用户名: 密码: 验证码:
基于超精密回转扫描的大口径非球面测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光学加工和检测技术的不断发展,大口径范围深度非球面光学元件已成为天文光学、空间光学和地基空间目标探测与识别、激光大气传输、惯性约束聚变(ICF)等领域中起支撑作用的关键部件之一。制约大口径非球面镜加工水平的关键,则取决于与制造要求相适应的检测方法和仪器。对于传统的接触式测量法,其致命缺陷是易于划伤光学元件的表面;而非接触式测量法中,全口径干涉法和子孔径拼接干涉法也因补偿透镜制作困难和拼接过程易产生误差累积等因素的影响而无法满足大口径范围深度非球面镜的加工需求,因此,开发和研制一种高精度、非接触式的大口径非球面测量系统势在必行。
     课题“基于超精密回转扫描的大口径非球面测量技术研究”的目的是在基于f-θ透镜系统的大型非球面测量技术基础之上,探讨研究一种高精度、非接触式的近平面大口径非球面三维轮廓回转扫描测量技术,以二维位相板生成的衍射准直光束为测量基准光束,并以衍射光斑的暗线为位移基准,用超精密直线气浮导轨实现扫描光束的精确定位,大口径非球面镜的回转运动由超精密气浮转台实现。本课题为解决大口径近平面非球面三维轮廓测量技术中的高精度和非接触问题开拓了一种有效的技术途径,并为研究真正意义上的大口径范围深度非球面测量技术提供了有力的理论依据和先期的准备工作。本课题的研究,在大型同步辐射用非球面镜、柱面镜以及细长型光学表面的三维轮廓测量中也有广泛的应用前景。
     本文首先从衍射型长程轮廓仪(LTP)的工作机理入手,分析了基于衍射准直技术的f-θ透镜系统的基本特征,并结合测量装置的实际结构,分析了影响系统斜度测量精度的各因素,为将衍射型LTP进一步拓展到大口径非球面测量技术中奠定了坚实的理论基础。
     为实现大口径非球面的三维轮廓检测,提出了一种基于超精密回转扫描的大口径非球面测量系统。该系统通过将超精密直线运动和超精密回转运动有机合成,以实现被测表面的回转扫描测量,充分利用了回转基准运动精度高的技术优势,可大大减小由运动机构引入的斜度测量误差。
     针对三维轮廓测量要求,提出了一种二维斜度光学扫描头结构。该扫描头包含两个可分别对径向及切向斜度进行测量的子扫描头,并能够对测点处的二维斜度信息进行同步采集,两个子扫描头中的误差补偿光路均能够实时、动态补偿由激光束角漂引起的斜度测量误差,进而有效减小由激光束角漂引起的三维轮廓测量误差。
     结合基于超精密回转扫描的大口径非球面测量系统的结构组成,以矩阵光学和向量形式的折、反射定律为理论基础,分析了各误差因素对二维斜度测量的影响机理,并进一步对各误差因素的权重进行了比较,从而为系统研制过程中各部件的加工和选型提供了可靠的理论依据。
     为了减小衍射光斑的平滑过程引入的斜度测量误差,研究了一种曲线窗口旋滤波方法,并将滤波效果与传统滤波方法进行了比较,分析结果表明:曲线窗口旋滤波方法在有效滤除图像噪声的同时,能够较好地保持衍射光斑暗线区域的光强分布特征,进而减小测量及参考光斑的亚像素定位误差。同时,为了选择高精度的数值重构方法,提出了一种对不同数值方法在频域内进行比较的评定方法,进而为选择重构精度高、噪声抑制能力强的数值方法提供了理论依据,有利于轮廓测量精度的提高。
     最后,根据预研目标,研制了基于超精密回转扫描的大口径非球面测量系统样机,并对样机进行了实验测试。实验中选择了直径为50mm的平面镜作为被测对象,并将样机的测量结果与国际上轮廓测量水平较高的AK100菲索干涉仪进行比对,比对结果为:PV值=0.1λ,RMS值=0.05λ,从而验证了基于超精密回转扫描的大口径非球面测量方案的可行性。
With continuous development of optical fabrication and measurement technology, the large aperture deep aspheric optical component has been one of the key parts which make important role in following regions: astronomical optics, space optics, detection and identification of foundation space target, atmospheric transmission of laser, inertial confinement fusion etc.. The key factor that confines machining level of large aperture aspheric is decided by measurement method and instrument which are adaptive to machining requirements. For traditional contact measuring method, the fatal flaw is its easy damaging surface of optical elements. Among non-contact measuring methods, both whole aperture interference and sub-aperture stitching interference methods can not meet machining requirements of large aperture aspherics because of difficult fabrication of compensating lens and error accumulation in process of stitching. Therefore, it is necessary to develop a kind of high precise and non-contact measuring system of large aperture aspherics.
     The subject“Study on Technique of measuring large aperture aspheric surface based on ultra-precise rotary scanning”is to develop a high precise and non-contact three dimensional profile rotary scanning measuring technique of hither plane large aspheric surface which is based on measuring technique of large aspheric surface based on f-θlens system. The diffractive collimated beam generated by two-dimensional phase plate is used as measuring basis beam and dark line of diffractive spot is looked as location basis. The precise location of scanning beam is realized by ultra-precise linear air floating rail and the rotary motion of large aperture aspherics is realized by ultra-precise air floating turntable. The subject develops a effective technique for solving three-dimensional profile measurement of hither plane large aperture aspheric surface and provides theoretical basis and preparation work for developing measurement technique of large aperture deep aspheric surface. The application of this technique in measuring synchrotron radiation aspherics, cylindrical surface, thin and long optical surface is prospective.
     According to operation principle of diffractive long trace profiler (LTP), the basic characters of f-θlens system based on diffractive collimated technique are analyzed. Considering factual structure of measuring equipment, every factor affecting measuring accuracy of slope is also analyzed. Therefore, the firm theoretical basis for introducing diffractive LTP to measuring technique of large aperture aspheric surface is built.
     In order to measuring three-dimensional profile of large aperture aspheric surface, a kind of measuring technique of large aperture aspheric surface based on ultra-precise rotary scanning is presented. The rotary scanning measuring of surface under test is realized by combining ultra-precise linear motion and ultra-precise rotary motion, then measuring error of slope caused by motive structure is greatly reduced because of high precise rotary base motion.
     Aiming at measuring requirement of three-dimensional profile, a kind of two-dimensional slope optical scanning head is presented. It consists of two sub scanning heads which respectively measure slopes along radial and tangential directions, furthermore, the two-dimensional slope of measured spot can be detected simultaneously. The error compensation optical paths in the two sub scanning heads can real-time and dynamically compensate slope error caused by angle shift of laser beam, then the three-dimensional profile measuring error caused by angle shift of laser beam can also be reduced greatly.
     Considering structure of measuring system of large aperture aspheric surface based on ultra-precise rotary scanning, the effects of every error factor on measuring two-dimensional slope are analyzed based on matrix optics and law of refraction and reflection in vector form. In addition, weights of every error factor are also compared, then theoretical basis for machining and selecting of every part in process of development is provided.
     In order to reduce measuring error of slope caused by filtering diffractive spot, a filtering method based on curve window is studied and compared with traditional filtering methods. The analyzing results show that the filtering method based on curve window can effectively filter image noise without changing distribution of optical intensity around dark line of diffractive spot, so sub-pixel location error of measurement and reference spots may be reduced greatly. At the same time, in order to select high precise numeric reconstructing method, an assessment method which compares different numerical reconstructing methods in frequency domain is presented, which provides theoretical basis for selecting high precise and strong ability of suppressing noise numerical reconstruction method. Furthermore, measuring accuracy of profile is improved.
     At last, according to research target, the prototype of large aperture aspheric surface measurement system based on ultra-precise rotary scanning is developed and is tested experimentally. The flat mirror whose diameter is 50mm is used as measured object, and the measuring result is compared with AK100 fizeau interferometer whose measuring level is higher in the world. The experimental results show that PV value and RMS value between the two kinds of method are respectively 0.1λand 0.05λ, and then the measuring method of large aperture aspheric surface based on ultra-precise rotary scanning is demonstrated to be feasible.
引文
1普里亚耶夫.光学非球面检验.科学出版社. 1982: 1~4, 54~66
    2 Rolf Freimann, Bernd D?rband, Frank H?ller. Absolute Measurement of Non-comatic Aspheric Surface Errors. Optics Communications. 1999, 161: 106~114
    3王孝坤,王丽辉,郑立功等.子孔径拼接技术在大口径高陡度非球面检测中的应用.强激光与粒子束. 2007, 19(7): 1144~1148
    4 C. Pruss, H. J. Tiziani. Dynamic Null Lens for Aspheric Testing Using a Membrane Mirror. Optic Cummunications. 2004, 233: 15-19
    5 Michael Schulz, Peter Thomsen-Schmidt, Ingolf Weingartner. A Reliable Curvature Sensor for Measuring the Topography of Complex Surfaces. SPIE. 2000, 4098: 84~93
    6 Ingolf Weingartner, Michael Schulz, Clemens Elster et al. Simultaneous Distance, Slope, Curvature and Shape Measurement with a Multi-Purpose Interferometer. SPIE. 2002, 4778: 198~205
    7 Ingolf Weingartner, Michael Schulz. Analysis of the Uncertainty of the Ultraprecise Large-Area Curvature Scanning Technique for Measuring Steep Aspheres and Complex Surfaces. SPIE. 2001, 4451: 325~332
    8 Clemens Elster, Joachim Gerhardt, Peter Thomsen-Schmidt et al. Reconstructing Surface Profiles from Curvature Measurements. Optik. 2002, 113(4): 154~158
    9 Ingolf Weingartner, Michael Schulz. Novel Scanning Technique for Ultra-Precise Measurement of Slope and Topography of Flats, Aspheres and Complex Surfaces. SPIE. 1999, 3739: 274~282
    10 Gilles Garcin, Christophe Lafay, Gilles Le Saux et al. Application of a Deflectometry Method to Deep Aspheric Ophthalmic Surfaces Testing. SPIE. 1999, 3739: 291~295
    11 Paul Glenn. Lambda-Over-One-Thousand Metrology Results for Steep Aspheres Using a Curvature Profiling Technique. SPIE. 1991, 1531: 54~61
    12李直.同步辐射用大型非球面光学表面轮廓测量系统的研究.清华大学博士论文. 2001: 3~15
    13叶军君,兰劲,郭隐彪.非球面检测误差分析和误差补偿策略研究.中国机械工程. 2007, (23): 2793~2797
    14谢晋.光学非球面的超精密加工技术及非接触检测.华南理工大学学报. 2004,32(2): 94~98
    15 WANG Quandou, ZHANG Zhongyu, ZHANG Xuejun et al. Novel Profilometer with Dual Digital Length Gauge for Large Aspherics Measurement. SPIE. 2000, 4231: 39~46
    16 Kim C., Wyant J. Subaperture Test of A large Flat on A Fast Aspheric Surface. J.Opt. Soc. Am. 1981, (71): 1587
    17 Thunen J. G., Kwon O. Y. Full Aperture Testing with Subaperture Test Optics. SPIE. 1982, 351: 19~27
    18 Murphy P. E., Forbes G., Fleig J. et al. Stitching Inter-Ferometry: A Flexible Solution for Surface Metrology. Optics & Photonics News. 2003, (14): 38~43
    19 Fleig J., Dumas P., Murphy P. E. et al. An Automated Subaperture Stitching Interferometer Workstation for Spherical and Aspherical Surfaces. SPIE. 2003, 5188: 296~307
    20 Murphy P. E., Fleig J., Forbes G. et al. High Precision Metrology of Domes and Aspheric Optics. SPIE. 2005, 5786: 112~121
    21 Tricard M., Dumas P., Forbes G. Sub-Aperture Approaches for Asphere Polishing and Metrology. SPIE. 2005, 5638: 284~299
    22 Wayne R. McKinney, Steven C. Irick. XUV Synchrotron Optical Components for the Advanced Light Source: Summary of the Requirements and the Developmental Program. SPIE. 1992, 1740: 154~160
    23 Yao Lin, Peter Z. Takacs, Karen Furenlid et al. A Novel Non-Contact Profiler Design for Measuring Synchrotron Radiation Mirrors. SPIE. 1990, 1333: 168~174
    24 Shinan Qian, Qiuping Wang, Yilin Hong et al. Multiple Functions Long Trace Profiler (LTP-MF) for National Synchrotron Radiation Laboratory of China. SPIE. 2005, 5921: 592104-1~592104-7
    25 G. Sostero, D. Cocco, S. N. Qian. Metrological Challenges of Synchrotron Radiation Optics. SPIE. 1999, 3739: 310~316
    26 Heiner Lammert, Fred Senf, Marion Berger. Improvement of Synchrotron Radiation Mirrors below the 0.1 arcsec rms Slope Error Limit with the Help of a Long Trace Profiler. SPIE. 2004, 3152: 168~179
    27 Bieren K V. Pencil Beam Interferometer for Aspherical Optical Surfaces in Laser Diagnostics. SPIE. 1982, 343: 101~108
    28 Bieren K V. Interferometry of Wavefronts Reflected off Conical Surfaces. Appl. Opt. 1983, (22): 2109~2114
    29 Peter Z. Takacs. Cylinder Lens Alignment in the LTP. SPIE. 2005, 5921: 592105-1~592105-8
    30万勇建,范斌,袁家虎等.大型非球面主镜细磨中的一种在线检测技术.光电工程. 2005, 32(1): 1~4
    31唐健冠,伍凡,吴时彬.大口径非球面精磨表面形状检测技术研究.光学技术. 2001, 27(6): 509~511
    32倪颖,余景池,郭培基等.小型非球面轮廓测量仪的原理及应用.光学精密工程. 2003, 11(6): 612~616
    33杨国光.近代光学测试技术.机械工业出版社. 1986: 11~25
    34伍凡.非球面干涉仪零检验的补偿器设计.应用光学. 1997, 18(2): 10~13
    35林关青,羿美良.高次非球面板补偿检验方法的研究.天体物理学报. 1998, 18(3): 330~340
    36刘惠兰,郝群,朱秋东等.利用部分补偿透镜进行非球面面形测量.北京理工大学学报. 2004, 24(7): 625~628
    37 R. S. Sirohi, Mahendra P. Kothiyal. Optical Components, Systems, and Measurement Techniques. New York: M. Dekker, c1991
    38刘惠兰,郝群,朱秋东.利用部分补偿透镜进行非球面面形测量.北京理工大学学报. 2004, 24(7): 625~628
    39郭培基,余景池,孙侠菲.一种大数值孔径小非球面检测用补偿器设计.光学精密工程. 2002, 10(5): 518~522
    40刘惠兰,郝群,朱秋东.利用部分补偿透镜进行非球面面形测量.北京理工大学学报. 2004, 24(7): 625~628
    41 Bernd Dorband, H. J. Tiziani. Testing Aspheric Surface with Computer-Generated Holograms: Analysis of Adjustment and Shape Errors. Applied Optics. 1985, (24): 2604~2611
    42 J. H. Burge. Applicantion of Computer-generated Holograms for Interferometric Measurement of Large Aspheric Optics. SPIE. 1995, 2576: 258~269
    43 Takashi. Interferometry for Measuring Large Aspherical Surfaces with Holographic Optical Elements Made by Two Steps. SPIE. 1995, 2576: 236~240
    44常军,李凤友,翁志成等.用计算全息法检测大口径凸非球面的研究.光学学报. 2003, 23(10): 1266~1268
    45卢振武,刘华,李凤友.利用曲面计算全息图进行非球面检测.光学精密工程. 2004, 12(6): 555~559
    46 M. Schulz, R. D. Geckeler, J. Illemann. High Accuracy form Measurement of LargeOptical Surfaces. SPIE. 2003, 5190: 211~220
    47 Peter ThomsenSchmidt, Michael Schulz, Ingolf Weingartner. A Facility for the Curvature-Based Measurement of the Nanotopography of Complex Surfaces. SPIE. 2000, 4098: 94~101
    48 Thunen J. G., Kwon O. Y. Full Aperture Testing with Subaperture Test Optics. SPIE. 1982, 351: 19~27
    49 Chow W. W., Lawrence G. N. Method for Subaperture Testing Interferogram Reduction. Opt. Lett.. 1983, (8): 468~470
    50 Jensen S. C., Chow W. W., Lawrence G. N. Subaperture Testing Approaches: Comparison. Appl. Opt.. 1984, (23): 740~745
    51 Stuhlinger T. W.. Subaperture Optical Testing: Experimental Verification, In Contemporary Optical Instrument Design, Fabrication, and Testing. SPIE. 1986, 656: 118~127
    52 Yu Y. J., Chen M. Y. Correlative Stitching Interferometer and Its Key Techniques. SPIE. 2002, 4777: 382~393
    53 Chen J. B., Song D. Z., Zhu R. H. et al. Large-Aperture High-Accurac Phase-Shifting Digital Flat Interferometer. SPIE. 1993, 2003: 367~375
    54 Chen M. Y., Wu D. Z. Multiaperture Overlap-Scanning Technique for Moire Metrology. SPIE. 1996, 2861: 107~112
    55 Bray M. Stitching Interferometer for Large Plano Optics Using a Standard Interferometer. SPIE. 1997, 3134: 39~50
    56 Tang S. H. Stitching: High-Spatial-Resolution Microsurface Measurements Over Large Areas. SPIE. 1998, 3479: 43~49
    57 Wyant J. C., Schmit J. Large Field of View, High Spatial Resolution, Surface Measurements. Intl. J. of Machine Tools and Manufacture. 1998, (38): 691~698
    58 Schmucker M. A., Schmit J. Selection Process for Sequentially Combining Multiple Sets of Overlapping Surface Profile Interferometric Data to Produce a Continuous Composite Map. US Patent#5, 991, 461; Veeco Corporation, Nov.23, 1999
    59 Bray M. Stitching Interferometer for Large Optics: Recent Developments of a System. SPIE. 1999, 3492: 946~955
    60郭红卫.多孔径拼接技术实现360°面形测量.上海大学博士论文. 2001
    61 Bray M. Stitching Interferometry and Absolute Surface Shape Metrology: Similarities. SPIE. 2001, 4501: 375~383
    62 Sj?edahl M., Oreb B. F. Stitching Interferometric Measurement Data for Inspection of Large Optical Components. Optical Engineering. 2002, (41): 403~408
    63 Assoufid L., Bray M., Qian J. et al. M. 3-D SurfaceProfile Measurements of Large X-Ray Synchrotron Radiation Mirrors Using Stitching Interferometry. SPIE. 2002, 4782: 21~28
    64 Yu Y. J., Chen M. Y. Correlative Stitching Interferometer and Its Key Techniques. SPIE. 2002, 4777: 382~393
    65 Chen M. Y., Guo H. W., Yu Y. J. et al. Recent Developments of Multiaperture Overlap-Scanning Technique. SPIE. 2003, 5180: 393~401
    66何海涛,郭红卫,于嬴洁等.基于虚拟圆柱的曲面拼接方法.光学学报. 2004, 24(7): 978~982
    67 Bray M. Stitching Interferometry: Recent Results and Absolute Calibration. SPIE. 2004, 5252: 305~313
    68 Murphy P. E., Forbes G., Fleig J. et al. Stitching Interferometry: A Flexible Solution for Surface Metrology. Optics&Photonics News. 2003, (14): 38~43
    69 Fleig J., Dumas P., Murphy P.E. et al. An Automated Subaperture Stitching Interferometer Workstation for Spherical and Aspherical Surfaces. SPIE. 2003, 5188: 296~307
    70 Dumas P. R., Fleig J., Forbes G. W. et al. Flexible Polishing and Metrology Solutions for Free-Form Optics. ASPE Winter Meeting on Free-Form Optics Design, Fabrication, Metrology, Assembly. 2004: 39~44
    71 Tricard M., Dumas P., Forbes G. Sub-Aperture Approaches for Asphere polishing and Metrology. SPIE. 2005, 5638: 284~299
    72 Murphy P.E., Fleig J., Forbes G. et al. High Precision Metrology of Domeand Aspheric Optics In Window and Dome Technologies and Materials IX .SPIE. 2005, 5786: 112~121
    73 Day R. D., Beery T. A., Lawrence G. N. Sphericity Measurements of Full Sphere Using Subaperture Optical Testing Techniques. SPIE. 1986, 661: 334~341
    74 Lawrence G. N., Day R. D. Interferometric Characterization of Full Spheres: Data Reduction Techniques. Applied Optics. 1987, (26): 4875~4882
    75 Griesmann U., Soons J., Wang Q. Measuring Form and Redius of Spheres with Interferometry. CIRP Annals. 2004: 451~454
    76 Liu Y. M., Lawrence G. N., Koliopoulo C. L. Subaperture Testing of Asphere with Annular Zones. Applied Optics. 1988, 27(21): 4504~4513
    77 Tronolone M. J., Fleig J. F., Huang C. S. et al. Method of Testing Aspherical Optical Surfaces with an Interferometer. U.S.Patent#5, 416, 586, Trope Corporation. 1995
    78侯溪,伍凡,吴时彬等.使用环形子孔径拼接检测大口径非球面镜.光学技术.2005, 31(4): 506~508,512
    79侯溪,伍凡,吴时彬等.以环形子孔径扫描法测量大口径非球面的研究.光电工程. 2004, 31(9): 26~28
    80曹天宁,郑为民,白剑等.球面的快速测量与非球面的快速拼接.光学技术. 1998, (3): 31~37
    81白剑,程上彝.子孔径检测及拼接的矩阵分析.上海交通大学学报. 1997, (31): 77~80
    82张蓉竹,杨春林,石琦凯等.子孔径拼接干涉检测及其精度分析.光学学报. 2003, (23): 1241~1244
    83张蓉竹. ICF系统光学元件高精度波前检测技术研究.四川大学博士论文. 2003
    84侯溪,伍凡等.环形子孔径拼接算法的精度影响因素分析.光电工程. 2005, 32(3): 20~24
    85 S. C. kick. Determining Surface Profile from Sequential Interference Patterns from a Long Tracer Profiler. Rev. Sci. Instrum.. 1992, 63(1): 1432~1435
    86 S. C. Irick, W. R. McKinney. Advancements in One-Dimensional Profiling with a Long Trace Profiler. SPIE. 1992, 1720: 162~168
    87 Shinan Qian, Peter Takacs. Precise Angle Monitor Based on the Concept of Pencil-Beam Interferometry. SPIE. 2000, 4101: 263~272
    88 Shinan Qian, Werner Jark, Giovanni Sostero et al. Precise Measuring Method for Detecting the In Situ Distortion Profile of a High-Heat-Load Mirror for Synchrotron Radiation by Use of a Pentaprism Long Trace Profile. APPLIED OPTICS. 1997, 36(16): 3769~3775
    89 Takacs P Z, Qian S N. Design of a Long Trace Surface Profiler. SPIE. 1987, 749: 59~64
    90 Takacs P Z, Qian S. Surface Profiling Interferometer. US Patent No. U4884697, Dec.5, 1989
    91 Mckinney W, Irick S C, Lunt D J. XUV Synchrotron Optical Components for the Advanced Light Source: Summary of the Requirements and the Developmental Program. SPIE. 1992, 1740: 154~160
    92 S. C. hick, W. R. McKinney, D. L. J. Lunt. Using a Straightness Reference in Obtaining More Accurate Surface Profiles from a Long Trace Profiler. Rev. Sci. Instrum. 1992, 63 (l): 1436~1438
    93 Irick S C. Improved Measurement Accuracy in a Long Trace Profiler: Compensation for Laser Pointing Instability. Nuclear Instruments and Methods inPhysics Research A. 1994, (347): 226~230
    94 Takacs P Z, Furenlid K, Church E L. In Advanced Optical Manufacturing and Testing. SPIE. 1990, 1333: 205
    95 Zhi Li, Yang Zhao, Dacheng Li. A Novel Long Trace Profiler for Synchrotron Radiation Optics. Optics & Laser Technology. 2005, (37): 391~396
    96李直,赵洋,李达成.衍射型长程大型非球面轮廓测量仪.光学学报. 2002, 22(10): 1224~1228
    97 Zhao Y, Li Z, Li D et al. Principle ofπ-Phase Long Trace Profiler for Synchrotron Radiation Optics. Optics Communations. 2001, (200): 23~26
    98 Tiqiao Xiao, Shaojian Xia. A New Long Trace Profiler for Aspheric Optical Surface Metrology. SPIE. 2002, 4927: 208~213
    99 Shinan Qian, Peter Takacs. Portable Long Trace Profiler: Concept and Solution. Rev. Sci. Instrum. 2001, 72(8): 3198~3204
    100 Amparo Rommeveaux, Muriel Thomasset, Daniele Cocco et al. First Report on a Eurapean Round Robin for Slope Measuring Profilers. SPIE. 2005, 5921: 592101-1~592101-12
    101 Muriel Thomasset, Sylvain Brochet, Fran?ois Polack. Latest Metrology Results with the SOLEIL Synchrotron LTP. SPIE. 2005, 5921: 592102-1~592102-9
    102 Takacs P Z, Feng S K, Church E L et al. Long Profile Measurements on Cylindrical Aspheres. SPIE. 1989, 966: 354~364
    103 Takacs P Z, Furenlid K, DeBiasse R et al. Surface Topography Measurements over the 1 Meter to 10 Micrometer Spatial Period Bandwidth. SPIE. 1989, 1164: 203~211
    104 Zhou Changxin, Li hengshun, Chen chukang et al. Developing of In-Suit Long Trance Profiler for Testing Slope Error of Aspherical Optical Elements. SPIE. 2005, 6024: 60241M-1~60241M-9
    105周长新,梁荣,李恒顺等.同步辐射光学元件面形误差现场测量长迹面型仪的研制.全国第二届同步辐射专业委员代表大会暨学术年会论文. 1992.
    106 Shinan Qian, Werner Jark, Giovanni Sostero et al. Advantages of the In-Situ LTP Distortion Profile Test on High-Heat-Load Mirrors and Applications. SPIE. 1996, 2856: 172~182
    107 Peter Z. Takacs, Shinan Qian, Kevin J. Randa11 et al. Mirror Distortion Measurements with an In-Situ LTP. SPIE. 1998, 3447: 117~124
    108 Shinan Qian, Werner Jark, Peter Z. Takacs. In Situ Surface Profiler for High Heat Load Mirror Measurement. OPTICAL ENGINEERING. 1995, 34(2): 396~402
    109 Haizhang Li, Xiaodan Li, Manfred W. Grindel et al. Measurement of X-Ray Telescope Mirrors Using a Vertical Scanning Long Trace Profiler. Optical Engineering. 1996, 35(2): 330~338
    110 Shinan Qian, Haizhang Li, Peter Z. Takacs. Penta-Prism Long Trace Profiler (PPLTP) for Measurement of Grazing Incidence Space Optics. SPIE 2805: 108~114
    111 Mikhail Gubarev, Thomas Kester, Peter Z. Takacs. Calibration of a Vertical-Scan Long Trace Profiler at MSFC. SPIE. 2001, 4451: 333~339
    112 Peter Z. Takacs, Shinan Qian, Thomas Kester et al. Large-Mirror Figure Measurement by Optical Profilometry Techniques. SPIE. 1999, 3782: 266~274
    113 Haizhang Li, Peter Z. Takacs, Tom Oversluizen. Vertical Scanning Long Trace Profiler: a Tool for Metrology of X-ray Mirrors. SPIE. 1997, 3152: 180~187
    114 D. Cocco, A. Bianco, G. Sostero. A Second Optic Head for the ELETTRA Long Trace Profiler. SPIE. 2005, 5921: 59210L-1~59210L-10
    115 Yang Zhao, Zhi Li, Dacheng Li et al. Principle ofπ-Phase Plate Long Trace Profile for Synchrotron Radiation Optics. Optics Communications. 2001, 200(1-6): 23~26
    116曾理江.自适应激光准直方法和实验研究.清华大学博士论文. 1989
    117殷纯永,陈计金,方仲彦.双光束自适应旋光准直系统.清华大学学报. 1991, 31(2):55~60
    118 Peter Z. Takacs, Shinan Qian. Sub-Microradian Error Sources in Pencil Beam Interferometry. SPIE. 2003, 5180: 377~384
    119梁铨廷.物理光学.机械工业出版社. 1986
    120 Yu Jingchi, Xu jinqiang, Zhang Xuejun et al. Surface Contour Measurement Using an Optical Scanner. SPIE. 1995, 2536: 192~199
    121 Shinan Qian, Peter Takacs. Equal Optical Path Beam Splitters by Use of Amplitude-Splitting and Wavefront-Splitting Methods for Pencil Beam Interferometer. SPIE. 2004, 5193: 79~88
    122 Shman Qian, Giovanni Sostero, Peter Z. Takacs. Precision Calibration and Systematic Error Reduction in the Long Trace Profiler. SPIE. 1999, 3782: 627~636
    123 Steve Irick. Error Reduction Techniques for Measuring Long Synchrotron Mirrors. SPIE. 1998, 3447: 101~108
    124 Steve Irick. Considerations for Mounting the Dove Prism in the Reference Beam of the Long Trace Profiler. ALS Beamline Note; Rev Nr. 002; Mounting the Dove Prism in the LTP. 1998
    125 Ryo Shinozaki, Osami Sasaki, Takamasa Suzuki. One-Dimensional Surface Profile Measurement with a Fast Scanning Method by Detecting Angular Deflection of aLaser Beam. SPIE. 2005, 5633: 31~39
    126 Peisen S. Huang, Xiaorong R. Xu. Design of an Optical Probe for Surface Profile Measurement. Optical Engineering. 1999, 38(7): 1223~1228
    127 Ingolf Weing?rtner, Michael Schulz, Clemens Elster. Novel Scanning Technique for Ultra-Precise Measurement of Topography. SPIE. 1999, 3782: 306~317
    128 Wei Gao, Peisen S. Huang, Tomohiko Yamada et al. A Compact and Sensitive Two-dimensional Angle Probe for Flatness Measurement of Large Silicon Wafers. Precision Engineering. 2002, (26): 396~404
    129 Ryo Shinozaki, Osami Sasaki, Takamasa Suzuki. Fast Scanning Method for One-dimensional Surface Profile Measurement by Detecting Angular Deflection of a Laser Beam. APPLIED OPTICS. 2004, 43(21/20): 4157~4163
    130 Yu Jingchi, Xu Jinqiang, Zhang Xuejun. Surface Contour Measurement Using Optical Scanner. SPIE. 1995, 2536: 192~199
    131 Shinan Qian, Peter Z. Takacs. Wave Front-Splitting Phase Shift Beam Splitter for Pencil Beam Interferometer. Rev. Sci. Instrum. 2003, 74(11): 4881~4884
    132 Shinan Qian, Werner Jark, Peter Z. Takacs. The Penta-prism LTP: A Long-Trace-Profiler with Stationary Optical Head and Moving Penta-Prism. Rev. Sci. Instrum. 1995, 66(3): 2562~2569
    133 Sei Moriyasu, Peter Z. Takacs, Jun-ichi Kato et al. On-Machine Metrology with LTP (Long Trace Profiler). SPIE. 2003, 5180: 385~392
    134 Peter Z. Takacs, Karen Furenlid, Eugene L. Church. In Search of the Elusive True Surfaces. SPIE. 1990, 1333: 205~219
    135 Matthias Wurm, Ralf D. Geckeler. A New Method and a Novel Facility for Ultra-Precise 2d Topography Measurement of Large Optical Surfaces. SPIE. 2004, 5457: 401~410
    136 Michael Schulz, Ingolf Weingartner. Avoidance and Elimination of Errors in Optical Scanning. SPIE. 1999, 3823: 133~141
    137 Peter Z. Takacs, CynthiaJ. Bresloff. Significant Improvements in Long Trace Profiler Measurement Performance. SPIE. 1996, 2856: 236~245
    138谢伦治,卞洪林,王振华.面阵探测器的像点亚像素定位研究.光学与光电技术. 2003, 1(2): 51~56
    139郭玉波,姚郁,遆晓光.一种改进的亚像素算法.光电工程. 2006, 33(10): 137~140
    140潘兵,谢惠民,戴福隆.数字图像相关中亚像素位移测量算法的研究.力学学报. 2007, 39(2): 245~252
    141王岩松,阮秋琦.一种基于互相关的图像定位匹配算法研究及应用.北方交通大学学报. 2002, 26(2): 20~24
    142李春艳,谢华,李怀锋等.高精度星敏感器星点光斑质心算法.光电工程. 2006, 33(2): 41~44
    143马少鹏,金观昌,赵永红.数字散斑相关方法亚像素求解的一种混合方法.光学技术. 2005, 31(6): 871~874,877
    144郑毅.基于空间矩的激光光斑中心亚像素定位.激光与红外. 2005, 35(7): 521~523
    145王成亮,邹峥嵘,闾海庆等.亚像素定位的关键问题研究.海洋测绘. 2007, 27(1): 70~73
    146 B. Zielinski, K. Patorski. Comparative Analysis of the Interferogram Noise Filtration Using Wavelet Transform and Spin Filtering Algorithms. SPIE. 2008, 7141: 71410T-1~71410T-9
    147 Wenping Yang, Hao Meng, Jihua Fu et al. Subpixel Location Method of Bessel Light Center Based on Improved Spin Filtering and Gray Scale Interpolation. SPIE. 2008, 7129: 71290Y-1~71290Y-7
    148 Qifeng Yu, Xiangyi Sun, Xiaolin Liu. Spin Filtering with Curve Windows for Interferometric Fringe Patterns. SPIE. 2002, 4537: 358~361
    149 Qifeng Yu, Xiangyi Sun, Xiaolin Liu. Removing Speckle Noise from Speckle Fringe Patterns by Spin Filtering with Curved Surface Windows. SPIE. 2002, 4664: 73~79
    150瞿瑞彩,谢伟松.数值分析.天津大学出版社. 2000
    151封建湖,车刚明,涅玉峰等.数值积分原理. 2001: 101~127
    152 Ralf D. Geckeler, Ingolf Weingartner. Sub-nm Topography Measurement by Deflectometry: Flatness Standard and Wafer Nanotopography. SPIE. 2002, 4779: 1~12
    153 Steven C. Irick, R. Krishna Kaza, Wayne R. McKinney. Obtaining Three-Dimensional Height Profiles from a Two-Dimensional Slope Measuring Instrument. Rev. Sci. Instrum. 1995, 66(2): 2108~2111
    154 Jan H Rakels. Reconstruction of the Surface f(x,y) When Only ? f(x,y)/? x and ? f(x,y)/? y are Known. Nanotechnology. 1998, 9: 49~53
    155 Clemens Elster, Ingolf Weingartner. High-Accuracy Reconstruction of a Function f(x) When Only df(x)/dx or d2f(x)/dx2 is Known at Discrete Measurement Points.SPIE. 2002, 4782: 12~20
    156邓玲慧,朱鸿茂,吴艳阳.超声散斑数字相关法应用于刚体面内转动测量的研究[J].实验力学,2006,21(6):721-726
    157 Yamaguchi I. Speckle Displacement and Deformation in the Diffraction and Image Fields for Small Object Deformation[J]. Opt. Acta, 1981, 28(10):1359-1376.
    158 Petters W. H. Ranson W F. Digital Imaging Techniques in Experimental Mechanics[J]. Opt. Eng, 1982, 21(3): 427-431.
    159刘栋斌.用数字图像相关法测量线阵CCD的象元位置[J].光学精密工程,1993,1(5):154 -160
    160 Zhou P, Goodson KE. Subpixel Displacement and Deformation Gradient Measurement Using Digital Image/Speckle Correlation[J]. Opt Eng, 2001,40(8): 1613~1620
    161 Po-Chin Hung, A. S. Voloshin. In-plane Strain Measurement by Digital Image Correlation[J]. J. of the Braz. Soc. of Mech. Sci. & Eng, 2003, 25(30):215~221
    162 Zhang J, Jin GC. Application of an Improved Subpixel Registration Algorithm on Digital Speckle Correlation Measurement[J]. Optics & Laser Technology, 2003, 35: 533~542
    163陈华,叶东,陈刚,车仁生.遗传算法的数字图像相关搜索法[J].光学精密工程,2007,15(10):1633-1637
    164 Ma S P, Jin G C. New Correlation Coefficient Designed for Digital Image Correlation Method(DSCM). Proceedings of SPIE, 2003, 5058:25-33
    165潘兵,续伯钦,陈丁,冯娟.数字图像相关中亚像素位移测量的曲面拟合法[J].计量学报,2005,26(2):128~134
    166蔡坤宝,王成良,陈曾汉.产生标准高斯白噪声序列的方法[J].中国电机工程学报,2006,24(12):207-211
    167 Valeriy V. Yashchuk, Steve C. Irick, Alastair A. MacDowell. Elimination of‘Ghost’-Effect-Related Systematic Errors in Metrology of X-ray Optics with a Long Trace Profiler. SPIE. 2005, 5858: 58580X-1~58580X-8
    168 Peter Z. Takacs, Eugene L. Church, Cynthia J. Bresloff et al. Improvements in the Accuracy and the Repeatability of Long Trace Profile Measurements. APPLIED OPTICS. 1999, 38(25): 5468~5479
    169薛梓.基准型圆柱度仪的误差分离及其相关计量性能的研究.哈尔滨工业大学博士论文. 2006: 96~99
    170 Giovanni Sostero, Anna Biancoa, Marco Zangrando. Temperature-Dependence Perturbations on LTP Measurements. SPIE. 2002, 4782: 38~45
    171 Shinan Qian, Peter Takacs. Sub-μrad Angular Stability Measurements by Use Of Long-Trace-Profiler-Based Systems. SPIE. 1999, 3773:158~166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700