用户名: 密码: 验证码:
柔性立管涡激振动时域响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球的表面约70%为海洋,蕴藏在海洋里的资源将成为人类赖以生存的重要保障。就目前国际工业发展趋势而言,对能源的需求量,特别是石油的需求量日益增大,深海石油的开采已成为解决石油能源危机的主要途径。与深海石油工业密切相关的一个国际性的难题便是输油立管的涡激振动问题。
     立管的涡激振动是指洋流流经圆柱状细长柔性立管时,由于压力的不均将产生交替脱落的漩涡,由泻涡诱发的非定常流体力会引起立管的振动响应。在一定来流条件下,泻涡将使立管产生强烈的振动,由于泻涡的周期较短,涡激振动成为立管疲劳损伤导致结构破坏的主要因素。涡激振动是一个强非线性的的流固耦合问题,特别是涉及到高雷诺数条件下湍流的研究。
     本文作为国家自然科学基金专项基金项目“深海平台的动力特性研究”(项目编号:50323004)和上海市专项基金项目(项目编号:05DJ14001)的组成部分,旨在通过数值计算方法来研究湍流,并在湍流的基础上实现流固耦合的计算,即实现深海立管涡激振动的数值模拟,建立深海立管涡激振动时域预报模型。为了更接近深海立管实时作业环境,数值计算实现了均匀来流和剪切来流条件下细长柔性立管的时域响应预报。
     本文参考了国际上有关湍流研究和细长柔性立管涡激振动的最新研究成果,对研究湍流理论的主要数值计算方法进行了比较和讨论,并对细长柔性立管涡激振动的热点问题展开了深入的研究,其主要内容可以概括如下:
     1总结了深海立管涡激振动响应的频域和时域预报模型,对深海立管涡激振动响应的实验进行了归纳,指出现有涡激振动预报模型的缺陷和实验研究的主要方向。对研究湍流理论的三种主要数值计算方法进行综合评述,阐述了湍流的本质以及各湍流研究数值计算方法的优缺点,着重对直接数值模拟方法和雷诺平均法计算湍流的主要思想和基本理论进行了详细的介绍。
     2采用直接数值模拟对低雷诺数条件下圆柱绕流进行了研究,其中来流条件分别为对均匀来流、横向剪切流和平面剪切流来流。数值计算成功再现了实验中观测到的三维尾涡结构,这在国内数值研究报道中纯属首次。分析和讨论了三维圆柱绕流的物理特性诸如流体动能、雷诺应力、泻涡频率、边界层以及圆柱体表面的压力系数,探究了剪切流对流体流动和泻涡模式的影响。基于直接数值模拟对三维流体流动计算的优越性,用数值实验的方法成功解析了物理实验结果与二维数值计算结果之间存在差异的原因。
     3采用雷诺平均方法结合湍流模式对低质量比弹性支撑圆柱体的涡激振动进行了计算。数值模拟考虑了圆柱体横向和流向的振动对横向振幅幅值的影响,并与限制流向运动时的结果进行了比较。数值计算找出了横向和流向自由度条件下,产生较大横向振幅幅值时所对应的圆柱体的临界质量比。本文的数值结果成功呈现了物理实验中观测到的各种尾涡模式,并得出了均匀来流条件下实验中常见的圆柱体的运动轨迹。
     4在横向剪切来流条件下,对两向自由度弹性支撑圆柱体的涡激振动进行了计算。数值模拟得到的横向振幅、运动轨迹、升力系数和位移时历曲线的结果表明,对于不同的雷诺数,存在一个剪切率锁定区间。在横向来流剪切率较小时,圆柱体的运动轨迹与均匀来流条件下的运动轨迹一致。随着剪切率的增加,圆柱体的运动形式表现出一种全新的轨迹。
     5基于切片理论并结合有限体积法和动力有限元方法,成功建立了深海立管涡激振动响应的时域计算模型。对阶梯状来流以及轴向剪切流条件下深海立管涡激振动响应进行了时域计算,分析了立管在不同来流条件下所激发的振型和模态。本时域预报模型还记录了沿立管轴向分布的不同尾涡结构,重现了物理实验中所观测到的一系列流体流动现象。
     6尽管在阶梯状来流条件下所预报的高阶模态响应与实验结果之间还存在一定差异,但本文的时域预报模型在轴向剪切流条件下所得到的低阶模态响应与实验结果吻合较好,且比同类时域模型和频率模型预报的结果更为精确。
     7考虑雷诺数和质量阻尼比对自激振动系统横向振幅幅值的影响,并应用受迫振动的实验数据,从理论上建立了弹性支撑圆柱体涡激振动振幅幅值的预报模型。该理论模型所预报的结果能与现有大部分物理实验结果相吻合,同时可为细长立管频率预报模型考虑雷诺数和质量阻尼比的影响提供参考。
     以上对本文研究的主要内容与进行了概述,本论文的结论主要有以下几个方面:
     1首次用直接数值模拟方法对各种流条件下的圆柱饶流进行了计算。在低雷诺数条件下,成功再现了均匀来流下的三维尾涡模式;如Mode A和Mode B。在横向剪切来流条件下,与来流速度较低一侧对应的尾涡能量在流体运动过程中逐渐衰减;与来流速度较高一侧对应的尾涡能量在流体运动过程中逐渐增强,以至于在尾流较远处只剩下能量较强的尾涡。横向剪切流对圆柱绕流的影响还体现在边界层和表面压强系数的改变。数值计算结果表明,圆柱体表面的边界层和压强系数在横向剪切流作用下沿轴向出现偏转,这与流体流动的物理特性相一致。而在轴向剪切流条件下,泻涡形式沿轴向倾斜,顺时针和逆时针旋转的尾涡不存在能量的衰减或增强,脱落后的尾涡在流向方向依然保持平行。在横向-轴向组合剪切来流条件下,尾涡的运动不仅偏向于来流速度较低的一侧,而且沿轴向倾斜脱落。组合剪切流可看做是单个横向剪切流和轴向剪切流作功的叠加,但不会出现横向剪切流和轴向剪切流之间相互抑制的现象。
     2采用直接数值模拟法研究了无滑移边界条件和自由表面边界条件对尾涡的影响,找出了物理实验结果Kiya et al (1980)与近年来数值模拟结果Kang (2007)存在较大差异的主要原因。指出无滑移边界条件将能有效抑制尾涡的脱落,而自由表面边界条件则对尾涡的脱落没有多大的影响。因而,物理实验的实施必须考虑到无滑移边界条件的影响,而数据的采集应尽量避免处在无滑移边界条件影响的区域之内。
     3数值计算得出了两向自由度弹性支撑圆柱体产生较大横向振幅的临界质量比* m = 3.5。当圆柱体的质量比高于临界质量比时,限制流向运动对横向振幅幅值的影响不大;当质量比降至临界质量比时,流向和横向的振动将激发出更大的横向振幅幅值,流向运动对横向振幅的影响在此凸现。数值计算还重现了实验中不同横向振幅响应分支对应的尾涡模式,特别是与超上端分支对应的2T尾涡模式。在均匀来流条件下,数值模拟还成功得出了圆柱体“8”型的运动轨迹。
     4在横向剪切来流条件下,两向自由度弹性支撑圆柱体的涡激振动存在一个剪切率的锁定区间。剪切率锁定区间与雷诺数的大小成正比。在剪切率的锁定区间内,横向振幅增大;脱离剪切率锁定区间后,横向振幅迅速下降。在横向来流剪切率较小时,圆柱体的运动轨迹与均匀来流条件下的“8”型的运动轨迹一致。随着剪切率的增加,圆柱体“8”型运动轨迹上端消失而表现为“小雨点”的外形。
     5在阶梯状来流条件下,立管的响应在时域内并不表现为单一模态,而是在各个模态之间进行跳转。当某一激发模态的权重占绝对主导地位时,立管的变形与该激发模态下的形状一致;而当立管激发各模态的权重并不由唯一的激发模态所主导时,立管的响应形式将在占主导地位的几种激发模态之间跳转。通过记录时域内沿立管轴向分布的流体力,发现流体力沿立管轴向具有分段相关性,这为本文基于切片法所建立的时域预报模型的合理性提供了依据。沿立管轴向分布的附加质量系数存在波动区间,这与立管呈现的多模态响应相关联。当立管的涡激振动表现为多模态响应时,本文提出了附加质量系数的计算应当根据激发模态的权重来考虑各个模态所对应附加质量系数的贡献。数值计算沿立管轴向同时捕捉到了2S和2P尾涡模式,重现了这一经典的物理现象;在不同的立管截面之间,还观测到尾涡泻涡时间的切换现象。
     6在轴向剪切来流条件下,本文的时域预报模型所得到的低阶模态响应与实验结果吻合较好。本文采用的时域模型采用了较多的切片数量来考虑流体力的轴向相关性,利用动网格和变形网格来模拟流固耦合运动对流体流动的影响,还同步考虑到立管的变形引起的总体刚度矩阵的非线性性。因而,本文所预报的结果较同类切片模型和频率预报模型的结果更为精确。
     7通过沟通受迫振动和自激振动内在联系,建立理论模型成功实现了由受迫振动实验数据来预报自激振动圆柱体的横向振幅幅值。该理论模型可同时考虑到雷诺数和质量阻尼比对横向振幅幅值的影响,同时也再次证明雷诺数是影响涡激振动横向振幅的一个重要参数。本文的理论预报模型可为深海立管频域预报模型的发展和完善提供理论依据。
     通过对本文主要内容和结论的阐述,可以反映出该论文的创新点表现在以下几个方面:
     1利用直接数值模拟方法首次对横向剪切来流条件下的圆柱绕流进行了计算,对尾涡模式和流体流动的物理特性进行了详细探讨。
     2对两向自由度弹性支撑圆柱体在均匀来流和横向剪切流条件下进行了数值模拟,得出了均匀来流条件下产生较大横向振幅所对应的临界质量比为3.5;得出横向剪切流条件下存在剪切流的锁定区间,并发现了一种全新的“小雨点”运动轨迹。
     3建立了柔性立管涡激振动时域响应预报模型,在时域内成功预报了立管的模态响应。
     4发展和完善了频域预报模型。在受迫振动实验数据基础上,考虑了雷诺数和质量阻尼比得出了自激振动横向振幅峰值的理论预报公式。
     总而言之,本文从简单的圆柱绕流开始,逐步考虑到弹性支撑圆柱体和柔性立管的涡激振动响应,并成功建立了柔性立管涡激振动的时域预报模型。本文时域模型的预报结果能准确地反映出物理实验中的诸多现象和结论,同时,从本文时域模型得到的结论中可为完善和发展柔性立管频率预报模型提供思路和参考。
Around seventy percent of the Earth surface is covered by water and huge amount of natural resources such as gas and oil are richly stored in the deep ocean. With the fast industry development, the sharp increasing demand of consuming energy, especially the oil and gas, has become bottle-neck issue for both developing and developed countries. Deep-water petroleum industry could be a good way to solve the global energy crisis in future. One of the technique challenges, related to deep-water petroleum industry, is the Vortex-Induced Vibration (VIV for short) of flexible riser.
     VIV happens while flow over the flexible riser and the structure is excited by the unsteady fluid fore which is generated by the periodic shedding vortex. The flexible riser will vibrate frequently with large amplitude under certain incoming flow conditions. Great damage to the riser would be resulted from the VIV due to the high vortex shedding frequency. Having a good understanding of the VIV mechanism could be helpful to reduce the damage effect on the riser, and also a quite kind strategy to the environments. However, VIV can be regarded as a complex fluid-structure coupling problem and the equations solving the flow domain and the structure bare strong non-linearity. The flow could turn into turbulence according to the high Reynolds number theory and how to revolve the turbulence accurately in a numerical way is still a big challenge world wild.
     The present research described in this thesis is a part of the project“Research on Dynamic Response of Platforms in Deep-water”supported by the National Natural Science Foundation of China under Grant No.50323004 and also supported by Shanghai Scientific Fund under Grant No. 05DJ14001. The purpose of the research is to study turbulence and to construct a numerical model to predict the VIV response of flexible riser under uniform and shear flow conditions in the time domain.
     Based on the latest achievements on turbulence research and VIV response of flexible riser, the present thesis focuses on the most interested points which include numerical tools for turbulence simulation and the VIV response of flexible riser under stepped and shear flow conditions. The main contents of the present thesis can be summarized as follows:
     1, A review on the turbulence research and the existed models for VIV response prediction has been conducted. A brief introduction to the numerical research tools on turbulence including RANS、LES and DNS is described, especially the DNS and RANS being used in the present thesis are compared in a detail way. Empirical model and time-domain model for VIV response are also introduced. Most of the latest experimental results on VIV of flexible riser are concluded and constructive suggestion is made for the future research.
     2, Three dimensional numerical simulation on shear flow over a circular cylinder has been studied by applying DNS. Shear effort on the three dimensional vorticity structure behind the circular cylinder has been intensively investigated. The physics of the fluid such as turbulence energy, kinetic energy, Reynolds stress, shedding frequency, boundary layer and pressure coefficient is also conducted and compared with the results of other sources. The discrepancy between the physical experiment and two dimensional simulations could be well resolved by applying the three dimensional numerical experiments.
     3, Two-degrees-freedom VIV of a spring constrained rigid circular cylinder with low mass and damping ratio has been analyzed using RANS solver combined with turbulence model for the Navier-Stoke equation. The vibration in streamwise and transverse direction is considered to have a limited effect on the peak transverse amplitude of the spring mounted circular cylinder with moderate mass ratio. It is interesting to find the critical mass ratio under which the supper upper branch could appear accordingly in the current numerical results. The time-trace circular cylinder movement and vorticity structure which obtained in physical experiments are also captured in the present simulation.
     4, Another numerical investigation is also conducted on VIV response of an elastic mounted circle cylinder under planar shear flow conditions. A planar shear ratio lock-in range can be concluded from the data analysis in transverse response, fluid force and time trace displacement at moderate Reynolds number. The figure“8”trace movement could be observed under small planar shear flow conditions while a completely new style time-trace circular cylinder movement is discovered as the planar shear ratio increases.
     5, Based on the strip theory and the combination of the Finite Volume Method and Dynamic Finite Element Method, a numerical model which can be used to predict the VIV response of a flexible riser in time-domain is successfully constructed. VIV response of a flexible riser under stepped and shear flow conditions is calculated and extensive investigation on the mechanics of the VIV is carried out by applying the research on the time-trace of the transverse response and fluid forces along the axis of the riser. The multi-modal response is obtained and two typical vortex shedding modes are observed at the same time in the spanwise direction as the riser is set in a stepped flow.
     6, The same numerical model is applied to predict the VIV response of a flexible riser under the axis shear flow condition. Compared to the results by other CFD model and empirical model, the present results are more rational and accuracy in agreement with the experimental results in the deforming modal shapes.
     7, The Reynolds number effect and mass-damping ratio effect on the peak transverse response amplitude of a freely vibrating circular cylinder is well studied based on the forced oscillation experimental data. A theory model which can be used to predict the peak transverse response is constructed. This model could be considered as an update to the empirical model for the prediction of the response of the flexible riser. According to the research work mentioned above, main conclusion can be drawn as follows:
     1, The vorticity structure such as Mode A and Mode B is successfully recorded under uniform inflow at low Reynolds numbers. Oblique vortex shedding in streamwise direction is observed by applying DNS calculation on planar shear flow over a circular cylinder. The vorticity energy corresponding to the higher velocity side becomes stronger and the vorticity energy in the other side will decay to be totally destroyed as it moves down in the far wake of the circular cylinder. The planar shear flow will affect the boundary layer and pressure coefficient around the surface of the circular cylinder, but no effect on the shedding frequency. Oblique vortex shedding in the spanwise direction and dislocations could be observed under the spanwise shear inflow over a circular cylinder. The two shear flow results could be regarded as a combination of the planar shear and the spanwise shear flow cases, and it can be inferred that the planar shear and the spanwise shear do affect the flow motion separately but without any interaction effect.
     2, DNS calculation is conducted to study the no-slip and free slip boundary conditions on the suppression effort in vortex shedding phenomenon under the planar shear flow over a circular cylinder. The discrepancy between the experimental results by Kiya et al (1980) and recently two dimensional numerical results by Kang (2007) is well explained according to the three dimensional DNS results. The no-slip boundary condition will have a great effect on vortex shedding suppression while very limited effect in free slip boundary condition
     3, The streamewise vibration has a limited effect on the peak transverse response of the circular cylinder with moderate mass ratio. Larger transverse response could be excited as the mass ratio is below the critical mass ratio m* cri= 3.5for the circular cylinder with two degree-freedom rather than the streamewise vibration is constrained. The vortex shedding mode, such as SS, 2S and 2P, corresponding to different transverse response branch is observed; especially the classical 2T mode appearing at the supper upper branch in the experiment by Jauvtis & Williamson (2003) is reproduced in the present numerical simulation. The figure“8”traces movement for the VIV response is also captured successfully.
     4, The results form the two dimensional planar shear flow over an elastic mounted circular cylinder infer that there exits a planar shear ratio lock-in range in which the transverse amplitude grows rapidly and the amplitude would decrease sharply as it goes out of the shear ratio lock-in range. The lock-in range becomes wider as the Reynolds number grows. The figure“8”time trace movement can be seen as the planar shear flow ratio is small, while a new time trace movement which is named as“water drop”shape is discovered.
     5, The multi-modal response of the flexible riser is obtained under the stepped inflow condition. The excited model for the long flexible riser can jump from one model to another one in the time domain while the deforming shape of the riser appears to be the dominated excited modal shape. It is can be inferred from the time trace contour of the lift or drag coefficient that the fluid force correction length along the axis of the riser could be given a strong supportive evidence for the present multi-strip numerical model. The added mass is not equally distributed along the axis of the riser but vibrates a lot according to the multi-modal response. It is suggested that the added mass distribution should take into account of the contributions separately from the main excited modals. The“2S”and“2P”vorticity structures are observed along the axis of the riser at the same time due to the small or large amplitude of the riser in various excited models. The switching phenomenon in the vortex shedding is observer in the present CFD model.
     6, The predicted VIV response of the riser agrees well with the experimental results as the riser is excited at low modal response in the spanwise shear flow. Compared to other multi-strip model or empirical model, the present CFD model could be recognized as a more accurate and rational multi-strip model for more strips are used to consider the fluid force correction along the axis the riser and the deforming mesh is applied to simulate the fluid-structure coupling movement in the current model. Furthermore, the non-linear global stiffness matrix is updated in the time domain as the riser deforms.
     7, Potential relationship between the freely vibration and the forced oscillation has been investigated and a theory model is successfully constructed. Reynolds number effect and mass-damping effect are considered to predict the peek transverse amplitude of a freely vibrating cylinder by applying the force oscillation experimental results. It is concluded that the Reynolds number ignored previously in the forced oscillation is a quite important parameter in the freely vibration case. The general idea in the current theory model could provide a strong background for the empirical model of VIV response of a flexible riser.
     In a word, the present paper starts with the simple case in flow over a circular cylinder, and then focuses on the VIV of a spring mounted circular to the VIV response of a flexible riser finally. A CFD model is successfully constructed and it can be used to predict the VIV response of a flexible riser in the time domain Most of the experimental results or vortex shedding phenomenon could be accurately reproduced in the current CFD model. It can be inferred that the main conclusions drawn from the present CFD model could provide a constructive way to improve the empirical model in VIV response prediction.
引文
[1]. Adrian, R.J., 1991. Particle-imaging technique for experimental fluid mechanics. Annual Reviews in Fluid Mechanics 23, pp. 261-304.
    [2]. Al-Jamal, H. and Dalton, C., 2004. Vortex induced vibrations using large eddy simulation at a moderate Reynolds number. Journal of Fluids and Structures 19, 73-92.
    [3]. Aronsen, K.H., 2007. An experimental investigation of in-line and combined in-line and cross-flow vortex induced vibrations. Norwegian University of Science and Technology, Trondheim, Norway.
    [4]. Baarholm, G. S., Larsen, C. M., and Lie, H. 2006. On fatigue damage accumulation from in-line and cross-flow vortex-induced vibrations on risers. Journal of Fluids and Structures, 22, pp. 109-127.
    [5]. Baldwin, B.S., Lomax, H. 1978. Thin-layer approximation and algebraic model for separated turbulent flows. AIAA paper 78-257.
    [6]. Bearman. P., Brankovi , M. 2004. Experimental studies of passive control of vortex-induced vibration. European Journal of Mechanics - B/Fluids. 23. pp: 9-15.
    [7]. Bishop, R.E.D., Hassan, A.Y., 1964. The lift and drag forces on a circular cylinder in a flowing fluid. Proceedings of Royal Society of London, Series A 277, pp. 32 50, 51 75.
    [8]. Blackburn, H., Govardhan, R. and Williamson, C.H.K., 2001. A complementary numerical and physical investigation of vortex-induced vibration. Journal of Fluids and Structures 15, pp:481-488.
    [9]. Braza. M., 1994 Transition features in wake flows by means of numerical analysis. Current Topics in the Physics of Fluids, 1, pp:391-403.
    [10]. Brika, D. & Laneville, A. 1993 Vortex-induced vibrations of a long flexible circular cylinder. J. Fluid Mech. 250, 481-508
    [11]. Cao, S., Ozono, S., Hirano, K., Tamura, Y., 2007, Vortex shedding and aerodynamic forces on a circular cylinder in linear shear flow at subcritical Reynolds number. Journal of Fluids and structures, 23,pp:703-714.
    [12]. Carberry, J., Govardhan, R, Sheridan, J, Rockwell, D and Williamson, C.H.K., 2004. Wake states and response branches of forced and freely oscillating cylinders. European Journal of Mechanics - B/Fluids 23, pp:89-97.
    [13]. Carberry, J., Sheridan, J., and Rockwell, D., 2005. Controlled oscillations of a cylinder: forces and wake modes. Journal of Fluid Mechanics, 538, pp. 31-69.
    [14]. Chaplin, J.R., Bearman, P.W., Huera Huarte, F.J., Pattenden, R.J., 2004a. Laboratorymeasurements of vortex-induced vibrations of a vertical tension riser in a stepped current. In: de Langre, E., Axisa, F. (Eds.), Proc. of the 8th FIV, vol. 2, Paris, France, pp. 279-284.
    [15]. Chaplin, J.R., Bearman, P.W., Fontaine, E., Herfjord, M., Isherwood, M., Larsen, C.M., Meneghini, J.R., Moe, G., Triantafyllou, M.S., 2004b. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. In: de Langre, E., Axisa, F., (Eds.), Proceedings of the 8th FIV, vol. 2, Paris, France, pp. 285-290.
    [16]. Chaplin, J. R., Bearman, P. W., Huera Huarteb, F. J. and Pattenden, R. J., 2005a. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in stepped current. Journal of Fluids and Structures 21, pp:3-24.
    [17]. Chaplin, J.R., Bearman, P.W., Cheng, Y., Fontaine, E., Graham, J.M.R., Herfjord, M., Isherwood, M., Lambrakos, K., Larsen, C.M., Meneghini, J.R., Moe, G., Triantafyllou, M.S., Willden, R.H.J., 2005b. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser. Journal of Fluids and Structures 21, pp:25-40.
    [18]. Cornut, S.F., and Vandiver, J.K., 2000. Offshore viv monitoring at Schiehallion: analysis of riser viv response. Proc. of the 19th OMAE, New Orleans, USA, Paper No. OMAE 2000/PIPE-5022.
    [19]. Dahl, J.M., Hover, F.S., Triantafyllou, M.S., 2004. Two degree of freedom vortex induced vibration of a circle cylinder in subcritical flow conditions. Proc. 8th Intl Conf.on Flow-induced Vibration, FIV 2004, Paris, France. 2, pp:303-320.
    [20]. Dalheim, J., 2001. A New Hybrid Numerical Procedure for Prediction of VIV of Risers in Ultra Deep Waters. Proc. of the 20th OMAE, Rio de Janeiro, Brazil, Paper No. OFT-1202.
    [21]. De Sampaio, P. A. B., and Coutinho, A. L. G. A., 2001. Simulating Vortex Shedding at High Reynolds Numbers, Proc. of the 10th ISOPE, Seattle, USA, Vol. III, pp:461~466.
    [22]. Dong, S., and Karniadakis, G. E., 2005. DNS of Flow Past a Stationary and Oscillating Rigid Cylinder at Re=10,000. J. Fluids Struct., 20, pp. 519–532.
    [23]. Evangelinos. C., Lucor, D., and Karniadakis, G. E. 2000. DNS-Derived Force Distribution on Flexible Cylinders Subject to Vortex-Induced Vibration. J. Fluids Struct. 14, pp. 429–440.
    [24]. Ferziger, J.H. 1998. Direct and large eddy simulation of Turbulence. Centre de research Mathematiques CRM proceedings and lecture notes. 16, pp.53:97.
    [25]. Goldberg, U.C. 1991. Derivation and testing of a one-equation model based on two times scales. AIAA Journal 29(8) pp. 1337-1340.
    [26]. Gopalkrishnan, R., 1993. Vortex induced forces on oscillating bluff cylinders. Ph.D. Thesis, Department of Ocean Engineering, MIT, Cambridge, MA, USA.
    [27]. Govardhan, R., Williamson, C.H.K., 2000. Modes of vortex formation and frequency response for a freely vibrating cylinder. Journal of Fluid Mechanics. 420, pp.85-130.
    [28]. Govardhan, R., Williamson, C. H. K., 2002. Resonance forever: existence of a critical mass andan infinite regime of resonance in vortex-induced vibration. Journal of Fluid Mechanics, 473, pp. 147-166.
    [29]. Govardhan, R., Williamson, C.H.K., 2006. Defining the modified Griffin plot in vortex-induced vibration revealing the effect of Reynolds number using controlled damping. Journal of Fluid Mechanics 561, pp.147-180.
    [30]. Griffin, S. a. R. 1975. The resonant vortex-excited vibrations of structures and cable systems. presented at In 7th Offshore Technol. Conf., Houston, TX,1975.
    [31]. Gu, Z. F., Sun, T.F., 1999. On interference between two circular cylinders in staggered arrangement at high subcritical Reynolds numbers. Journal of Wind Engineering and Industrial Aerodynamics.80, pp. 287–309.
    [32]. Guilmineau, E. and Queutey, P., 2004. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow. Journal of Fluids and Structures 19, 449-466.
    [33]. Guo, H.Y. and Wang, S.Q., 2000. Dynamic characteristics of marine risers conveying fluid. China Ocean Engineering 14(2): pp.153-160.
    [34]. Guo, H.Y., Wang, Y.B. and Fu, Q., 2004. The effect of internal fluid on the response of vortex-induced vibration of marine risers. China Ocean Engineering 18(1): pp.11-20.
    [35]. ? , 2005. . 22(4):220-224.
    [36]. Facchinetti, M.L., de Langre, E. and Biolley. F., 2002. Vortex shedding modeling using diffusive van der Pol oscillators. Comptes Rendus Me′canique 330, (7):pp.451-456.
    [37]. Facchinetti, M.L., de Langre, E. and Biolley. F., 2004a. Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures, 19,pp.123-140.
    [38]. Facchinetti. M.L., Langre. E. de, Biolley. F. 2004b. Vortex-induced travelling waves along a cable, European Journal of Mechanics B/Fluids 23, pp. 199–208.
    [39]. Feng, C.C., 1968. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders. Master's Thesis, Department of Mechanical Engineering, University of British Columbia, Canada.
    [40]. Flemming, F., Williamson, C. H. K. 2005. Vortex-induced vibrations of a pivoted cylinder. J. Fluid Mech. 522, pp.215-252.
    [41]. Furnes, G.K., Hassanein, T., Halse, K.H. and Eriksen, M., 1998. A field study of flow induced vibrations on a deepwater drilling riser. Proc.of the OTC, Houston, Paper No. OTC 8702.
    [42]. Hartlen, R.T. and Currie, I.G., 1970. Lift-oscillator model of vortex-induced vibration. ASCE Journal of the Engineering Mechanics 96, pp.577-591.
    [43]. Halse, K.H., 2000. Norwegian Deepwater Program: Improved Predictions on Vortex-Induced Vibrations. Proc. of the OTC, Houston, Texas, Paper No. OTC 11996.
    [44]. Henderson, R. D. 1997. Nonlinear Dynamics and Pattern Formation in Turbulent Wake Transition. Journal of Fluid Mechanics. 352. pp. 65-112.
    [45]. Hover, F.S., Techet, A.H. and Triantafyllou, M.S., 1998. Forces on oscillating uniform and tapered cylinders in crossflow. Journal of Fluid Mechanics 363, pp.97-114.
    [46]. Hover, F.S., Davis, J.T. and Triantafyllou, M.S., 2004. Three-dimensionality of mode transition in vortex-induced vibrations of a circular cylinder. European Journal of Mechanics B/Fluid 23, pp.29-40.
    [47]. Huarte, FJH, Bearman, PW, Chaplin, J.R. 2006, On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations, J Fluids Structure, 22, pp:897-903
    [48]. Huse, E., Kleiven. G. and Nielsen, F.G., 1998. Large Scale Model Testing of Deep Sea Risers. Proc. of the OTC, Houston. USA, Paper No. OTC 8701.
    [49]. Jauvtis, N., Williamson, C. H. K., 2003. Vortex-induced vibration of a cylinder with two degrees of freedom, Journal of Fluids and Structures. 17, pp. 1035-1042.
    [50]. Jauvtis, N., Williamson, C.H.K. 2004. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping, Journal of Fluid Mechanics 509.pp. 23–62.
    [51]. Jeon. D, Gharib, M. 2001. On circular cylinders undergoing two-degree-of-freedom forced motions, Journal of Fluids and Structures 15.pp. 533–541.
    [52]. John, V. 2004. Large eddy simulation of turbulent incompressible flows: analytical and numerical results for a class of LES models. Berlin, German.
    [53]. Kaasen, K.E., 2001. Optimizing Sensor Locations for Identification of Riser VIV Modes. Proc. of the 11th ISOPE, Stavanger, Norway. Vol. II, pp.23-28
    [54]. Kaasen, K.E., Lie. H., Solaas, F. and Vandiver, J.K., 2000. Norwegian Deepwater Program: Analysis of Vortex-Induced Vibrations of Marine Risers Based on Full-Scale Measurements. Proc. of the OTC, Houston, Texas, Paper No. OTC 11997.
    [55]. Kiya, M., Tamura, H., and Arie. M., 1980, Vortex shedding from a circular cylinder in moderate-Reynolds-number shear flow. Journal of Fluid Mechanics, 141, 721-735.
    [56]. Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, pp.133–166
    [57]. Klamo, J. T., Leonard, A. Roshko, A. 2005. On the maximum amplitude for a freely vibrating cylinder in cross-flow. Journal of Fluids and Structures. 21(4): pp.429-434.
    [58]. Klamo, J. T., Leonard, A., Roshko, A., 2006. The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow. Journal of Fluids and Structures 22(6-7), pp.845-856.
    [59]. Khalak, A., Williamson, C.H.K., 1996. Dynamics of a hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures 10, pp.455-472.
    [60]. Khalak, A., Williamson, C.H.K., 1999. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures 13, pp.813-851.
    [61]. Kolmogorov, A.N. 1941. Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Doklady AN. SSSR, 30. pp. 299-303
    [62]. Kwon, T.S., Sung, H.J., Hyun, J.M., 1992. Experimental investigation of uniform-shear flow past a circular cylinder. ASME Journal of Fluids Engineering, 114, pp.457–460.
    [63]. Larsen, C.M., Halse, K.H., 1997. Comparison of Models for Vortex Induced Vibrations of Slender Marine Structures. Marine Structures 10, pp.413-441.
    [64]. Larsen, C.M., Vikestad, K., Yttervik, R. and Passano, E., 2001. VIVANA, Theory Manual. MARINTEK, Trondheim.
    [65]. Larsen, C. M., Yttervik. R., Vikestad, K., Passano, E., 2001. Empirical model for analysis of vortex induced vibrations - Theoretical background and case studies. Rio de Janeiro, Brazil, American Society of Mechanical Engineers. pp.1-13.
    [66]. , , . 2003. . . 11. pp: 951-958.
    [67]. Lei, C., Cheng. L. and Kavanagh. K., 2000, A finite difference solution of the shear flow over a circular cylinder. Ocean Engineering, 27, pp.271-290.
    [68]. Lie, H., Kaasen, K.E., 2006. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow. Journal of Fluids and Structures. 22. pp: 557 575
    [69]. Lie, H., Larsen, C.M., Vandiver, J.K., 1997. Vortex induced vibrations of long marine risers; model test in a rotating rig. In:Chakrabarti, S., Kinoshite, T., Maeda, H., Ertekin, C. (Eds.), Proc. of the 16th OMAE, vol. I-B. ASME, Yokohama, pp. 241-252.
    [70]. Lie, H., Mo, K., Vandiver, J.K., 1998. VIV model of a bare-and a staggered buoyancy riser in a rotating rig. Proc. of the OTC, Houston, Texas, Paper No. OTC 8700.
    [71]. Lu, X., Dalton, C., and Zhang, J. 1997. Application of large eddy simulation flow past a circular cylinder. ASME J. Offshore Mech. Arct. Eng. 119, pp. 219–225.
    [72]. Lucor, D. and Karniadakis, G.E., 2003. Effects of Oblique Inflow in Vortex-Induced. Flow, Turbulence and Combustion 71, pp.375-389.
    [73]. Lucor, D., Foo, J. and Karniadakis, G.E., 2005. Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping. Journal of Fluids and Structures 20, pp.483-503.
    [74]. Lucor. D., Mukundan. H., Triantafyllou, M.S. 2006. Riser modal identification in CFD and full-scale experiments. Journal of Fluids and Structures 22. pp. 905-917.
    [75]. Lyons, G.J., Vandiver, J.K. and Larsen, C.M., 2003. Ashcombe G T. Vortex induced vibrations measured in service in the Foinaven dynamic umbilical and lessons from prediction. Journal of Fluid and Structures 17, pp.1079-1094.
    [76]. Machado, R.Z., Mourelle, M.M., Franciss, R., Silva, R.M., Lima, C.S., Eisemberg, R. andOliveira, D. 1999. Monitoring program for the first steel catenary riser installed in a moored floating platform in deep water. Oceans Conference Record (IEEE) 2, pp.801-810.
    [77]. Manhart, M., 2004, A zonal grid algorithm for DNS of turbulent boundary layers, Computers & Fluids, 33, pp:435-461.
    [78]. Marcollo. H., Hindwood. J.B. 2006 On shear flow single mode lock-in with both cross-flow and in-line mechanisms, J Fluids Struct. 22. pp: 197–211.
    [79]. Mathelin. L., Langre. E. de. 2005. Vortex-induced vibrations and waves under shear flow with a wake oscillator model, European Journal of Mechanics B/Fluids 24 pp: 478–490.
    [80]. Menter, F.R., 1994. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, pp.1598-1605.
    [81]. Mittall, R. and Iaccarino,G., 2005, Immersed boundary methods. Annu. Rev. Fluid Mech. 37:pp.239–61.
    [82]. Moe, G., Cheng, Y. and Vandiver, J.K., 2000. Riser analysis by means of some finite element approaches. Proc. of the 19th OMAE, New Orleans, USA. OMAE 2000.
    [83]. Moe, G., Wu, Z.J., 1990.The lift force on cylinder vibrating in a current. ASME Journal of Offshore Mechanics and Arctic Engineering. 112. pp: 297–303.
    [84]. Moin, P., 2002. Advances in large eddy simulation methodology for complex flows. International Journal of Heat and Fluid Flow. 23. pp 710-720.
    [85]. Moin P, Mahesh K.1998. Direct numerical simulation: a tool inturbulence research. Annu Rev Fluid Mech, 30, pp:539– 578.
    [86]. Morse, T. L. and Williamson, C. H. K. 2006. Employing controlled vibrations to predict fluid forces on a cylinder undergoing vortex-induced vibration. Journal of Fluids and Structures, 22, pp. 877-884.
    [87]. Narasimhamurthy. V.D., Andersson. H.I., Pettersen. B. 2008. Direct numerical simulation of vortex shedding behind a linearly tapered circular cylinder, in: Proc. IUTAM Symposium on Unsteady Separated Flows and their Control (2008) Springer-Verlag (in print).
    [88]. Newman, D. J., and Karniadakis, G. E. 1997. A Direct Numerical Simulation of Flow Past a Freely Vibrating Cable. J. Fluid Mech. 344. pp. 95–136.
    [89]. Norberg, C. (2003). Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures. 17(1): pp.57-96.
    [90]. Owen. J.C., Bearman. P.W., Szewczyk. A. A. 2001. Passive control of VIV with drag reduction. Journal of Fluids and Structures. 15. pp: 597-605.
    [91]. Ozono, S., 1999. Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a circular cylinder. Physics of Fluids 11, pp.2928–2934.
    [92]. Pan Z.Y., Cui W.C., Zhang X.C., 2005. An Overview on VIV of Slender Marine Structures. Journal of Ship Mechanics 9 (6):pp.135-154.
    [93]. Pan Z.Y., Cui W.C. and Liu Y.Z. 2006a. Insight into Data from Forced Oscillation Tests in Prediction of VIV of Flexible Risers. 4th International Conference on Hydroelasticity in Marine Technology. Wuxi, China.
    [94]. Pan, Z.Y., Cui, W.C., Miao, Q.M. 2006b. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass damping using RANS code, Journal of Fluids and Structures. doi:10.1016/j.jfluidstructs.2006.07.007.
    [95]. Parnaudeau. P., Heitz. D., Lamballais, E. Silvestrini. J.-H. 2007. Direct numerical simulations of vortex shedding behind cylinders with spanwise linear nonuniformitiy, J. Turbulence 8 no. 13
    [96]. Persillon, H., Braza, M. 1998. Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier–Stokes simulation. Journal of Fluid Mechanics. 365. pp. 23-88.
    [97]. Price, S.J. Paidoussis. M. P., Krishnamoorthy, S. 2007. Cross-flow past a pair of nearly in-line cylinders with the upstream cylinder subjected to a transverse harmonic oscillation. Journal of Fluids and Structures. 23. pp. 39–57.
    [98]. Rakshit. T., Atluri. S., Dalton. C. 2008. VIV of a Composite Riser at Moderate Reynolds Number Using CFD. Journal of Offshore Mechanics and Arctic Engineering. 130. pp. 1-10.
    [99]. Reynolds, W.C. 1987. Fundamentals of turbulence for the turbulence modeling and simulation. In lecture notes for von Kármán Institute, AGARD lectures series No.86, pp.1-66. New York: NATO.
    [100]. Rodi, W., Scheuerer, G. 1986. Scrutinizing the k ?ωturbulence model under adverse pressure gradient conditions. ASME. Journal of Fluids Engineering. 108. pp.174-179.
    [101]. Sagatun, S.I., Herfjord, K. and Holm?s, T., 2002. Dynamic simulation of marine risers moving relative to each other due to vortex and wake effects. Journal of Fluids and Structures 16, pp.375-390.
    [102]. Sagaut, P. 2006. Large eddy simulation for incompressible flows: an introduction. 3rd Ed, Berlin, German.
    [103]. Sarpkaya, T., 1995. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. ASME Journal of Offshore Mechanics and Arctic Engineering 117, pp.232-238.
    [104]. Sarpkaya, T., 2004. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures 19, pp.389-447.
    [105]. Scardovelli, R., Zaleski, S. 1999. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics 31, pp: 567-603.
    [106]. Schulz, K. W. Meling, T.S. 2004. Multi-strip numerical analysis for flexible riser response. Proc. of OMAE. Vancouver, Canada. 1A: pp.379-384.
    [107]. Smogeli, O.N., Hover, F.S. Triantafyllou, M.S., 2003. Force-feedback control in VIVexperiments. Pro. 22nd Intl Conf. on Offshore Mechanics and Arctic Engineering (OMAE03). June 8-13, 2003, Cancun, Mexico.
    [108]. Spalart, P.R., Allmaras, S.R. 1992. A one-equation turbulence model for aerodynamic flows. AIAA paper 92-439, Reno, NV.
    [109]. Sumer.B.M., Freds?e. J. 1997. Hydrodynamic around cylindrical structures. volume 12 of Advanced series on Ocean Engineering. World Scientific, London.
    [110]. Sumner, D. and Akosile, O.O., 2003. On uniform planar shear flow around a circular cylinder at subcritical Reynolds number. Journal of Fluids and structures, 18, pp.441-454.
    [111]. Sumner, D., Price, S.J., Padoussis, M.P. 2000. Flow-pattern identification for two staggered circular cylinders in cross-flow. Journal of Fluid Mechanics. 411, pp. 263-303.
    [112]. Sumner, D., Richards, M. D. 2003. Some vortex-shedding characteristics of the staggered configuration of circular cylinders. Journal of Fluids and Structures.17. pp. 345-350.
    [113]. Sumner, D., 2004. Closely spaced circular cylinders in cross-flow and a universal wake number.," ASME. Journal of Fluids Engineering.126, pp. 245–249.
    [114]. Sumner, D., Richards, M.D., Akosile, O.O. 2005. Two staggered circular cylinders of equal diameter in cross-flow. Journal of Fluids and Structures. 20, pp. 255-276.
    [115]. , 2004,
    [116]. Techet, A. H., Hover, F. S. & Triantafyllou, M. S. 1998 Vortical patterns behind a tapered cylinder oscillating transversly to a uniform flow. J. Fluid Mech. 363, pp.79–96.
    [117]. Thom, A., 1928, An investigation of fluid flow in two-dimensions. Aeronautical Research Council, Rep & Memo 1194. (Th. Numerical Calc. 8)
    [118]. Thompson, M., Hourigan, K., Sheridan, J. 1996. Three-dimensional instabilities in the wake of a circular cylinder. Experimental thermal and fluid science. 12. pp:190-196.
    [119]. Thompson, M.C., Hourigan, K., 2005. The shear layer instability of a circular cylinder wake, Physics of Fluids. 17(2) 021702-5
    [120]. Ting, D.S.K., Wang, D.J., Price, S.J., Padoussis, M.P. 1998. An experimental study on the fluidelastic forces for two staggered circular cylinders in cross-flow. Journal of Fluids and Structures.12, pp. 259-294.
    [121]. Trarieux, F. Lyons, G.J. Patel, M.H. 2006. Investigations with a bandwidth measure for fatigue assessment of the Foinaven dynamic umbilical including VIV. Engineering Structures. 28, pp: 1671-1690.
    [122]. Triantafyllou, M.S., Triantafyllou, G.S., Tein, D. and Ambrose, B.D., 1999. Pragmatic Riser VIV Analysis. Proc. of the OTC, Houston, USA, Paper OTC 10931.
    [123]. Trim. A.D., Braaten. H., Lie. H., Tognarelli. M.A. 2005. Experimental investigation of vortex induced vibration of long marine risers. Journal of Fluids and Structures. 21 pp: 335–361.
    [124]. Tutar, M. and Holdo, A.E., 2000. Large Eddy Simulation of a smooth circular cylinderoscillating normal to a uniform flow. ASME Journal of Fluids Engineering 122, pp.694-702.
    [125]. Vallès. B., Andersson. H.I., Jenssen. C.B. 2002. Oblique vortex shedding behind tapered cylinders, J.Fluids Struct. 16, pp:453 - 463
    [126]. Vandiver. J.K., Chung. T.Y. 1988. Predicted and Measured Response of Flexible Cylinders in Sheared Flow. Proceedings, ASME Winter Annual Meeting Symposium on Flow-Induced Vibration, Chicago, December 1988.
    [127]. Vandiver, J.K., 1993. Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents. Journal of Fluids and Structures 7, pp.423-455.
    [128]. Vandiver, J.K., Allen, D. and Li, L., 1996. The Occurrence of Lock-In Under Highly Sheared Conditions. Journal of Fluids and Structures 10, pp.555-561.
    [129]. Vandiver, J.K., 1998. Research challenges in the vortex-induced vibration prediction of marine risers. Proc. of the OTC, Houston, USA, Paper No. OTC 8098.
    [130]. Vandiver, J.K., Li, L., 1999. SHEAR7 program Theory manual. Department of Ocean Engineering, MIT.
    [131]. Vandiver, J.K., JONG, J.Y., 1987. The Relationship Between In-Line and Cross-Flow Vortex-Induced Vibration of Cylinders. Journal of Fuids and Structures, 1, pp. 381-399.
    [132]. Vandiver, J.K and Marcollo, H. 2003. High Mode Number VIV Experiments. IUTAM Symposium On Integrated Modeling of Fully Coupled Fluid-Structure Interactions Using Analysis, Computations and Experiments, 1 June-6 June.
    [133]. Versteeg, H.K. and Malalasekera, W. 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Second Edition, Pearson Education, Harlow, Essex, UK.
    [134]. Vikestad, K., 1998. Multi-Frequency Response of a Cylinder Subjected to Vortex Shedding and Support Motions. Ph.D. Thesis, Department of Marine Structures, NTNU, Trondheim, Norway..
    [135]. Violette. R., Langre. E. de., Szydlowski. J. 2007. Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments. Computers & Structures 85. pp.1134-1141.
    [136]. , 2005, , , , .
    [137]. Wernet, M. P., 2000. Application of DPIV to study both steady state and transient turbo machinery flows. Opt. & Laser Technol. 32, pp. 497-525.
    [138]. Wilcox, D.C. 1988. Reassessment of the scale determining equation for advanced turbulence models. AIAA Journal, 26(11), pp. 1299-1310.
    [139]. Wilcox, D.C., 2002. Turbulence Modeling for CFD, second ed. Anaheim, California, USA
    [140]. Willden, R.H.J., Graham, J.M.R. and Giannakidis, G., 2001. Vortex-Induced Vibration of Single and Multiple Risers in a Sheared Current. Proc. of the 11th ISOPE, Stavanger, Norway, Vol. III, pp.406-410.
    [141]. Willden, R.H.J. and Graham, J.M.R., 2004. Multi-modal Vortex-Induced Vibrations of a vertical riser pipe subject to a uniform current profile. European Journal of Mechanics - B/Fluids 23, pp.209-218.
    [142]. Williamson, C.H.K. 1988. Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31, pp.27-42.
    [143]. Williamson, C.H.K. 1989. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206. pp:579-593.
    [144]. Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 24, pp:477-539.
    [145]. Williamson, C. H. K. 1996.Three-Dimensional Wake Transition. Journal of Fluid Mechanics. 328. pp. 345-407.
    [146]. Williamson C.H.K. and Govardhan, R., 2004. Vortex-induced Vibrations. Annual Review of Fluid Mechanics 36, pp.413-455.
    [147]. Willis, N.R.T. and Thethi, K.S., 1999. Stride JIP: Steel Risers in Deepwater Environments - Progress Summary. Proc. of the OTC, Houston. USA, Paper No. OTC 10974.
    [148]. , 1982. . .
    [149]. Wu, J., Sheridan, J., Soria, J and Welsh, M. C. 1994. An experimental investigation of streamwise vortices in the wake of a bluff body. Journal of Fluids and Structure. 8. pp. 621-625.
    [150]. , 1999, Fortran , , , , .
    [151]. You, D. and Moin, P., 2007, A Dynamic Global-Coefficient Subgrid-Scale Eddy-Viscosity Model for Large-Eddy Simulation in Complex Geometries. Physics of Fluids, 19 (6), pp.065-110.
    [152]. Yamamoto, C.T., Fregonesi, R.A., Meneghini, J.R. and Saltara F., 2002. Numerical Simulations of the Flow around Flexible Cylinders. Proc. of the 21st OMAE, Oslo, Norway, Paper No. OMAE2002-28187.
    [153]. Zhang, H.Q, Fey, U., Noack, B.R., et al. 1995, On transition of cylinder wake. Phys. Fluids 7:779-794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700