提高检测的准确率,同时可有效减少增菌时间。
     6、可用于单核细胞增生李斯特菌、沙门氏菌和副溶血弧菌普通PCR检测的多重扩增内标(multiple internal amplification control,mIAC)检测体系的建立:针对单核细胞增生李斯特菌hlyA基因、沙门氏菌invA基因和副溶血弧菌toxR基因设计特异性检测引物,根据这3对引物序列运用重叠PCR技术人工合成了1条多重扩增内标,可分别用于单核细胞增生李斯特菌、沙门氏菌和副溶血弧菌的普通PCR检测。含多重扩增内标的PCR检测体系的DNA检测灵敏度分别为:单核细胞增生李斯特菌,73.0 fg/μl;沙门氏菌,5.04 fg/μl和副溶血弧菌,76.4 fg/μl。通过对40份鸡肉、60份牛奶和60份虾样品分别进行单核细胞增生李斯特菌、沙门氏菌和副溶血弧菌的人工污染试验,结果显示鸡肉样品有2份出现假阴性、牛奶样品有2份出现假阴性、虾样品有3份出现假阴性,说明本研究建立的检测体系在进行大量样品检测时能够有效指示假阴性,有助于提高检测的准确率,并降低检测成本。
Listeria monocytogenes is an important food-borne pathogen that causes listeriosis. It is widely distributed in the environment, and its infections can be life threatening, with a high fatality rate of 20 to 30%. It was estimated that approximately 2,500 individuals have developed listeriosis in the United States per year and the costs of the acute illness from foodborne Listeria are $2.3 billion. At the same time, L. monocytogenes has emerged as a significant foodborne pathogen in China during the past few years, along with a trend toward increasing consumption of ready-to-eat food products. Therefore, rapid detection methods are of significant importance to the L. monocytogenes quality control programs, which have to be applied throughout the food production chain.
     In order to overcome the limitations of traditional PCR method, a real-time quantitative PCR (Q-PCR) assay was developed with a mutant strain used as an internal control. This technique is suitable for most existing real-time PCR protocols, which can be used to quantify the initial amounts of L. monocytogenes in enriched samples and monitor the false negative results during the whole process. The main results are as follows:
     1. Four different bacterial detection methods (BIOLOG, VITEK, CRYSTAL and PCR) have been evaluated by L. monocytogenes CMCC 54002. The results showed that the PCR method is the best among these detection methods. The other three methods are time-consuming during sample preparation and request for separating the individual colonies from agar plates. Moreover, they can't distinguish between L. monocytogenes and other Listeria species. In contrast, the PCR method can identify L. monocytogenes by specific primers and doesn't need to purify the samples. Further serological analysis showed that the nine L. monocytogenes strains used in this study are serotypes 1/2a, 4b, 1/2c, 3b which are the main serotypes in most listeriosis cases.
     2. An IAC design method was developed by the computational DNA random shuffling. The hly gene was selected as a target gene for detecting L. monocytogenes by Q-PCR, and the conserved regions of the hly gene were used to design suitable L. monocytogenes-specific PCR primers and probe. Then, a DNA random shuffling software was used to shuffle the probe binding sequence. A total of 1000 random shuffling sequences were generated. Based on results from Bacon Designer 5.0 software analyses and BLAST-N searches, an IAC fragment that did not display significant similarity to any known pathogen DNA sequence was identified and synthesized by using the overlap-extension PCR technology. The IAC and hly amplicon share the equal length (65 bp) and GC content (55.4%), which ensures the equal PCR amplification efficiencies.
     3. A mutant L. monocytogenes (LM-IAC) was obtained by exchanging the chromosomal hly gene with the IAC fragment through homologous recombination technology. The flanking regions of the hly gene, an IAC fragment and a kanamycin resistance gene were inserted into the pKSV7 shuttling vector, which contains a temperature sensitive replicon, to generate a recombinant vector called pKSV7-UIKD. A restoring strain was obtained by the replica plating method after continuous passages in BHI broth medium. Bacteria in colonies which could not grow on the chloramphenicol resistant plates, but can grow on the kanamycin resistant plates were candidates for the restoring strain. The recombination rate was about 1.3% (4/300). The restoring strain was identified by PCR, RT-PCR and sequencing analysis to further confirmed that the IAC fragment and the kanamycin resistance gene had replaced the hly gene on the restoring strain chromosome.
     4. A LM-IAC AQ-PCR assay was developed for rapid and accurate detection of the original amount of wild-type L. monocytogenes before DNA isolation. (1) The amplification efficiencies and template extraction efficiency were estimated. The calculated amplification efficiencies of the hly amplicon and IAC were 1.05 and 1.06, respectively. The calculated template extraction efficiency results was similar (P > 0. 05) between wild-type L. monocytogenes and LM-IAC (about 10%) over a five orders of magnitude. (2) A calibration curve was established with the log (X/R) (X is the initial number of template, R is the initial number of bIAC) plotted againstΔC_T (C_(TLM) -C_(TLM-IAC)). The calibration curve calculated by linear regression was y = -0.313x - 0.0773 with a square regression coefficient of 0.9997. Comparison of the quantified wild-type L. monocytogenes contents with known amounts indicated that the established LM-IAC Q-PCR system was more reliable than the traditional absolute quantification method.
     5. A LM-IAC EQ-PCR assay was developed for monitoring the false negative results in the whole control. (1) The biochemical characteristics between wild-type L. monocytogenes and LM-bIAC have been compared with BIOLOG and VITEK's identification system. The results showed that the two strains have similar biochemical characteristics. (2) The uniform design experiments were performed to analyze the comprehensive effects of different LM-IAC contents in medium on wild-type L. monocytogenes growth. It was found that the wild-type L. monocytogenes growth was stable with 10~2 cfu -10~4 cfu LM-IAC contents. The generation time of wild-type L. monocytogenes and LM-IAC were 49 min and 55 min respectively. (3) Milk samples, chiken samples and pickle meat samples were artificially contaminated about 1000 cfu wild-type L. monocytogenes and LM-IAC and incubated with UVM selective enrichment broth, at the same time, preparing ddH_2O as positive control. Wild-type L. monocytogenes and LM-IAC which contaminated the ddH_2O and milk samples could be detected successfully by the LM-IAC Q-PCR assay without enrichment. However, wild-type L. monocytogenes and LM-IAC which contaminated the chicken and pickle meat samples could be detected after 3 h enrichment and 6 h enrichment respectively. It was demonstrated that the LM-IAC EQ-PCR assay could successfully eliminate the false-negative results between chicken and pickle meat samples. Therefore the advanteges of the LM-IAC EQ-PCR assay are accuracy and time- saving.
     6. A single multiple internal amplification control (mIAC) DNA molecule was constructed to detect the L. monocytogenes, Salmonella and Vibrio parahaemolyticus. Three pairs of primers (hlyAF/AR, invAF/ invar, toxRF/ toxRR) were designed based on the species-specific sequences of hlyA gene, invA gene and toxR gene respectively. The mIAC was synthesized by the overlap-extension PCR technology which contains the three pairs of primers' sequences. Sensitivity of those mIAC PCR systems for purified target DNA were 73. 0 fg/μl (L. monocytogenes), 5.04 fg/μl (Salmonella) and 76. 4 fg/μl (V. parahaemolyticus) respectively. In order to estimate the mIAC, 40 chiken samples, 60 milk samples and 60 shrimp samples were artificially contaminated with L. monocytogenes, Salmonella and Vibrio parahaemolyticus respectively. After PCR amplification, 3 chicken samples, 2 milk samples and 3 shrimp samples which turned out to be false-negative. The results demonstrated that the systems with mIAC could successfully eliminate the false-negative results.
引文
1.巢国祥,焦新安,钱晓勤,徐勤,何日,周丽萍,周晓辉,黄金林,王静.扬州市食品中7种食源性致病菌污染状况及耐药性研究.中国食品卫生杂志,2006,18:23-25.
    2.陈广全,张惠媛,汪琦,曾静,张亮,臧庆伟,张昕,饶红.用寡核苷酸微阵列芯片方法检测常见的食源性致病微生物.食品与发酵工业,2007,12:122-126.
    3.陈敏,王颖.上海市食品中李斯特氏菌污染情况调查.上海预防医学杂志,2001,13:112-113.
    4.陈倩,骆海朋,赵春玲,张文力,韩喜荣,张桂春,董忠,张正.北京市食品中五种食源性致病菌污染状况调查研究.中国卫生检验杂志,2003,13:570-571.
    5.陈森,辛显僮,金容培.食品中单核细胞增多性李斯特菌及快速检测.中华预防医学杂志,1995,29:49-50.
    6.陈伟伟,洪锦春,杨毓环,马群飞,林舁清.福建省2000年-2003年食品中单核细胞增生李斯特菌的监测与分析.中国食品卫生杂志,2005,17:111-114.
    7.陈伟伟,杨育红,杨毓环,马群飞.泉州市食品中单核细胞增生李斯特氏菌的定性、定量及耐药性分析.中国食品卫生杂志,2003,15:44-45.
    8.丁秀萍,秦树民,代静林,冯艳洁,刘兰吉,袁玉荣.2005-2006年秦皇岛市食源性疾病病原菌污染状况调查.中国卫生检验杂志,2007,17:1090-1091.
    9.范红结,焦新安,刘秀梵,张如宽.快速、特异检测李斯特菌单抗-夹心ELISA方法的建立及应用.中国预防兽医学报,1998,2:102-104.
    10.冯家望,吴小伦,王小玉,李丹琳,陈静静,唐食明,游淑珠.多重-巢式PCR检测食品中单增李斯特菌研究.中国国境卫生检疫杂志,2007,1:56-59.
    11.付萍,冉陆,李志刚,姚景慧,赵熙.中国七类食品中单核细胞增生性李斯特氏菌污染状况调查.卫生研究,1999,28:106-107.
    12.关文英,申志新,王英豪,张淑红,侯凤伶.2005年河北省食品中单核细胞增生李斯特菌的主动监测.中国预防医学杂志,2007,8:12-14.
    13.韩秀兰,魏秀萍,李云,史艳.2005年石家庄市部分食品中产单核细胞李斯特菌污染状况调查.预防医学论坛,2007,13:23-24.
    14.何树森,杨小蓉,兰真,赵晋,薛晴,辛又川,冯泽惠,徐耀方.四川省食品中重要食源性病原菌污染监测与分析.现代预防医学,2007,34:3810-3812.
    15.江素红,蔡亚军,吴耀波,林奕华,林洁敏,郑宗奕.汕头市食源性致病菌及食源性疾病监测分析.中国热带医学,2007,7:804-805.
    16.金建潮,袁丹茅,刘素意,张景平,张志超.2000-2004年龙岩市部分市售食品中单核细胞增生李斯特菌监测.预防医学论坛,2005,11:703-704.
    17.金莉莉,王芳,郭振坤.食品中单核细胞增多性李斯特菌检测研究进展.微生物杂志,2001,21:36-38.
    18.李小春.近5年来温州市食品中食源性致病菌主动监测.中国卫生检验杂志,2007,17:1843-1845.
    19.李晓虹,蒋琴娣,吴仲梁,陈家华.利用IMS/PCR方法快速检测食品中单增李斯特菌.检验检疫科学,2003,6:20-22.
    20.李秀桂,吕素玲,唐振柱,蒋震羚,王红,车光,黄林,阮青,杨娟,张洁宏,方志峰.2002-2004年广西食品中单核细胞增生李斯特氏菌的监测.广西预防医学,2005,11:140-142.
    21.李迎惠,冉陆.李斯特菌的耐药性及耐药基因.国外医学卫生分册,2004,31:120-124.
    22.李仲兴,郑家齐,李家宏等.诊断细菌学.香港:黄河文化出版社,1992,215.
    23.刘斌,史贤明.扩增内标在沙门氏菌PCR检测方法中的应用.微生物学通报,2006,33:156-161.
    24.罗贵华,徐怀德,高志贤,胡志华,周焕英,刘楠.纳米金标记DNA的生物传感器.解放军预防医学杂志,2007,2:91-93.
    25.马国柱,王安礼,刘长宏,连西兰,潘立,张芳.2002年陕西省食品中食源性致病菌监测.中国食品卫生杂志,2003,15:489-491.
    26.马弋,吴杨,吕斌,杨晓敏,谢茂慧.湖北省食品中李斯特氏菌污染现状分析.中国食品卫生杂志,2003,15:222-223.
    27.梅玲玲,程苏云,朱敏,王赞信.2000-2004年浙江省食品中产单核李斯特菌污染状况调查.中国卫生检验杂志,2006,16:784-785.
    28.秦玉敏,李一经,赵林立,张赟硕,乔薪瑗,齐炳理.抗李斯特氏菌溶血素单克隆抗体制备及检测LMO的初步应用.中国人兽共患病学报,2008,5:.
    29.商海涛,柳增善,陈贵连,刘明远,张让堂,徐克诚,王跟领.李斯特氏菌因子血清的制备及食品检测的免疫磁性分离-PCR(MIPA)方法的建立.中国兽医学报,1999,4:339-342.
    30.施家琦,夏家辉.真核生物中基因打靶的策略生命科学研究.1999,2:96-101.
    31.孙晞,吴建中,张宁,欧仕益,唐书泽.荧光实时定量PCR检测单核李斯特菌方法学建立及应用.实用预防医学,2005,3:496-497.
    32.王冰,扈庆华,石晓路,李庆阁,郑琳琳,林一曼,贺连华,张顺徉.改良分子信标-实时PCR快速检测产单核李斯特菌.中国卫生检验杂志,2006,6:644-646.
    33.王茂起,王竹天,包大跃,冉陆.中国2000年食品污染状况监测与分析.中国食品卫生杂志,2002,14:3-8.
    34.王想霞,张青风,杜俊甫,李林奇,张蒙,俞社花.濮阳市部分食品中3种致病菌污染状况调查.中国食品卫生杂志,2005,17:54-55.
    35.王艳君,张春晖,王玉芬,吴坤.多重PCR检测冷却肉中的3种致病菌.食品与发酵工业,2007,3:111-114.
    36.吴平芳,贺连华,王冰,石晓路,扈庆华.深圳市食品中单核细胞增生性李斯特菌的污染状况调查.中国热带医学,2005,5:593-594.
    37.吴蜀豫,李迎惠,冉陆,付萍,李志刚,姚景会.中国2001年11省(市)食品中李斯特菌污染状况的主动监测.中华流行病学杂志,2003,24-657-660.
    38.吴晓芳,程平庆,徐德顺.湖州市食品中单增李斯特菌的污染状况调查.中国卫生检验杂志,2007,17:1876-1877.
    39.辛生,刘桂华,龚云伟,杨红,孔祥云,安笑秋.2006年吉林省食品污染物监测结果分析.中国卫生检验杂志,2007,17:309-310.
    40.徐德顺,查赟峰.食品中单核细胞增生李斯特菌实时荧光PCR快速检测方法的建立.中国人兽共患病学报,2007,4:380-383.
    41.严纪文,朱海明,王海燕,何冬梅,杨冰,宋曼丹,赖蔚苳,王建,马聪,邓峰,柯吕文,倪汉忠,黄吉城.2000-2005年广东省食品中食源性致病菌的监测与分析.中国食品卫生杂志,2006,18:528-531.
    42.杨小鹃,吴清平,张菊梅,吴慧清.多重PCR检测无公害畜禽肉和水产品中4种致病菌.微生物学通报,2005,3:95-101.
    43.尹本康,梁柏年,李占裕,陈子慧,朱小慧.江门市区食品中单增李斯特菌污染及耐药状况调查.疾病监控,2007,22:294-296.
    44.张健,邓志爱,李钏华,张欣强,庞杏林,张颖,李迎月.广州市市售食品食源性致病菌染状况调查.热带医学杂志,2007,7:804-806.
    45.Abdulmawjood A,Roth S and Bulte M.Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction.Mol Cell Probes,2002,16:335-339.
    46. Al-Soud W A and Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol, 2001, 39: 485-493.
    47. Alvarez-Dominguez C, Vazquez-Boland J A, Carrasco-Marin E, Lopez-Mato P and Leyva-Cobian F. Host cell heparin sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun, 1997, 65: 78-88.
    48. Amagliani G. Detection of Listeria monocytogenes using a commercial PCR kit and different DNA extraction methods. Food Control, 2007, 18: 1137-1142.
    49. Atmar R L, Metcalf T G, Neill F H and Estes M K. Detection of enteric viruses in oysters by using the polymerase chain reaction. Appl Environ Microbiol, 1993, 59: 631-635.
    50. Aureli P, Fiorucci G C, Caroli D, Marchiaro G, Novara O, Leone L and Salmaso S. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med, 2000,342: 1236-1241.
    51. Bae, T., O. Schneewind. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid, 2006,55: 58-63.
    52. Bassler H A, Flood S J, Livak K J, Marmaro J, Knorr R and Batt C A. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl Environ Microbiol, 1995, 61:3724-3728.
    53. Berry E D and Siragusa G R. Hydroxyapatite adherence as a means to concentrate bacteria. Appl Environ Microbiol, 1997, 63: 4069-4074.
    54. Berson S A and Yalow R S. Quantitative aspects of the reaction between insulin and insulin-binding antibody. J Clin Invest, 1959,38: 1996-2016.
    55. Bhunia A K and Johnson M G. Monoclonal antibody specific for Listeria monocytogenes associated with a 66-kilodalton cell surface antigen. Appl Environ Microbiol, 1992, 58: 1924-1929.
    56. Bickley J, Short J K, McDowell D G and Parkes H C. Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions. Lett Appl Microbiol, 1996, 22: 153-158.
    57. Bille J. Epidemiology of listeriosis in Europe, with special reference to the Swiss outbreak. in: A.J. Miller, J.L. Smith and GA. Somkuti (eds). 1990, Topics in Industrial Microbiology: Foodborne Listeriosis New York NY: Elsevier Science Pub, pp: 25-29.
    58. Blais B W, Turner G, Sooknanan R and Malek L T. A nucleic acid sequence-based amplification system for detection of Listeria monocytogenes hlyA sequences. Appl Environ Microbiol, 1997, 63:310-313.
    59. Boeckh M B G Quantitation of cytomegalovirus: methodologic aspects and clinical applications. Clin Microbiol Rev, 1998, 11: 533-554.
    60. Borucki M K, Kim S H, Call D R, Smole S C and Pagotto F. Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J Clin Microbiol, 2004, 42: 5270-5276.
    61. Broome C V, Gellin, B. & Schwartz, B. Epidemiology of listeriosis in the United States. in: A.J. Miller, J.L. Smith and GA. Somkuti (eds). 1990, Topics in Industrial Microbiology: Foodborne Listeriosis New York NY: Elsevier Science Pub, pp: 61-65.
    62. Bubert A, Hein I, Rauch M, Lehner A, Yoon B, Goebel W and Wagner M. Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. Appl Environ Microbiol, 1999, 65: 4688-4692.
    63. Bubert A K M, Goebel W. Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol, 1992, 174: 8166-8171.
    64. Bubert A, Kohler S and Goebel W. The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl Environ Microbiol, 1992, 58: 2625-2632.
    65. Bubert A S P, Kohler S. Synthetic peptides derived from the Listeria monocytogenes p60 protein as antigens for the generation of polyclonal antibodies specific for secreted cell-free L. monocytogenes p60 protein. Appl Environ Microbiol, 1994, 60: 3120-3127.
    66. Buchanan R L, Stahl H G, Bencivengo M M & del Corral R. Comparison of lithium chloride-phenylethanol-moxalactain and modified Vogel Johnson agars for detection of Listeria species in retail-level meats, poultry and seafood. Appl Environ Microbiol, 1989, 55: 599-603.
    67. Bula C J, Bille J and Glauser M P. An epidemic of food-borne listeriosis in western Switzerland: description of 57 cases involving adults. Clin Infect Dis, 1995, 20: 66-72.
    68. Chang H C and Bergdoll M S. Purification and some physicochemical properties of staphylococcal enterotoxin D. Biochemistry, 1979, 18: 1937-1942
    69. Cocolin L, Manzano M, Cantoni C and Comi G. A nested PCR method to detect Listeria monocytogenes in artificially contaminated blood specimens. Res Microbiol, 1997, 148: 485-490.
    70. Collins M D, Wallbanks S, Lane D J, Shah J, Nietupski R, Smida J, Dorsch M and Stackebrandt E. Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol, 1991, 41: 240-246.
    71. Cone R W, Hobson A C and Huang M L. Coamplified positive control detects inhibition of polymerase chain reactions. J Clin Microbiol, 1992, 30:3185-3189.
    72. Cooper J P, Hagerman P J. Analysis of fluorescence energy transfer in duplex and branched DNA molecules. Biochemistry, 1990, 29 (39): 9261-9268
    73. Cubero J, van der Wolf J, van Beckhoven J and Lopez M M. An internal control for the diagnosis of crown gall by PCR. J Microbiol Methods, 2002, 51: 387-392.
    74. Dalton C B, Austin C C, Sobel J, Hayes P S, Bibb W F, Graves L M, Swaminathan B, Proctor M E and Griffin P M. An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N Engl J Med, 1997,336: 100-105.
    75. Danielsson-Tham M L, Eriksson E, Helmersson S, Leffler M, Ludtke L, Steen M, Sorgjerd S and Tham W. Causes behind a human cheese-borne outbreak of gastrointestinal listeriosis. Foodborne Pathog Dis, 2004, 1: 153-159.
    76. Datta A R, Wentz B A and Hill W E. Detection of hemolytic Listeria monocytogenes by using DNA colony hybridization. Appl Environ Microbiol, 1987, 53: 2256-2259.
    77. Datta A R, Wentz B A and Hill W E. Identification and enumeration of beta-hemolytic Listeria monocytogenes in naturally contaminated dairy products. J Assoc Off Anal Chem, 1988, 71: 673-675.
    78. Decatur A L and Portnoy D A. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science, 2000, 290: 992-995.
    79. Donnelly C W. Listeria monocytogenes, In Y. H. Hui, J. R. Gorham, K. D. Murrell, and D. O. Cliver (ed.), Foodborne disease handbook: diseases caused by bacteria, vol. 1.Marcel Dekker, New York, N.Y, 1994, p: 215-252.
    80. Doumith M, Buchrieser C, Glaser P, Jacquet C and Martin P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol, 2004,42: 3819-3822.
    81. Dramsi S and Cossart P. Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. J Cell Biol, 2002, 156: 943-946.
    82. Engvall E and Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 1971, 8: 871-874.
    83. FAO, WHO. Risk assessment of Listeria monocytogenes in ready-to-eat foods: interpretative summary. Microbiological risk assessment series; no.4, 2004, pp.27.
    84. Farber J M and Speirs J I. Potential use of continuous cell lines to distinguish between pathogenic and nonpathogenic Listeria spp. J Clin Microbiol, 1987, 25: 1463-1466.
    85. Farber J M P, P.I. Listeria monocytogenes: A food-borne pathogen. Microbiology Reviews, 1991, 55:476-511.
    86. FDA/FSIS. Draft Assessment of the relative risk to public health from foodborne Listeria monocytogenes among selected categories of ready-to-eat foods. Center for Food Safety and Applied Nutrition (FDA) and Food Safety Inspection Service (USDA), 2001.
    87. Fernandez-Astorga A, Hijarrubia M J, Lazaro B and Barcina I. Effect of the pre-treatments for milk samples filtration on direct viable cell counts. J Appl Bacteriol, 1996, 80: 511-516.
    88. Fleming D W, Cochi S L, MacDonald K L, Brondum J, Hayes P S, Plikaytis B D, Holmes M B, Audurier A, Broome C V and Reingold A L. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N Engl J Med, 1985, 312: 404-407.
    89. Fluit A C, Torensma R, Visser M J, Aarsman C J, Poppelier M J, Keller B H, Klapwijk P and Verhoef J. Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay. Appl Environ Microbiol, 1993a, 59: 1289-1293.
    90. Fluit A C, Widjojoatmodjo M N, Box A T, Torensma R and Verhoef J. Rapid detection of salmonellae in poultry with the magnetic immuno-polymerase chain reaction assay. Appl Environ Microbiol, 1993b, 59: 1342-1346.
    91. Foster T J. Molecular genetic analysis of staphylococcal virulence. Methods Microbiol, 1998, 27: 432-454
    92. Frye D M, Zweig R, Sturgeon J, Tormey M, LeCavalier M, Lee I, Lawani L and Mascola L. An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clin Infect Dis, 2002, 35: 943-949.
    93. Furrer B, Candrian U, Hoefelein C and Luethy J. Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol, 1991, 70: 372-379.
    94. Gaillard J L, Berche P, Frehel C, Gouin E and Cossart P. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell, 1991,65: 1127-1141.
    95. Gerner-Smidt P, Ethelberg S, Schiellerup P, Christensen J J, Engberg J, Fussing V, Jensen A, Jensen C, Petersen A M and Bruun B G. Invasive listeriosis in Denmark 1994-2003: a review of 299 cases with special emphasis on risk factors for mortality. Clin Microbiol Infect, 2005, 11: 618-624.
    96. Gibson U, Heid C, Williams P. A novel method for real time quantitative RT-PCR. Genome Res, 1996,6:995.
    97. Gilot P and Content J. Specific identification of Listeria welshimeri and Listeria monocytogenes by PCR assays targeting a gene encoding a fibronectin-binding protein. J Clin Microbiol, 2002, 40: 698-703.
    98. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian K D, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones L M, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente J M, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz J C, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland J A, Voss H, Wehland J and Cossart P. Comparative genomics of Listeria species. Science, 2001, 294: 849-852.
    99. Goulet V, Rocourt J, Rebiere I, Jacquet C, Moyse C, Dehaumont P, Salvat G and Veit P. Listeriosis outbreak associated with the consumption of rillettes in France in 1993. J Infect Dis , 1998, 177: 155-160.
    100. Graham T, Golsteyn-Thomas E J, Gannon V P and Thomas J E. Genus- and species-specific detection of Listeria monocytogenes using polymerase chain reaction assays targeting the 16S/23S intergenic spacer region of the rRNA operon. Can J Microbiol, 1996,42: 1155-1162.
    101. Graham T A, Golsteyn-Thomas E J, Thomas J E and Gannon V P. Inter- and intraspecies comparison of the 16S-23S rRNA operon intergenic spacer regions of six Listeria spp. Int J Syst Bacteriol, 1997,47:863-869.
    102. Grant K A, Dickinson J H, Payne M J, Campbell S, Collins M D and Kroll R G. Use of the polymerase chain reaction and 16S rRNA sequences for the rapid detection of Brochothrix spp. in foods. J Appl Bacteriol, 1993, 74: 260-267.
    103. Gray D I and Kroll R G. Polymerase chain reaction amplification of the flaA gene for the rapid identification of Listeria spp. Lett Appl Microbiol, 1995, 20: 65-68.
    104. Grundling A, Gonzalez M D and Higgins D E. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol, 2003, 185:6295-6307.
    105. Hamon M, Bierne H and Cossart P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol, 2006,4: 423-434.
    106. Heid C A, Stevens J, Livak K J, Williams P M. Real time quatitative PCR. Genome Res, 1996, 6 (10): 986-994
    107. Hein I, Klein D, Lehner A, Bubert A, Brandl E and Wagner M. Detection and quantification of the iap gene of Listeria monocytogenes and Listeria innocua by a new real-time quantitative PCR assay. Res Microbiol, 2001, 152: 37-46.
    108. Hodgson J Z M, Smith M. Development of a novel internal control for a real-time PCR for HSV DNA types 1 and 2. J Clin Virol, 2007, 38: 217-220.
    109. Hof H R, J. Is any strain of Listeria monocytogenes detected in food a health risk? International J of Food Microbiol, 1992, 16: 173-182.
    110. Hoorfar J, Ahrens P and Radstrom P. Automated 5' nuclease PCR assay for identification of Salmonella enterica. J Clin Microbiol, 2000, 38: 3429-3435.
    111. Hoorfar J, Cook N, Malorny B, Wagner M, Medici D D, Abdulmawjood A, Fach P. Making Internal Amplification Control Mandatory for Diagnostic PCR. J Clin Microbiol, 2003, 41: 5835.
    112. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P. Practical Considerations in Design of Internal Amplification Controls for Diagnostic PCR Assays. J Clin Microbiol, 2004, 42:1863-1868.
    113. Hoorfar J, Wolffs P, Radstrom P. Diagnostic PCR: validation and sample preparation are two sides of the same coin. APMIS, 2004, 112: 808-14.
    114. Hudson J A, Lake R J, Savill M G, Scholes P and McCormick R E, Rapid detection of Listeria monocytogenes in ham samples using immunomagnetic separation followed by polymerase chain reaction. J Appl Microbiol, 2001, 90: 614-621.
    115. Isonhood J, Drake M and Jaykus L A. Upstream sample processing facilitates PCR detection of Listeria monocytogenes in mayonnaise-based ready-to-eat (RTE) salads. Food Microbiol, 2006, 23: 584-590.
    116. J O G, Sedano-Balbas S, Maher M, Smith T and Barry T. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol, 2008, 25: 75-84.
    117. Jacka S W J. Random orderings of the integers and card shuffling. Stochastic Processes and Their Applications, 2007, 117: 708-719.
    118. Jacobsen C S and Rasmussen O F. Development and Application of a New Method To Extract Bacterial DNA from Soil Based on Separation of Bacteria from Soil with Cation-Exchange Resin. Appl Environ Microbiol, 1992, 58: 2458-2462.
    119. Jacquet C, Doumith M, Gordon J I, Martin P M, Cossart P and Lecuit M. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect Dis, 2004, 189: 2094-2100.
    120. Jeong DK F J. Growth of Listeria monocytogenes at 10 ℃ in biofilms with micro-organisms isolated from meat and dairy processing environments. Food protection, 1994, 57: 415-424.
    121. Johansson J M P, Renzoni A. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell, 2002, 110: 551-561.
    122. Johnson W M, Tyler S D, Ewan E P, Ashton F E, Wang G and Rozee K R. Detection of genes coding for listeriolysin and Listeria monocytogenes antigen A (ImaA) in Listeria spp. by the polymerase chain reaction. Microb Pathog, 1992, 12: 79-86.
    123. Jung Y S, Frank J F, Brackett R E and Chen J. Polymerase chain reaction detection of Listeria monocytogenes on frankfurters using oligonucleotide primers targeting the genes encoding internalin AB. J Food Prot, 2003, 66: 237-241.
    124. Junttila J R, S.I. Niemela, and J. Hirn. Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria. J. Appl. Bacteriol, 1988, 65: 321-327.
    125. King W, Raposa S, Warshaw J, Johnson A, Halbert D and Klinger J D. A new colorimetric nucleic acid hybridization assay for Listeria in foods. Int J Food Microbiol, 1989, 8: 225-232.
    126. Klinger J D, Johnson A, Croan D, Flynn P, Whippie K, Kimball M, Lawrie J and Curiale M. Comparative studies of nucleic acid hybridization assay for Listeria in foods. J Assoc Off Anal Chem, 1988,71:669-673.
    127. Kocks C G E, Tabouret M. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell, 1992, 68: 521-531.
    128. Kohler G and Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256: 495-497.
    129. Kreft J. Pathogenicity islands and other mobile virulence elements. American Society for Microbiology, Washington DC, 1999, pp219-232.
    130. Kuhn M and Goebel W. Internalization of Listeria monocytogenes by nonprofessional and professional phagocytes. Subcell Biochem, 2000, 33: 411-436.
    131.Lammerding A M, and M. P. Doyle. Stability of Listeria monocytogenes to non-thermal processing conditions, In A. J. Miller, J. L. Smith, and G. A. Somkuti (ed.), Foodborne listeriosis. Elsevier, New York, N.Y, 1990, p. 195-202.
    132. Lawrence L M and Gilmour A. Incidence of Listeria spp. and Listeria monocytogenes in a poultry processing environment and in poultry products and their rapid confirmation by multiplex PCR. Appl Environ Microbiol, 1994, 60: 4600-4604.
    133. Leidreiter M and Kuhne M. Determination of the minimum enrichment time for the qualitative detection of Listeria monocytogenes in minced pork meat using multiplex-PCR, microarray and ELISA. Berl Munch Tierarztl Wochenschr, 2007, 120: 79-85.
    134. Lindqvist R. Preparation of PCR samples from food by a rapid and simple centrifugation technique evaluated by detection of Escherichia coli O157:H7. Int J Food Microbiol, 1997, 37: 73-82.
    135. Lingnau A, Domann E, Hudel M, Bock M, Nichterlein T, Wehland J and Chakraborty T. Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect Immun, 1995, 63: 3896-3903.
    136. Linnan M J, Mascola L, Lou X D, Goulet V, May S, Salminen C, Hird D W, Yonekura M L, Hayes P, Weaver R and et al. Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med, 1988,319:823-828.
    137. Liu D, Ainsworth A J, Austin F W and Lawrence M L. Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. Int J Food Microbiol, 2004, 91: 297-304.
    138. Liu D, Lawrence M L, Austin F W and Ainsworth A J. A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. J Microbiol Methods, 2007, 71: 133-140.
    139. Longhi C, Maffeo A, Penta M, Petrone G, Seganti L and Conte M P. Detection of Listeria monocytogenes in Italian-style soft cheeses. J Appl Microbiol, 2003, 94: 879-885.
    140. Lou Y, and A. E. Yousef. Characteristics of Listeria monocytogenes important to food processors, In E. T. Ryser and E. H. Marth (eds.) Listeria, listeriosis, and food safety, 2nd ed. Marcel Dekker Inc., New York, N.Y., 1999, p. 131-224.
    141.Lovett J F D W. Quantitative comparison of tow enrichment methods for isolating Listeria monocytogenes from seafood. J Food Prot, 1991, 54: 7-11.
    142. Lubeck P S, Cook N, Wagner M, Fach P and Hoorfar J. Toward an international standard for PCR-based detection of food-borne thermotolerant Campylobacters: validation in a multicenter collaborative trial. Appl Environ Microbiol, 2003, 69: 5670-5672.
    143. Lucore L A, Cullison M A and Jaykus L A. Immobilization with metal hydroxides as a means to concentrate food-borne bacteria for detection by cultural and molecular methods. Appl Environ Microbiol, 2000, 66: 1769-1776.
    144. Mafu AA R D, Goulet J. Attachment of Listeria monocytogenes to stainless steel, lass, polypropylene, and rubber surfaces after short contact times. Food protection, 1990, 53: 742-746.
    145. Makino S I, Kawamoto K, Takeshi K, Okada Y, Yamasaki M, Yamamoto S and Igimi S. An outbreak of food-borne listeriosis due to cheese in Japan, during 2001. Int J Food Microbiol, 2005, 104: 189-196.
    146. Malorny B, Hoorfar J, Bunge C and Helmuth R. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol, 2003, 69: 290-296.
    147. Manzano M, Cocolin L, Cantoni C and Comi G. Temperature gradient gel electrophoresis of the amplified product of a small 16S rRNA gene fragment for the identification of Listeria species isolated from food. J Food Prot, 2000, 63: 659-661.
    148. Manzano M, Cocolin L, Ferroni P, Gasparini V, Narduzzi D, Cantoni C and Comi G. Identification of Listeria species by a semi-nested polymerase chain reaction. Res Microbiol, 1996,147:637-640.
    149. Mattingly J A, Butman B T, Plank M C, Durham R J and Robison B J. Rapid monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Listeria in food products. J Assoc Off Anal Chem, 1988, 71, 679-681.
    150. McLauchlin J. Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. European Journal of Clinical Microbiology and Infectious Diseases, 1990,9:210-213.
    151. McLauchlin J, Greenwood M H and Pini P N. The occurrence of Listeria monocytogenes in cheese from a manufacturer associated with a case of listeriosis. Int J Food Microbiol, 1990, 10: 255-262.
    152. Mead P S, Slutsker, L., Dietz, V., McCraig, L.F., Bresee, S., Shapiro, C., Griffin, P.M. & Tauxe, R.V. Food-related illness and death in the United States. Emerging Infectious Diseases, 1999, 5: 607-625.
    153. Mengaud J, Dramsi S, Gouin E, Vazquez-Boland J.A, Milon G, Cossart P. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol, 1991, 5: 2273-2283.
    154. Muller F M, Schnitzler N, Cloot O, Kockelkorn P, Haase G and Li Z. The rationale and method for constructing internal control DNA used in pertussis polymerase chain reaction. Diagn Microbiol Infect Dis, 1998, 31: 517-523.
    155. Murray E G D, R. A. Webb, and M. B. R. Swarm. A disease of rabbits characterized by large mononuclear leucocytosis, caused by a hitherto undescribed bacillus, Bacterium monocytogenes (n. sp.). J. Pathol. Bacteriol, 1926, 29: 407-439.
    156. Nelson K E, Fouts D E, Mongodin E F, Ravel J, DeBoy R T, Kolonay J F, Rasko D A, Angiuoli S V, Gill S R, Paulsen I T, Peterson J, White O, Nelson W C, Nierman W, Beanan M J, Brinkac L M, Daugherty S C, Dodson R J, Durkin A S, Madupu R, Haft D H, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling L D, Uhlich G A, Bayles D O, Luchansky J B and Fraser C M. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res, 2004, 32: 2386-2395.
    157. Nightingale K K, Windham K and Wiedmann M. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol, 2005, 187:5537-5551.
    158. Nogva H K, Rudi K, Naterstad K, Hoick A and Lillehaug D. Application of 5'-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl Environ Microbiol, 2000, 66: 4266-4271.
    159. Olier M, Pierre F, Rousseaux S, Lemaitre J P, Rousset A, Piveteau P and Guzzo J. Expression of truncated Internalin A is involved in impaired internalization of some Listeria monocytogenes isolates carried asymptomatically by humans. Infect Immun, 2003, 71: 1217-1224.
    160. Oyarzabal O A, Behnke N M and Mozola M A. Validation of a microwell DNA probe assay for detection of Listeria spp. in foods Performance-tested method 010403. J AOAC Int, 2006, 89: 651-668.
    161. Paillard D, Dubois V, Duran R, Nathier F, Guittet C, Caumette P and Quentin C. Rapid identification of Listeria species by using restriction fragment length polymorphism of PCR-amplified 23S rRNA gene fragments. Appl Environ Microbiol, 2003, 69: 6386-6392.
    162. Palmer M. The family of thiol-activated, cholesterol-binding cytolysins. Toxicon, 2001, 39: 1681-1689.
    163. Pangallo D, Kaclikova E, Kuchta T and Drahovska H. Detection of Listeria monocytogenes by polymerase chain reaction oriented to MB gene. New Microbiol, 2001, 24: 333-339.
    164. Parida S K, Domann E, Rohde M, Muller S, Darji A, Hain T, Wehland J and Chakraborty T. Internalin B is essential for adhesion and mediates the invasion of Listeria monocytogenes into human endothelial cells. Mol Microbiol, 1998, 28: 81-93.
    165. Park SF S G. High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene, 1990, 94: 129-132.
    166. Pedersen L H, Skouboe P, Rossen L and Rasmussen O F. Separation of Listeria monocytogenes and Salmonella berta from a complex food matrix by aqueous polymer two-phase partitioning. Lett Appl Microbiol, 1998, 26: 47-50.
    167. Peterkin P I, Idziak E S and Sharpe A N. Detection of Listeria monocytogenes by direct colony hybridization on hydrophobic grid-membrane filters by using a chromogen-labeled DNA probe. Appl Environ Microbiol, 1991, 57: 586-591.
    168. Pirie J H. The Genus Listerella Pirie. Science, 1940, 91: 383.
    169. Piva F P G. RANDNA: A Random DNA Sequence Generator. In Silico Biology, 2006, 6:253-258.
    170. Potel J, Schulze-Lammers J. Listeria monocytogenes vaccine: production and control. Zentbl Bakteriol Mikrobiol Hyg [A], 1985, 259: 331-340.
    171. Poyart C, Trieu-Cuot P and Berche P. The inlA gene required for cell invasion is conserved and specific to Listeria monocytogenes. Microbiology, 1996, 142 (Pt 1): 173-180.
    172. Pyle B H, Broadway S C, McFeters G A. Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and solid-phase laser cytometry. Applied and Evironmental Microbiology, 1999,65: 1966.
    173. Reddy N R, Wilkie B N and Mallard B A. Construction of an internal control to quantitate multiple porcine cytokine mRNAs by RT-PCR. Biotechniques, 1996, 21: 868-870, 872, 875.
    174. Richard A. Detection of nucleic acid hybridization by nonradiative fluorescence reaonance energy transfer. Proc Natl Acad Sci USA, 1988, 85: 8790-8794
    175. Riedo F X, Pinner R W, Tosca M L, Cartter M L, Graves L M, Reeves M W, Weaver R E, Plikaytis B D and Broome C V. A point-source foodborne listeriosis outbreak: documented incubation period and possible mild illness. J Infect Dis, 1994, 170: 693-696.
    176. Ripabelli G, Sammarco M L and Grasso G M. Evaluation of immunomagnetic separation and plating media for recovery of Salmonella from meat. J Food Prot, 1999, 62: 198-201.
    177. Roberts D. Listeria monocytogenes in foods - results of two PHLS [Public Health Laboratory Service] surveys. (In: Annual General Meeting and Summer Conference). Journal of Applied Bacteriology, 1989, 67: xix.
    178. Roberts T P, R. Economic impact of disease caused by L. monocytogenes. in: A.J. Miller, J.L. Smith and G.A. Somkuti (eds). Topics in Industrial Microbiology: Foodborne Listeriosis New York NY: Elsevier Science Pub, 1990, pp. 137-149.
    179. Rocourt J. The genus Listeria and Listeria monocytogenes: phylogenetic position, taxonomy, and identification, In E. T. Ryser and E. H. Marth (ed.), Listeria, listeriosis, and food safety, 2nd ed. Marcel Dekker Inc., New York, N.Y., 1999, p. 1-20.
    180. Rocourt J. Human Listeriosis: 1989. WHO/HPP/FOS, 1991, 91:3.
    181. Rocourt J. Risk factors for listeriosis. Food Control, 1996, 7: 192-202.
    182. Rodriguez-Lazaro D, Hernandez M, Scortti M, Esteve T, Vazquez-Boland J A and Pla M, Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: assessment of hly, iap, and lin02483 targets and AmpliFluor technology. Appl Environ Microbiol, 2004,70: 1366-1377.
    183. Rodriguez-Lazaro D, Pla M, Scortti M, Monzo H J and Vazquez-Boland J A. A novel real-time PCR for Listeria monocytogenes that monitors analytical performance via an internal amplification control. Appl Environ Microbiol, 2005, 71: 9008-9012.
    184. Rosenstraus M, Wang Z, Chang S Y, DeBonville D and Spadoro J P. An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol, 1998,36: 191-197.
    185. Rossmanith P, Krassnig M, Wagner M and Hein I. Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene. Res Microbiol, 2006, 157:763-771.
    186. Rudnicka W K M, Szeliga J. The host response to Listeria monocytogenes mutants defective in genes encoding phospholipases C (plcA, plcB) and actin assembly (actA). Microbio Immunol, 1997,41:847-853.
    187. Rutledge RG C C. Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res, 2003, 31: e93.
    188. Ruvkun, GB, FM Ausubel. A general method for site-directed mutagenesis in prokaryotes, Nature, 1981,289:85-88.
    189. Ryser E T, & Marth, E.H. Listeria, Listeriosis, and Food Safety. New York NY: Marcel Dekker, 1991, pp. 632.
    190. Ryser E T, & Marth, E.H. Listeria, Listeriosis, and Food Safety. 2nd edition, revised and expanded. New York NY: Marcel Dekker, 1999, pp. 738.
    191. Sabline P A K M, Ivaylo G Deletion of the Gene Encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actirr based motility. Infect Immun, 2003, 71: 3473-3484.
    192. Sachadyn P and Kur J. The construction and use of a PCR internal control. Mol Cell Probes, 1998, 12: 259-262.
    193. Saiki R K, Scharf S, Faloona F, Mullis K B, Horn G T, Erlich H A and Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230, 1350-1354.
    194. Salamina G, Dalle Donne E, Niccolini A, Poda G, Cesaroni D, Bucci M, Fini R, Maldini M, Schuchat A, Swaminathan B, Bibb W, Rocourt J, Binkin N and Salmaso S. A foodborne outbreak of gastroenteritis involving Listeria monocytogenes. Epidemiol Infect, 1996, 117: 429-436.
    195. Sallen B, Rajoharison A, Desvarenne S, Quinn F and Mabilat C. Comparative analysis of 16S and 23S rRNA sequences of Listeria species. Int J Syst Bacteriol, 1996,46: 669-674.
    196. Schlech W F, 3rd, Lavigne P M, Bortolussi R A, Allen A C, Haldane E V, Wort A J, Hightower A W, Johnson S E, King S H, Nicholls E S and Broome C V. Epidemic listeriosis--evidence for transmission by food. N Engl J Med, 1983, 308: 203-206.
    197. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem, 2000, 285: 194
    198. Schoder D, Schmallwieser A, Gunther S, Kuhn M, Hoorfar J, Wagner M. PCR thermocycler: physical evaluation of six new thermocyclers. Clin Chem, 2003, 49: 960-963.
    199. Schwartz B, Hexter D, Broome C V, Hightower A W, Hirschhorn R B, Porter J D, Hayes P S, Bibb W F, Lorber B and Fans D G. Investigation of an outbreak of listeriosis: new hypotheses for the etiology of epidemic Listeria monocytogenes infections. J Infect Dis, 1989, 159: 680-685.
    200. Seeliger HPR J D. Listeria. In: Bergey's Manual of Systematic Bacteriology, Vol. 2, 9th. Eds, PHA, Sneath, Mair NS, Sharpe ME, Hold JG Baltimore, MD. Williams & Wilkins Co, 1986, pp 1235-1245.
    201. Selvin P R, Hearst J E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc Natl Acad Sci USA, 1994,91 (21): 10024-10028
    202. Simon M C, Gray D I and Cook N. DNA Extraction and PCR Methods for the Detection of Listeria monocytogenes in Cold-Smoked Salmon. Appl Environ Microbiol, 1996, 62: 822-824.
    203. Skjerve E, Rorvik L M and Olsvik O. Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl Environ Microbiol, 1990, 56: 3478-3481.
    204. Smith K, Youngman P. Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie, 1992, 74: 705-711.
    205. Stieger M, Demolliere C, Ahlbom-Laake L and Mous J. Competitive polymerase chain reaction assay for quantitation of HIV-1 DNA and RNA. J Virol Methods, 1991, 34: 149-160.
    206. Stocher M, Leb V and Berg J. A convenient approach to the generation of multiple internal control DNA for a panel of real-time PCR assays. J Virol Methods, 2003, 108: 1-8.
    207. Suarez M G-Z B, VegaY. A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol, 2001, 3: 853-864.
    208. ter Beek MH M-V C, Mitrana V. Synchronized shuffles. Theoretical Computer Science, 2005, 341:263-275.
    209. Thomas D S. Electropositively charged filters for the recovery of yeasts and bacteria from beverages. J Appl Bacteriol, 1988, 65: 35-41.
    210. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol, 1996, 303
    211. Vaneechoutte M, Van Eldere J. The possibilities and limitations of nucleic acid amplification technology in diagnostic microbiology. J Med Microbiol, 1997, 46: 188-194.
    212. Vazquez-Boland J A, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J and Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev, 2001, 14: 584-640.
    213. Volokhov D, Rasooly A, Chumakov K and Chizhikov V. Identification of Listeria species by microarray-based assay. J Clin Microbiol, 2002, 40: 4720-4728.
    214. Wang R F, Cao W W and Johnson M G 16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods. Appl Environ Microbiol, 1992, 58: 2827-2831.
    215. Wernars K, Heuvelman C J, Chakraborty T and Notermans S H. Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J Appl Bacteriol, 1991, 70: 121-126.
    216. Wernars K, Heuvelman K, Notermans S, Domann E, Leimeister-Wachter M and Chakraborty T. Suitability of the prfA gene, which encodes a regulator of virulence genes in Listeria monocytogenes, in the identification of pathogenic Listeria spp. Appl Environ Microbiol, 1992, 58: 765-768.
    217. Wiedman M, Bruce, J.L., Keating, C, Johnson, A.E., McDonough, P.L. & Batt, C.A. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infection and Immunity, 1997, 65: 2707-2716.
    218. Wilhelm J, Pingoud A, Hahn M. Comparison between Taq DNA polymerase and its Stoffel fragment for quantitative real-time PCR with hybridization probes. Biotechniques, 2001, 30: 1052
    219. Wilson I G, Cooper J E and Gilmour A. Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entCl and the thermonuclease gene nuc. Appl Environ Microbiol, 1991,57: 1793-1798.
    220. Wilson I G, Cooper J E and Gilmour A. Some factors inhibiting amplification of the Staphylococcus aureus enterotoxin Cl gene (sec+) by PCR. Int J Food Microbiol, 1994, 22: 55-62.
    221. Winters D K, Maloney T P and Johnson M G. Rapid detection of Listeria monocytogenes by a PCR assay specific for an aminopeptidase. Mol Cell Probes, 1999, 13: 127-131.
    222. Witham P K, Yamashiro C T, Livak K J and Batt C A. A PCR-based assay for the detection of Escherichia coli Shiga-like toxin genes in ground beef. Appl Environ Microbiol, 1996, 62: 1347-1353.
    223. Stemmer WP. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994, 370: 389-391.
    224. Wuenscher MD K S, Bubert A. The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol, 1993, 175 (11): 3491-501.
    225. Yeung P S Z N, Marquis H. The metalloprotease of Listeria monocytogenes controls cell wall translocation of the broadrange phospholipase C. J Bacteriol, 2005, 187: 2601-2608.
    226. Yin JL, Shackel NA, Zekry A. Real-time reverse-transcriptase polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol, 2001, 79: 213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700