用户名: 密码: 验证码:
聚丙烯/乙烯-1-辛烯共聚物熔体动态共混过程中的相形态演变与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以聚丙烯为主的通用塑料高性能化是高分子材料科学与工程领域的研究热点和重点,聚烯烃与热塑性弹性体(如乙烯-1-辛烯共聚物等)共混是提高聚烯烃性能的一个重要途径。将等规聚丙烯(iPP)与乙烯-1-辛烯共聚物(PEOc)共混以改善聚丙烯的性能,而共混物形态是影响材料性能的关键因素之一,为获得高性能的聚丙烯共混物,必须对iPP/PEOc共混物在混合和成型过程中的形态演变规律进行研究,以达到对共混物形态的预测和控制。另外,iPP/PEOc共混体系的相结构形成与演变及其粘弹性流变性能、力学性能的研究,是高分子多尺度连贯研究的重要研究内容,为高分子多尺度连贯性理论研究提供实验依据。
     本论文使用密炼机在不同加工条件下制备了不同组成的iPP/PEOc共混物,利用动态小角激光背散射(SALS)在线采集与分析系统、扫描电子显微镜(SEM)、相差显微镜(PCM)以及SEM和PCM图样的傅立叶变换研究了iPP/PEOc共混体系熔体动态共混过程中相结构的形成及演变规律,以及研究了共混物熔体在密炼机内部自然降温过程中(凝固过程)和静态保温过程中的相形态变化。分析得到表征共混体系相结构的结构参数,讨论了各个结构参数随混炼时间,共混组成,混炼温度和速率,以及结构参数在密炼机内部自然降温过程中和静态保温过程中的变化规律。结果表明:共混过程中相形态变化主要发生在共混初期,后期处于颗粒破裂和聚结的动态平衡中;颗粒尺寸随着分散相含量的增加而增大;转速条件和温度条件会影响到平衡时分散相颗粒尺寸的大小,存在最佳转速和最佳温度;在密炼机内部静态保温过程中分散相的颗粒尺寸及其分布随保温时间的增加而增加,20min后基本趋于不变。
     研究了iPP/PEOc共混体系的粘弹流变性能及力学性能,通过结合本体系共混过程中介观及微观结构参数将共混体系的宏观性能联系起来。结果表明:iPP/PEOc共混体系在平常混炼过程中,即在190-250℃,iPP组分在10-95 wt%之间时,共混体系处于相分离状态;分散相间距τ值与材料的冲击性能存在对应关系,能很好的描述本体系的脆韧转变。随PEOc含量的增加,过渡层厚度d逐渐增大,相界面结合变好,进而材料的冲击强度增加。
     将上面对iPP/ PEOc共混物相形态的理论与实验结果应用于iPP合金纤维的制备,以此实验条件为基础制备了合金纤维。结果表明:iPP纤维表面光滑,对于iPP/ PEOc合金纤维,随着PEOc含量的增加,表面粗糙度明显增加,且在纤维中形成了很多PEOc的原位微纤。
Performance enhancement of general-purpose plastics(mainly polypropylene) is one of the most important research focuses in the field of polymer materials science and engineering.Blending modification with thermoplastic elastomer is a major route to enhance the performance of polyolefin. Poly(ethylene- co-octene) copolymer (PEOc) was used to modify the performance of polypropylene (PP) in this thesis.The phase morphology is the most important factor to influence the properties of the blend.Therefore,the morphology development of PP/PEOc blends during the mixing and molding was investigated in this thesis. In addition, the phase morphology development, viscoelastic rheological and mechanical properties of the blends of iPP/PEOc as an important research issue of polymer multi-scale constituency research was studied.
     PEOc at various concentrations was mixed into iPP by an internal mixer (XXS-30) under different mixing conditions, and the formation and evolution of phase structure during molten and mixing process were studied using back small angle laser scattering (SALS), scanning electron microscope (SEM), phase contrast microscope (PCM) and the 2D Fourier transformation of SEM and PCM patterns. The phase morphology variants during solidification process under the natural cooling condition and during heat preservation under quiescent condition in internal mixer were also studied. The structure parameters were analyzed and calculated to characterize the phase structure. Besides, the influence of mixing time, blends composition, mixing temperature and rotor speed on each structure parameter and their variants during solidification process under the natural cooling condition and during heat preservation under quiescent condition in internal mixer were also investigated. The results showed that the variants of phase morphology mainly occurred in the initial stage of the mixing and levered off due to the dynamic equilibrium between the breakup and coalescence of particles. The particle size increased as the concentrations of dispersed phase increased. The particle size was influenced by rotor speed and mixing temperature and there existed an optimal rotor speed and mixing temperature at which the phase morphology was more fine.
     In addition, the visoelastic rheological and mechanical properties of iPP/PEOc blends were investigated, and the macroscopic properties were connected with meso- and microscopic structure parameters. The results showed that the blends with 10-95wt-% iPP exhibited phase-separated morphology at 190-250℃. We established a correlation between inter-dispersed phase distance and the brittle-tough transition for elastomer toughened polypropylene. The transition layer thickness d increased as the concentrations of dispersed phase increased, then the toughness of iPP/PEOc blends increased.
     Then, the alloy fibers were prepared by capillary rheometer. The results showed that the surface of iPP fiber was smooth. The surface roughness of the alloy fibers increased as the concentration of PEOc increased, and formed in-situ short fibers
引文
[1] Paul DR, Bucknall CB. Polymer Blends, A Wiley-Interscience Publication, John Wiley & Sons, New York, 2000.
    [2]程正迪, 21世纪高分子科学与工程的发展方向,中国科学基金, 2001, 15(4): 199~202.
    [3] Pang Y, Dong X, Wang D, et al.. Time evolution of phase structure and corresponding mechanical properties of iPP/PEOc blends in the late-stage phase separation and crystallization. Polymer, 2007, 48: 6395~6403.
    [4] Jose S, Francis B, Thomas S, Karger-Kocsis J. Morphology and mechanical properties of polyamide 12/polypropylene blends in presence and absence of reactive compatibiliser. Polymer, 2006, 47: 3874~3888.
    [5] Meng K, Dong X, Han CC, et al.. Shear-induced crystallization in phase-separated blend of isotactic polypropylene and poly (ethylene-co-octene). J. Chem. Phys., 2008, 128: 024906-1~8.
    [6] Zhu L, Xu XH, Sheng J, et al.. Characterisation of the thickness of transition layer and its relation to mechanical properties of polypropylene/poly(ethylene-co-octene) blends. Mater. Sci. Eng. A, 2008, 494: 449~455.
    [7] Macosko CW. Morphology development and control in immiscible polymer blends. Macromol. Symp., 2000, 149: 171~184.
    [8] Lee JK, Han CD. Evolution of polymer blend morphology during compounding in an internal mixer. Polymer, 1999; 40(23): 6277~6296.
    [9] Elemans PHM, Bos HL, Janssen JMH. Transient phenomena in dispersive mixing. Chem. Eng. Sci., 1993, 48(2): 267~276.
    [10] Scott CE, Macosko CW. Morphology development during the initial stages of polymer-polymer blending. Polymer, 1995, 36: 461~470.
    [11] Ratnagiri R, Scott CE. Phase inversion during compounding with a low melting major component: polycaprolactone/polyethylene blends. Polym.Eng.Sci., 1998, 38 (10): 1751~1762.
    [12] Macosko CW, Philippe Guegan, Khandpur AK. Compatibilizers for melt blending: premade block copolymers. Macromolecules, 1996, 29: 5590~5598.
    [13] Cox RG. The deformation of a drop in a general time-dependent fluid flow. J. Fluid. Mech., 1969, 37: 601~623.
    [14] Karam HJ, Bellinger JC. Deformation and breakup of liquid droplets in a simple shear field, Ind.Eng.Chem.Fundamen., 1968, 7(4): 576~581.
    [15] Rumscheidt FD, Mason SG. Particle motions in sheared suspensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow. J.Colloid.Sci., 1961, 16: 238~261.
    [16] Rayleigh JWS. On the instability of jets. Proc.London Math.Soc., 1879,10,4.
    [17] Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proceedings of the Royal Society of London. series A. Mathematical and Physical Science, 1935, A150: 322~337.
    [18] Scholz P, Froelich D, Muller R. Viscoelastic properties and morphology of two-phase polypropylene/polyamide 6 blends in the melt. J.Rheol., 1989, 33(3): 481~499.
    [19]李凤生,超细粉体技术[M],北京:国防工业出版社, 2000.
    [20] Chen CC, Fontan E, Min K, et al.. An investigation of instability of phase morphology of blends of nylons with polyethylenes and polystyrenes and effects of compatibilizing agents. Polym. Eng. Sci., 1988, 28(2): 69~80.
    [21] Heikens D, Barentsen W. Particle dimensions in polystyrene/polyethylene blends as a function of their melt viscosity. Polymer, 1977, 18(1): 69~72.
    [22] Serpe G, Jarrin J, Dawans F. Morphology processing relationships in polyethylene polyamide blends. Polym. Eng. Sci., 1990, 30: 553~565.
    [23] Delamare L, Vergnes B. Computation of the morphological changes of a polymer blend along a twin screw extruder. Polym. Eng. Sci., 1996, 36(12): 1685~1693.
    [24] Fortelny I, Zivny A. Theoretical description of steady droplet size in polymer blends containing a compatibilizer. Polymer, 2000, 41(18): 6865~6873.
    [25] Taylor GI. The Formation of Emulsions in Definable-Fields of Flow [A]. Proc. Roy. Soc.: A146 [C]. 1934. 501~523.
    [26] Ghodgaonkar PG, Sundararaj U. Prediction of Dispersed Phase Drop Diameter in Polymer Blends: The Effect of Elasticity. Polym. Eng. Sci., 1996, 36(12): 1656~1665.
    [27] Huneault MA, Shi ZH, Utmcki IA. Development of Polymer Blend Morphology during Compounding in a Twin Screw Extruder, Part IV: A New Computational Model with Coalescence. Polym. Eng. Sci., 1995, 35(1): 115~127.
    [28] Tokita N. Analysis of Morphology Formation in Elastomer Blends. Rubber Chem. Technol., 1977, 50(2): 292~300.
    [29] Zhang ZY, Qiao JL. Quantitative Prediction of Particle Size of Dispersed Phase in Elastomer-Plastic Blends. Polym. Eng. Sci., 1991, 31(21): 1553~1557.
    [30]任冬云,金日光,柳京爱.同向双螺杆挤出过程中多相体系相畴破碎的理论与实验研究, I:理论分析[J].中国塑料, 2000, 14(3): 43~4 8.
    [31] Wu S. Formation of Dispersed Phase in Incompatible Polymer Blends: Interfacial and Rheological Effects. Polym. Eng. Sci., 1987, 27(5): 335~343.
    [32] Everaert V, Aerts L, Groeninckx G, Phase Morphology Development in Immiscible PP/(PS/PPE) Blends: Influence of the Melt-Viscosity Ratio and Blend Composition. Polymer, 1999, 40(24): 6627~6644.
    [33] Serpe G, Jarrin J, Dawans F, Morphology-processing relationships in polyethylene-polyamide blends. Polym. Eng. Sci., 1990, 30: 553~565.
    [34] Vanoene H. Modes of dispersion of viscoelastic fluids in flow. J. Colloid. Interface Sci., 1972, 40: 448~467.
    [35] Fortelny I, Cerna Z, Binko J. et al.. Anomalous dependence of the size of droplets of disperse phase on intensity of mixing. J. Appl. Polym. Sci., 1993, 48(10): 1731~1737.
    [36] Willemse RC, Ramaker EJJ, van Dam J, et al.. Morphology development in immiscible polymer blends: initial blend morphology and phase dimensions. Polymer. 1999, 40(24): 6651~6659.
    [37] Chung O, Coran AY. The morphology of rubber/plastic blends. Rubber Chem. Technol., 1997, 70(5): 781~797.
    [38]左榘, HPB-b-PMMA增容PVC/PE共混物相分离与相态结构研究,高分子材料与工程, 1996, 12(3): 6~10.
    [39]吴培熙,聚合物共混改性,北京:中国轻工业出版社, 1996: 42~51.
    [40]左榘, PVC/ACR共混体系相分离动力学的研究,高分子材料与科学, 1993, 9(6): 43~47.
    [41] Cahn JW, Phase separation by spmodal decomposition m lsotroplc systems. J. Chem. Phys., 1965, 42: 93~98.
    [42] Shih CK. Mixing and morphological transformations in the compounding process for polymer blends: The phase inversion mechanism. Polym. Eng. Sci., 1995, 35: 1688~1694.
    [43] Leukel J, Weis C, Friedrich C, Gronski W. Polymer communications: On-line morphology measurement during the extrusion of polymer blends. Polymer, 1998, 39: 6665~6667.
    [44] Li S, Migler KB, Han CC, light-scattering photometer with optical microscope for the in-line study of polymer extrusion. Polym. Eng. Sci., 1997, 35: 2935~2943.
    [45] Schlatter G, Serra C, Bouquey M, et al.. Online light scattering measurements: a method to assess morphology development of polymer blends in a twin-screw extruder. Polym. Eng. Sci., 2002, 42: 1965~1975.
    [46] Mandelbrot BB. Fractal Geometry of Nature, Freeman, New York, 1983.
    [47]张济忠,分形,清华大学出版社, 1995.
    [48] Mandelbort BB, Passoja DE, Paullay AJ. Fractal character of fracture surfaces of metals. Nature, 1984, 308(19): 721~722.
    [49] Pekala RW, Schaefer DW. Structure of organic aerogels, Macromolecules, 1993, 26: 5487~5493.
    [50] Hurd AJ, Schaefer DW, Martin JE. Surface and mass fractals in vapor-phase aggregates. Phys. Rev. A, 1987, 35: 2361~2364.
    [51] Miyaia T, Takagi T, Higuchi JI, et al.. Two types of fractal dimensions for phase separation in multicomponent polymer membranes. J. Polym. Sci: Part B: Polym. Phys., 1999, 37: 1545~1550.
    [52]燕立唐,多相聚合物相结构形成过程的图像分析: [硕士学位论文],天津;天津大学, 2004.
    [53] Hobbie EK, Bauer BJ, Han CC. Fractal growth during early-stage spinodal decomposition in a hydrogen-bonded polymer blend. Phys. Rev. Lett., 1994, 72: 1830~1833.
    [54] Mamun CK. Spatial modulation in cross-linked binary polymer blends, Langmuir, 2005, 21: 7921~7936.
    [55] Patlazhan S. et al.. Shear-induced fractal morphology of immiscible reactive polymer blends. Polymer, 2006, 47: 6099~6106.
    [56] Kim SH, Morphology–rheology relationship in hyaluronate/poly(vinyl alcohol)/ borax polymer blends. Polymer, 2005, 46: 7156~7163.
    [57] Jelcic Z, Holjevac-Grguric T, Rek V. Mechanical properties and fractal morphology of high-impact polystyrene/poly(styrene-b-butadiene-b-styrene) blends. Polym. Degrad. Stab., 2005, 90(2): 295~302.
    [58]周持兴,聚合物流变实验与应用,上海:上海交通大学出版社, 2003.
    [59] Palierne JF, Linear theology of viscoelastic emulsions with interfacial tension. Rheol.Acta, 1990, 29: 204~214.
    [60] Graebling D, Muller R, Determination of interfacial tension of polymer melts by dynamic shear measurements. Colloids and Surface, 1991, 55: 89~103.
    [61] A. Einstein, Ann.Phys., 1911, 34, 591~599.
    [62] Dickie RA, Heterogeneous polymer-polymer composites. I. Theory of viscoelastic properties and equivalent mechanical models. J.Appl.Polym.Sci., 1973, 17: 45~63.
    [63] Macaubas PHP, Demarquette NR, Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer, 2001, 42: 2543~2554.
    [64] Souza AMC, Demarquette NR, Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends. Polymer, 2002, 43: 3959~3967.
    [65] Vinckier I, Laun HM, Manifestation of phase separation processes in oscillatory shear: droplet-matrix systems versus co-continuous morphologies. Rheol. Acta., 1999, 38: 274~286.
    [66] Souza AMC, Demarquette NR, Influence of composition on the linear viscoelastic behavior and morphology of PP/HDPE blends. Polymer, 2002, 43: 1313~1321.
    [67] Friedrich C, Gleinser W, Korat E, et al.. Comparison of sphere-size distributions obtained from rheology and transmission electron microscopy in PMMA/PS blends. J. Rheol., 1995, 39: 1411~1425.
    [68] Delaby I, Ernst B, Germain Y, et al.. Droplet deformation in polymer blends during uni axial elongational flow: Influence of viscosity ratio for large capillary numbers. J. Rheol., 1994, 38: 1705~1720.
    [69] Brahimi B, Ait-Kadi A, Ajji A, et al.. Rheological properties of copolymer modified polyethylene/polystyrene blends. J. Rheol., 1991, 35: 1069~1091.
    [70] Vignaux-Nassiet V, Allal A, Montfort JP. Emulsion models and rheology of filled polymers. Eur.Polym.J., 1998, 34: 309~322.
    [71] Huyen B, Thuc N, Maazouz A. Morphology and rheology relationships of epoxy/core-shell particle blends. Polym.Eng.Sci., 2002, 42(1): 120~133.
    [72] fahrlander M, Bruch M, Menke T, Friedrich C. Rheological behavior of PS-melts containing surface modified PMMA-particles. Rheol. Acta., 2001, 40: 1~9.
    [73] Gramespacher H, Meissner J, Interfacial tension between polymer melts measured by shear oscillations of their blends. J.Rheol., 1992, 36(6): 1127~1141.
    [74]韩志超,严大东,董建华.聚合物凝聚态的多尺度连贯研究.中国基础科学-学科前沿, 2003,6: 25~29.
    [75]夏琳,孙阿彬,邱桂学,张之敬. POE的性能及其在聚丙烯共混改性中的应用.弹性体, 2006, 16(3): 65~68.
    [76].张玲,黄锐等,新型热塑性弹性体增韧聚丙烯的研究,塑料, 2001,30(1): 53-56.
    [77] Kukaleva N, Cser F, Jollands M, et al.. Comparison of structure and properties of conventional and‘high-crystallinity’isotactic polypropylenes and their blends with metallocene- catalyzed linear low-density polyethylene. I. Relationships between rheological behavior and thermal and physical properties. J. Appl. Polym. Sci., 2000, 77(7):1591-1599.
    [78] Yang JH, Zhang Y, Zhang YX. Brittle~ductile transition of PP/POE blends in both impact and high speed tensile tests. Polymer, 2003, 44: 5047~5052.
    [79] Da-Silva NLA, Rocha MCG, Coutinho FMB, et al.. Evaluation of rheological and mechanical behavior of blends based on polypropylene and metallocene elastomers. Polym. Test., 2002, 21(6): 647~652.
    [80] Da-Silva NLA, Tavares MIB, et al.. Polymer blends based on polyolefin elastomer and polypropylene. J. Appl. Polym. Sci., 1997, 66: 2005~2014.
    [81] Da-Silva NLA, Rocha MCG, Coutinho FMB, et al.. Rheological, mechanical, thermal, and morphological properties of polypropylene/ethylene~octene copolymer blends. J. Appl. Polym. Sci., 2000, 75: 692~704.
    [82]Paul S, Kale DD. Rheological study of polypropylene copolymer/polyolefinic elastomer blends. J. Appl. Polym. Sci., 2002, 84: 665~671.
    [83] McNall T, McShane P, Nally GM, et al.. Rheology, phase morphology, mechanical, impact and thermal properties of polypropylene/metallocene catalysed ethylene 1~octene copolymer blends. Polymer, 2002, 43: 3785~3793.
    [84] Stein RS讲述,徐惫等译.散射和双折射在高聚物织构中的应用.北京:科学出版社, 1983.
    [85] Wang YD, Cakmak M. Development of structural hierarchy in injection-molded PVDF and PVDF/PMMA blends: Part III. Spatial variation of superstructure as detected by small-angle light scattering. Polymer, 2001, 42(8): 3731~3743.
    [86] Saito S, Koizumi S, Hashimoto T, et al.. Macromolecules, 2000, 33: 453~462.
    [87] S.斯坦讲授,徐懋等译,散射和双折射方法在高聚物研究中的应用,科学出版社, 1983.
    [88] Deamn RD, Crugnola AM. Toughness and Brittleness of Plastic, 1976, 286~289.
    [89] Khambatta FB, Warner F. Small-angle X-ray and light scattering studies of the morphology of blends of poly(ε-caprolactone) with poly (vinvl Chloride) J. Polym. Sci. Part B: Polym. Phys., 1976, 14: 1391~1424.
    [90] KratkyO. Possibilities of X-Ray small angle analysis in the investigation of dissolved and solid. Pure Appl.Chem., 1966, 12, 483~523.
    [91] Monica F, Silvia EB, Numa JC, et al.. Improvement of mechanical properties for PP/PS blends by in situ compatibilization. Polymer, 2005, 46(16): 6096~6101.
    [92] Pukanszky B. Interfaces and interphases in multicomponent materials: past, present, future. Eur. Polym. J., 2005, 41: 645~662.
    [93] Bai SL, Sell CG, Hiver JM, et al.. Polypropylene/polyamide 6/polyethylene- octene elastomer blends. Part 3. Mechanisms of volume dilatation during plastic deformation under uniaxial tension. Polymer, 2005, 46(17): 6437~6446.
    [94] Puyvelde PV, Velankar S, Moldenaers P. Rheology and morphology of compatibilized polymer blends. Curr. Opin. Colloid In., 2001, 6: 457~463.
    [95] Bai SL, Sell SG, Hiver JM, et al.. Microstructures and mechanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends. Polymer, 2004, 45(9): 3063~3071.
    [96] Ronca G, Russell TP. Thermodynamics of phase separation in polymer mixtures. Macromolecules, 1985, 18: 665~670.
    [97] Helfand E, Tagami Y. Theory of the interface between immiscible polymers. J. Chem. Phys., 1972, 56(7): 3592~3601.
    [98]韩蕴萍,盛京.用光散射研究部分相容聚合物共混物的相间过渡层.光散射学报, 2000, 12(4): 203~210.
    [99] Bares J. Glass transition of the polymer microphase. Macromolecules, 1975, 8(2): 244~246.
    [100]张丁浩.聚丙烯/尼龙1010体系共混过程中的在线分析及其结构与性能的研究.硕士学位论文,天津大学, 2001.
    [101] Nakai A, Shiwaku T, Wang W, et al.. Process and mechanism of phase separation in polymer mixtures with a thermotropic liquid crystalline copolyester as one component. Macromolecules, 1996, 29: 5990~6001.
    [102] Hashimoto T, Takenaks M, Lzumitani T. Spontaneous pinning of domain growth during spinodal decomposition of off-critical polymer mixtures. J. Chem. Phys., 1992, 97: 679~689.
    [103] Tanaka H, Hayashi T, Nishi T, Application of digital image analysis to pattern formation in polymer systems. J. Appl. Phys., 1986, 59(11): 3627~3643.
    [104] Kyu T, Saldanha JM. Phase separation by spinodal decomposition in polycarbonate/poly(methyl methacrylate) blends. Macromolecules, 1988, 21: 1021~ 1026.
    [105] Jordhamo GM, Manson JA, Sperling LH. Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Polym. Eng. Sci., 1986, 26(8): 517~524.
    [106] Ho RM, Wu CH, Su AC. Morphology of plastic/rubber blends. Polym. Eng. Sci., 1990, 30(9): 511~518.
    [107] Kitayama N, Keskkula H, Paul DR. Reactive compatibilization of nylon 6/styrene–acrylonitrile copolymer blends. Part 1. Phase inversion behavior. Polymer, 2000, 41(22): 8041~8052.
    [108] Everaert V, Aerts L, Groeninckx G. Phase morphology development in immiscible PP/(PS/PPE) blends influence of the melt-viscosity ratio and blend composition. Polymer, 1999, 40: 6627~6644.
    [109] Steinmann S, Gronski W, Friedrich C. Quantitative rheological evaluation of phase inversion in two-phase polymer blends with cocontinuous morphology. Rheol. Acta., 2002, 41: 77~86.
    [110] Metelkin VI, Blekht VP. Formation of a continuous phase in heterogeneous polymer mixtures. Colloid J. USSR, 1984, 46(3): 425~429.
    [111] Utracki LA. Polymer Alloys and Blends: Thermodynamics and Rheology; Hanser Publ.: Munchen, 1989, 178 ff.
    [112] Favis BD, Chalifoux JP. Influence of composition on the morphology of polypropylene/polycarbonate blends. Polymer, 1988, 29(10): 1761~1767.
    [113] Bourry D, Favis BD. Cocontinuity and phase inversion in HDPE/PS blends: Influence of interfacial modification and elasticity. J. Polym. Sci.: Part B: Polym. Phys., 1998, 36(11): 1889~1899.
    [114]李加深,聚合物共混过程中的相结构与形态研究: [博士学位论文],天津;天津大学, 2001.
    [115]许岳键,聚丙烯和乙烯-1-辛烯共混物的相结构与力学性能研究: [硕士学位论文],天津;天津大学, 2004.
    [116] Paul S, Kale DD. Impact modification of polypropylene copolymer with a polyolefinic elastomer. J. Appl. Polym. Sci., 2000, 76(9): 1480~1484.
    [117] Taylor GI. The viscosity of a fluid containing small drops of another fluid. Proc. R Soc. Lond. A 1932, 138: 41~48.
    [118] Torza S, Cox RG, Mason SG, Particle motion in sheared suspensions. XXVII. Transient and steady deformation and burst of liquid drops. J. Colloid Interface Sci., 1972, 38: 395~441.
    [119] Min K, White JL, Fellers JF. Development of phase morphology in incompatible polymer blends during mixing and its variation in extrusion. Polym. Eng. Sci., 1984, 24(17): 1327~1336.
    [120] Kim BK, DO IH. Particles versus fibrillar morphology in polyolefin ternary blends. J. Appl. Polym. Sci., 1996, 60(12): 2207~2218.
    [121] Zhang L, Wang Z, Huang R, et al.. PP/elastomer/calcium carbonate composites: effect of elastomer and calcium carbonate contents on the deformation and impact behavior. J. Mater. Sci., 2002, 37(13): 2615~2621.
    [122] Jeong YG, Hashida T, Hsu SL, et al.. Factors influencing curing behavior in phase separated structures. Macromolecules, 2005, 38: 2889~2896.
    [123] Jeong YG, Hashida T, Hsu SL, et al.. Analysis of the multistep solidification process in polymer blends. Macromolecules, 2006, 39: 274~280.
    [124] Kaiser EJ, Mcgrath JJ, Nard AB. Directional Solidification of Isotactic and Atactic Polypropylene Blends. J. Appl. Polym. Sci., 2000, 76: 1516~1528.
    [125] Hashida T, Jeong YG, Hsu SL, et al.. Spectroscopic Study on Morphology Evolution in Polymer Blends. Macromolecules 2005, 38: 2876~2882.
    [126] Liu JP, Junghicke BJ. Composition Distributions within Poly(vinylidene fluoride) Spherulites as Grown in Blends withPoly(methyl methacrylate). J. Polym. Sci. Part B: Polym. Phys., 2006, 44:338~346.
    [127] Lorenzo ML Di. Spherulite growth rates in binary polymer blends. Prog. Polym. Sci., 2003, 28: 663~689.
    [128] Fortelny I, Zivny A. Theoretical description of steady droplet size in polymer blends containing a compatibilizer. Polymer, 2000, 41, 6865~6873.
    [129] Sundararajs U, Macosko CW. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules, 1995, 28, 2647~2657.
    [130] Wang W, Shiwaku T, Hashimoto T. Phase Separation Dynamics and Pattern Formation in Thin Films of a Liquid Crystalline Copolyester in Its Biphasic Region. Macromolecules, 2003, 36: 8088~8096.
    [131] Ribbe AE, Okumura A, Hashimoto T. et al.. Element Spectroscopic Imaging of Poly(2-vinylpyridine)-block- polyisoprene Microdomains Containing Palladium Nanoparticles. Macromolecules, 2001, 34: 8239~8245.
    [132] Ribbe AE, Hayashi M, Hashimoto T. et al.. Morphology determination of novel polysulfone-polyamide block copolymers using element spectroscopic imaging in the transmission electron microscopy. Macromolecules, 2000, 33: 2786~2789.
    [133]张剑文,张红东,严栋,等.数字化图像测量分析技术-2DFT方法及其应用.高等化学学报,1997;18(11):1869~1874.
    [134] Huang C, Chang CP, Han CC, et al.. Phase behavior and crystallization blends of syndiotactic polypropylene and ethylene-propylene random copolymer. J. Polym. Sci: Part B: Polym. Phys., 2004,42: 2995~3005.
    [135] Utracki, LA. Polymer Alloys and Blends. Thermodynamics and Rheology. Hanser, NewYork, 1990.
    [136] Wu S. Entanglement, friction, and free volume between dissimilar chains in compatible polymer blends. J. Polym. Sci. Part B: Polym. Phys., 1987, 25(12): 2511~2529.
    [137]姜苏俊,二元聚合物及含填料的三元共混体系相行为的动态流变学研究, [博士学位论文],四川;四川大学, 2003。
    [138] Han CD, Kim JK. On the use of time-temperature superposition in multi- component/multiphase polymer systems. Polymer, 1993, 34: 2533~2539.
    [139] Kapnistos M, Hinichs A, Vlassopoulos D, et al.. Rheology of a Lower Critical Solution Temperature Binary Polymer Blend in the Homogeneous, Phase-Separated, and Transitional Regimes. Macromolecules, 1996, 29: 7155~7163.
    [140] Vlassopoulos D. Rheology of critical LCST polymer blends: poly(styrene-co- maleic anhydrite)/poly(methyl methacrylate). Rheol. Acta., 1996, 35: 556~566.
    [141] Kim JK, Lee HH, Han CD, et al.. Phase Behavior and Rheology of Polystyrene/Poly(α-methylstyrene) and Polystyrene/Poly(vinyl methyl ether) Blend Systems. Macromolecules, 1998, 31: 8566~8578.
    [142] Masuda T, Takigawa T, Kojima T, et al.. Rheology and Phase Transition in 30% Solutions of Styrene-Butadiene Radial Block Copolymers. J Rheol, 1989, 33: 469~480.
    [143] Dumoulin MM, Utracki LA, Carreau PJ. In: Utracki LA(ed) Two-phase Polymer Systems. Hanser, New York.
    [144] Zheng Q, Du M, Yang B, et al.. Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co- acrylonitrile) blends. Polymer, 2001, 42: 5743~5747.
    [145] Ajji A, Choplin L, Prud'homme RE. Rheology and phase separation in polystyrene/poly(vinyl methyl ether) blends. J. Polym. Sci. Part B: Polym. Phys., 1988, 26: 2279~2289.
    [146] Carreau P J, Bousmina M, Ajji A. Pacific Polymer Science 3. Springe, Berlin Heidelberg New York, P25~40.
    [147] Gramespacher H, Meissner J, Interfacial tension between polymer melts measured by shear oscillations of their blends, J.Rheol., 1992, 36(6): 1127~1141.
    [148] Carriere CJ, Silvis HC. The effects of short chain branching and comonomer type on the interfacial tension of polypropylene/polyolefin elastomer blends. J. Appl. Polym. Sci., 1997, 66(6):1175~1181.
    [149] Tyagi S, Ghosh AK. Linear viscoelastic and transient behavior of polypropylene and ethylene vinyl acetate blends: an evaluation of the linear palierneand a nonlinear viscoelastic model for dispersive mixtures. Polym. Eng. Sci., 2002, 42(11): 2107~2119.
    [150] Rudolph D. Deanin, Aldo M. Crugnola. Toughness and Brittleness of Plastics. 1976, Chap.23.
    [151]刘浙辉,朱晓光等,聚合物共混物脆韧转变性能的研究-形态参数对聚氯乙烯/丁腈橡胶共混物脆韧转变性能的影响,高分子学报, 1996, 4: 468~473
    [152] Wu S. Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer, 1985, 26: 1855~1863.
    [153] Wu S. Toughening: The critical matrix ligament thickness. J. Appl. Polym. Sci., 1988; 35: 549~561.
    [154] Jiang W, Tjong SC, Li RKY. Brittle–tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed. Polymer, 2000, 41: 3479~3482.
    [155] Margolina A, Wu S. Percolation model for brittle-tough transition in nylon/ rubber blends. Polymer, 1988, 29: 2170~2174.
    [156] Hill R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids,. 1965, 13(4):213~222.
    [157] Budiansky B. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids., 1965(4), 13:223~227.
    [158] Mori T, Tanaka K. Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Act. Metall., 1973, 21:571~574.
    [159] Jones RM. Mechanics of composite materials. New York: Kingsport Press, 1975.
    [160]吴林志,杜善义,石志飞.含夹杂复合材料宏观性能研究.力学进展, 1995, 25(3): 410~423.
    [161] Willemse RC, Speijer A , Langeraar AE, Posthumade Boer A.Tensile moduli of co-continuous polymer blends. Polymer, 1999, 40(24): 6645~ 6650.
    [162] Xie Z. Sheng J. Wan Z. Mechanical properties and morphology of polypropylene/polystyrene blends. J.Macromo.Sci. Phys., 2001, 40 (2): 251~261.
    [163]钟绍明等,聚丙烯/尼龙1010的失效强度预报,高分子材料科学与工程, 2005, 21(1): 255~259.
    [164] Wang H, Tao X, Morphology Control and Mechanical Properties of Liquid Crystalline Polymer-Polyamide Composite Fibers, Polym. J., 2002, 34: 575~582.
    [165] Fakirov S, Evstatiev M, Petrovich S. Microfibrillar reinforced composites from binary and ternary blends of polyesters and nylon 6. Macromolecules, 1993, 26(19): 5219~5226.
    [166] Seppala J, Heino M, Kapanen C. Injection-moulded blends of a thermotropic liquid crystalline polymer with polyethylene terephthalate, polypropylene, and polyphenylene sulfide. J. Appl. Polym. Sci., 1992, 44(6): 1051~1060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700