用户名: 密码: 验证码:
复杂曲面零件数据拼合与精密加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂曲面零件在汽车精密覆盖件、舰船螺旋桨和航空发动机叶片等零件开发中广泛应用,研究复杂曲面零件的数据拼合与精密加工技术是提高具有复杂曲面特征的产品加工精度和效率的关键。本文研究了数据拼合、加工路径生成、曲面寻位等数据处理关键技术,主要研究工作和创新之处体现在:
     研究测量数据粗拼合和精拼合算法。(1)针对当前粗拼合算法难以定义相似性度量和处理非重叠区域问题,提出基于降维形状标识(DRSD:Dimensionality-Reduction Shape Descriptions)的粗拼合算法。引入角度保形参数化理论对网格曲面在低维空间表述,应用调和映射和角度平化构造局部和全局DRSD,在低维空间搜索最近点、计算刚体变换参数、查询重叠区域和评价拼合误差。实验结果证明相比传统的粗拼合算法DRSD算法拼合效率高,对噪音、分辨率、固定点和缺失等外界因素的影响稳定性好。(2)针对当前精拼合算法的优缺点,提出基于自适应距离函数的精拼合算法。定义自适应距离函数(ADF:Adaptive Distance Function)描述点-曲面距离误差,同传统的点-点距离函数和点-切面距离函数的主要不同是ADF考虑了曲面曲率特征来量化点-曲面最近距离。使用该距离函数建立精拼合的非线性优化模型和求解策略,实验结果证明当初值较差且曲面具有高曲率特征时,ADF精拼合算法在收敛速度和收敛稳定性方面具有优势。
     研究低维空间三轴加工路径生成算法。针对当前大部分路径生成算法只适应参数曲面的问题,应用网格参数化方法ABF(Angle Based Flattening)将网格曲面展开在平面参数区域,提出基于降维策略的三轴加工路径生成方法。一方面通过主成份分析提取单次最长走刀路径生成等平面加工路径,缓解传统算法在平坦区域产生冗余路径的问题;另一方面通过提取网格边界驱动曲线生成边界平移加工路径,避免在三维空间执行切片、平移、相交和投影等复杂的几何运算过程,提高计算效率。
     研究点云-参数族曲面寻位与精度评估方法。提出点云-参数族曲面寻位ADF算法,建立产品质量检测、曲线拟合、对称特征寻位等多种情况下曲面寻位的非线性优化模型。此外,重点分析曲面寻位误差与几何误差的微分运动关系,推导测点位置偏差同几何误差的线性映射关系。在考虑加工、测量等制造误差影响的情况下,构造一个具有笛卡尔坐标变换不变性的数学统计量。应用该统计量提出基于t分布的寻位精度评估模型,并据此推导出刚体变换平移误差与旋转误差的理论上限。
     应用本文提出的算法初步搭建一个基于逆向工程的数字化制造平台。在数字制造装备与技术国家重点实验室已有的软硬件基础上,将本文提出的数据处理算法进行应用,初步搭建一个集成“曲面测量-数据集成-加工制造-质量检测”功能的数字化制造平台。为验证该平台统的可行性,以典型的复杂曲面为例依次执行了数据采集、数据拼合、路径生成、铣削加工、曲面寻位、质量检测等处理过程,加工出满足精度要求的产品。
Complex surfaces have been widely applied into the products development, such as automobile precise panels, propeller of naval vessel and blade of aero-engine. The research on data registration and precision machining technologies towards complex surfaces is a key point to improve the machining accuracy and efficiency of such products. Based on ingoing analysis and summary of previous works, this thesis has investigated the key technologies of data processing, such as data registration, tool path generation and surface localization et al. The major research works and contributions of the thesis are introduced as follows:
     Study the coarse and fine registration algorithms of measured data. (1) For the problem that most coarse registration algorithms have difficulty in defining similarity index and handling non-overlapping data, the thesis has proposed a new algorithm based on Dimensionality-Reduction Shape Descriptions, where Harmoinic Mapping and Angle Based Flattening are used to represent mesh surfaces in both local and global manners. Therefore, searching for closest point, calculating transformation parameters, verifying overlapping regions and evaluating error can be carried out in low-dimensional space. The experimental results indicate that DRSD algorithm is efficient and robust to Gaussian noise, resolution, fixed point and occlusion. (2) For the pros and cons of current fine registration algorithms, the thesis has proposed a new algorithm based on adaptive distance function (ADF), which is used to describe the point-surface distance error. The main difference between adaptive distance function and traditional distance functions is that the curvature feature is considered to quatify point-surface shortest distance. Non-linear optimization model is established to calculate the rigid transformation. The experimental result indicates that ADF algorithm has evident superiority in balancing convergent speed and stability, especially when the initial value is poor and the surfaces have high-curvature features.
     Study the tool path generation algorithm of 3-axis machining in low dimensional space. For the problem that most of current tool path generation methods are only suitable for parametric surfaces, the thesis has presented a 3-axis tool path generation method with dimensionality-reduction strategy, by applying Angle Based Flattening to strech the overall surface on parametric plane. For one hand, iso-planar tool path is generated by employing Principal Component Analysis to obtain a maximal length of machining path. Hence, redundant tool paths of traditional iso-planar methods are relieved. For the other hand, contour-translation tool path is generated by extracting a boundary drive curve on meshes. This avoids complex calculations in 3D space such as slicing, offsetting, intersection, and projection, which increases the computational efficiency.
     Study the surface localization and accuracy evaluation method between point cloud data and parametric family of surfaces. The thesis has proposed an ADF localization algorithm between point and parametric family of surfaces, established the non-linear optimization model for quality inspection, curve fitting and surface localization with symmetrical features. In addition, the thesis focuses on analyzing the differential relationship between localization error and geometric error, and deriving the linear mapping relationship from the geometric error, in order to construct a mathematical statistics with Cartesian frame-independence property. With the constructed statistics, the localization result can be determined by a criminative accuracy model based on t distribution, from which the uppers of translation and rotation errors are also derived.
     Set up a reverse engineering-based digital manufacture platform by applying the proposed algorithms. Based on the existing software and hardware platforms in State Key Laboratory of Digital Manufacturing Equipment and Technology, we have developed the algorithms and basically set up a digital manufacture platform which integrates surface measurement, data processing, machining and quality inspection. To verify its feasibility, a typical complex surface has been employed to implement data acquirement, point cloud registration, tool path generation, milling, surface localization and quality inspection, from which a new product with specified accuracy is produced.
引文
[1]柯映林等.反求工程CAD建模理论、方法和系统.北京:机械工业出版社,2005
    [2]杨文玉,尹周平,孙容磊.数字制造基础.北京:科学出版社,2005
    [3]Marshall, S., Griffiths, J.G. A new cutter-path topology for milling machines. Computer-Aided Design.1994,26(3):204-214
    [4]Ikua, B. W., Tanaka, H., Obata, F., et al. Prediction of cutting forces and machining error in ball end milling of curved surfaces-Ⅱ experimental verification. Precision Engineering.2002,26(1):69-82
    [5]Majid, T.-R. An efficient algorithm for automatic machining sequence planning in milling operations. International Journal of Production Research.2003,41(17): 4115-4131
    [6]Wan, X., Xiong, C., Zhao, C., et al. A unified framework of error evaluation and adjustment in machining. International Journal of Machine Tools and Manufacture. 2008,48(11):1198-1210
    [7]Thepsonthi, T.; Hamdi, M.; Mitsui, K. Investigation into minimal-cutting-fluid application in high-speed milling of hardened steel using carbide mills. International Journal of Machine Tools and Manufacture.2009,49(2):156-162
    [8]Salvi, J., Matabosch, C., Fofi, D.. A review of recent range image registration methods with accuracy evaluation. Image and Vision Computing.2007,25(5): 578-596
    [9]Campbell, R. J., Flynn, P. J. A survey of object representation and recognition techniques. Computer Vision and Image Understanding.2001,81(2):166-210
    [10]Soderkvist, I. Introductory overview of surface reconstruction methods. Research Report, Lulea University of Technology, Sweden,1999
    [11]Azernikov, S., Fischer, A. Efficient surface reconstruction method for distributed CAD. Computer-Aided Design.2004,36(9):799-808
    [12]Kuo, C.-C., Yau, H.-T. A delaunay-based approach to surface reconstruction from unorganized points. Computer-Aided Design.2005,37(8):825-835
    [13]朱心雄.自由曲线曲面造型技术.北京:科学出版社,2000
    [14]Inui, M. Fast inverse offset computation using polygon rendering hardware. Computer-Aided Design.2003,35(2):191-201
    [15]Yau, H.-T., Hsu, C.-Y. Generating NC tool paths from random scanned data using point-based models. International Journal of Advanced Manufacturing Technology. 2009,41(9-10):897-907
    [16]Esat,I.I.; Bahai, H. Surface alignment based on the moment of inertia and improved least-squares methods. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture.2000,214(7):547-554.
    [17]Johnson, A. E. Spin-Images:A representation for 3-D surface matching. PhD thesis. Carnegie Mellon University, USA,1997
    [18]Zhang, D., Hebert, M. Harmonic maps and their applications in surface matching, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1999,524-530
    [19]Gelfand, N. Feature analysis and registration of scanned surfaces. PhD thesis. Stanford University, USA,2006
    [20]Jost, T. Fast geometric matching for shape registration. PhD thesis. Neuchatel University, Switzerland,2002
    [21]Pottmann, H., Huang, Q.-X., Yang, Y.-L., et al. Geometry and convergence analysis of algorithms for registration of 3D shapes. International Journal of Computer Vision.2006,67(3):277-296
    [22]Xiao, G., Ong, S. H., Foong, K. W. C.3D registration of partially overlapping surfaces using a volumetric approach. Image and Vision Computing.2007,25(6): 934-944
    [23]武殿梁,洪军.测量点群与标准曲面的匹配算法研究.西安交通大学学报.2002,36(5):500-503
    [24]吴敏,周来水,王占东等.测量点云数据的多视拼合技术研究.南京航空航天大学学报.2003,35(5):552-557
    [25]戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用.中国图像图形学报.2007,12(3):517-521
    [26]孙世为,梁培志,李志刚.基于曲率RGB的多视点云拼合方法.中国机械工程.2000,16(10):882-884
    [27]刘宇,熊有伦.基于法矢的点云拼合方法.机械工程学报.2007,43(8):7-11
    [28]Lawler, A. Preserving Iraq's battered heritage. Science.2008,321(5885):28-30
    [29]Dalton, R. Archaeology:Pieces of the puzzle. Nature.2007,450(7172):940-941
    [30]Ekenel, H. K., Hua, G, Stiefelhagen, R.3-D face recognition using local appearance based models. IEEE Transactions on Information Forensics and Security.2007,2(3): 630-636
    [31]Nair, P., Cavallaro, A.3-D face detection, landmark localization, and registration using a point distribution model. IEEE Transactions on Multimedia.2009,11(4): 611-623
    [32]Vanden Wyngaerd, J., Van Gool, L. Automatic crude patchregistration:Toward automatic 3D model building. Computer Vision and Image Understanding.2002, 87(1-3):8-26
    [33]Stamos, I., Leordeanu, M. Automated feature-based range registration of urban scenes of large scale. in:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003, pp.555-561
    [34]Gelfand, N., Mitra, N. J., Guibas, L. J., et al. Robust global registration. in: Proceedings of the Symposium on Geometry Processing.2005, pp.197-206
    [35]http://www-graphics.stanford.edu/data/dmich-public/
    [36]Xiao, G, Ong, S. H., Foong, K. W. C. Efficient partial-surface registration for 3D objects. Computer Vision and Image Understanding.2005,98(2):271-293
    [37]Krsek, P., Pajdla, T., Hlavac, V. Differential invariants as the base of triangulated surface registration. Computer Vision and Image Understanding.2002,87(1-3): 27-38
    [38]Yamany, S. M., Farag, A. A. Surface signatures:An orientation independent free-form surface representation scheme for the purpose of objects registration and matching. IEEE Transactions on Pattern Analysis and Machine Intelligence.2002, 24(8):1105-1120
    [39]Ko, K. H., Maekawa, T., Patrikalakis, N. M. An algorithm for optimal free-form object matching. Computer-Aided Design.2003,35(10):913-923
    [40]Hebert, M., Ikeuchi, K., Delingette, H. Spherical representation for recognition of free-form surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1995,17(7):681-690
    [41]Chung, D. H., Yun, I. D., Lee, S. U. Registration of multiple-range views using the reverse-calibration technique. Pattern Recognition.1998,31(4):457-464
    [42]Laga, H., Nakajima, M., Chihara, K. Discriminative spherical wavelet features for content-based 3D model retrieval. International Journal of Shape Modeling.2007, 13(1):51-72
    [43]Johnson, A. E., Hebert, M. Surface matching for object recognition in complex three-dimensional scenes. Image and Vision Computing.1998,16(9-10):635-651
    [44]Makadia, A., Patterson IV, A., Daniilidis, K. Fully automatic registration of 3D point clouds. in:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006, pp.1297-1304
    [45]Chua, C. S., Jarvis, R.3D free-form surface registration and object recognition. International Journal of Computer Vision.1996,17(1):77-99
    [46]Chua, C. S., Jarvis, R. Point signatures:a new representation for 3D object recognition. International Journal of Computer Vision.1997,25(1):63-85
    [47]Chen C.-S., Hung, Y.-P., Cheng, J.-B. RANSAC-based DARCES:a new approach to fast automatic registration of partially overlapping range images. IEEE Transactions on Pattern Analysis and Machine Intelligence.1999,21(11):1229-1234
    [48]Mian, A. S., Bennamoun, M., Owens, R. A. A novel representation and feature matching algorithm for automatic pairwise registration of range images. International Journal of Computer Vision.2006,66(1):19-40
    [49]Zhang, J., Ge, Y., Ong, S. H., et al. Rapid surface registration of 3D volumes using a neural network approach. Image and Vision Computing.2008,26(2):201-210
    [50]Besl, P. J., McKay, H. D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence.1992,14(2):239-256
    [51]黄小平.逆向工程中数据云处理关键技术研究.博士学位论文,武汉:华中科技大学,2002
    [52]Rusinkiewicz, S., Levoy, M. Efficient variants of the ICP algorithm, in:Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling,2001, pp.145-152
    [53]Liu, Y. Improving ICP with easy implementation for free-form surface matching. Pattern Recognition.2004,37(2):211-226
    [54]Trucco, E., Fusiello, A., Roberto, V. Robust motion and correspondence of noisy 3-D point sets with missing data. Pattern Recognition Letters.1999,20(9):889-898
    [55]Sharp, G C., Lee, S. W., Wehe, D. K. ICP registration using invariant features. IEEE Transactions on Pattern Analysis and Machine Intelligence.2002,24(1):90-102
    [56]Zinsser, T., Schmidt, J., Niemann, H. A refined ICP algorithm for robust 3-D correspondence estimation. in:Proceedings of the IEEE International Conference on Image Processing,2003, pp.695-698
    [57]Almdie, A., Leger, C., Deriche, M., et al.3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: Application to medical imaging. Pattern Recognition Letters.2007,28(12): 1523-1533
    [58]Huang, Y, Qian, X., Chen, S. Multi-sensor calibration through iterative registration and fusion. Computer-Aided Design.2009,41(4):240-255
    [59]Wang, W. P., Pottmann, H., Liu, Y. Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Transactions on Graphics. 2006,25(2):214-238
    [60]Chen, Y, Medioni, G. Object modeling by registration of multiple range images, in: Proceedings of the IEEE International Conference on Robotics and Automation, 1991, pp.2724-2729
    [61]Matabosch, C., Fofi, D., Salvi, J., et al. Registration of surfaces minimizing error propagation for a one-shot multi-slit hand-held scanner. Pattern Recognition.2008, 41(6):2055-2067
    [62]Silva, L., Bellon, O. R. P., Boyer, K. L. Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(5):762-776
    [63]Silva, L., Bellon, O. R. P., Boyer, K. L. Multiview range image registration using the surface interpenetration measure. Image and Vision Computing.2007,25(1): 114-125
    [64]Chow, C. K., Tsui, H. T., Lee, T. Surface registration using a dynamic genetic algorithm. Pattern Recognition.2004,37(1):105-117
    [65]Cordon, O., Damas, S., Santamaria, J. A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm. Pattern Recognition Letters.2006,27(11):1191-1200
    [66]Huang, Y, Oliver, J. H. Non-constant parameter NC tool path generation on sculptured surfaces. International Journal of Advanced Manufacturing Technology. 1994,9(5):281-290
    [67]Jun, C.-S., Kim, D.-S., Park, S. A new curve-based approach to polyhedral machining. Computer-Aided Design.2002,34(5):379-389
    [68]Feng, H.-Y., Teng, Z. Iso-planar piecewise linear NC tool path generation from discrete measured data points. Computer-Aided Design.2005,37(1):55-64
    [69]Chen, T., Shi, Z. A tool path generation strategy for three-axis ball-end milling of free-form surfaces. Journal of Materials Processing Technology.2008,208(1-3): 259-263
    [70]Loney, G. C., Ozsoy, T. M. NC machining of free form surfaces. Computer-Aided Design.1987,19(2):85-90
    [71]Sun, Y., Guo, D., Jia, Z., et al. Iso-parametric tool path generation from triangular meshes for free-form surface machining. International Journal of Advanced Manufacturing Technology.2006,28(7-8):721-726
    [72]He, W., Lei, M., Bin, H. Iso-parametric CNC tool path optimization based on adaptive grid generation. International Journal of Advanced Manufacturing Technology.2009,41(5-6):538-548
    [73]Suresh, K., Yang, D. C. H. Constant scallop-height machining of free-form surfaces. ASME Journal of Engineering for Industry.1994,116(2):253-259
    [74]Agrawal, R. K., Pratihar, D. K., Choudhury, A. R. Optimization of CNC isoscallop free form surface machining using a genetic algorithm. International Journal of Machine Tools and Manufacture.2006,46(7-8):811-819
    [75]Ding, S., Mannan, M. A., Poo, A. N., et al. Adaptive iso-planar tool path generation for machining of free-form surfaces. Computer-Aided Design.2003,35(2):141-153
    [76]Han, Z., Yang, D. C. H., Chuang, J. J. Isophote-based ruled surface approximation of free-form surfaces and its application in NC machining. International Journal of Production Research.2001,39(9):1911-1930
    [77]Kim, K.-J., Lee, I.-K. Computing isophotos of surface of revolution and canal surface. Computer-Aided Design.2003,35(3):215-223
    [78]Lu, C. J., Ting, K. L. Subdivision surface-based finish machining. International Journal of Production Research.2006,44(12):2445-2463
    [79]Park, S. C. Tool-path generation for Z-constant contour machining. Computer-Aided Design.2003,35(1):27-36
    [80]Kim, H.-C. Tool path modification for optimized pocket milling. International Journal of Production Research.2007,45(24):5715-5729
    [81]Vijayaraghavan, A., Hoover, A. M., Hartnett, J., et al. Improving endmilling surface finish by workpiece rotation and adaptive toolpath spacing. International Journal of Machine Tools and Manufacture.2009,49(1):89-98
    [82]Choy, H. S., Chan, K. W. A corner-looping based tool path for pocket milling. Computer-Aided Design.2003,35(2):155-166
    [83]王玉国,周来水,安鲁陵等.型腔铣削加工光滑螺旋刀轨生成算法.航空学报.2008,29(1):216-220
    [84]Held, M., Spielberger, C. A smooth spiral tool path for high speed machining of 2D pockets. Computer-Aided Design.2009,41(7):539-550
    [85]Rao, N., Ismail, F., Bedi, S. Tool path planning for five-axis machining using the principal axis method. International Journal of Machine Tools and Manufacture. 1997,37(7):1025-1040
    [86]Kim, B. H., Choi, B. K. Guide surface based tool path generation in 3-axis milling: an extension of the guide plane method. Computer-Aided Design.2000,32(3): 191-199
    [87]Choi, Y.-K., Banerjee, A. Tool path generation and tolerance analysis for free-form surfaces. International Journal of Machine Tools and Manufacture.2007,47(3-4): 689-696
    [88]Zhang, D., Yang, P., Qian, X. Adaptive NC path generation from massive point data with bounded error. ASME Journal of Manufacturing Science and Engineering.2009, 131(1):011001-011013
    [89]Park, S. C. Sculptured surface machining using triangular mesh slicing. Computer-Aided Design.2004,36(3):279-288
    [90]徐金亭,孙玉文,刘伟军.复杂曲面加工检测中的精确定位方法.机械工程学报.2007,43(6):175-179
    [91]Yin, Z., Ding, H., Xiong, Y. Accessibility analysis in manufacturing processes using visibility cones. Science in China Series E:Technological Sciences.2002,45(1): 47-57
    [92]Lee, S.-G., Kim, H.-C., Yang, M.-Y. Mesh-based tool path generation for constant scallop-height machining. International Journal of Advanced Manufacturing Technology.2008,37(1-2):15-22
    [93]Menq, C. H., Yau, H. T., Lai, G. Y. Automated precision measurement of surface profile in CAD-directed inspection. IEEE Transactions on Robotics and Automation. 1992,8(2):268-278
    [94]Chakraborty, D.,De Meter, E. C., Szuba, P. S. Part location algorithms for an intelligent fixturing system part 1:System description and algorithm development. Journal of Manufacturing Systems.2001,20(2):124-134
    [95]Wang, M. Y. Characterizations of localization accuracy of fixtures. IEEE Transactions on Robotics and Automation.2002,18(6):976-981
    [96]Soderberg, R., Lindkvist, L., Carlson, J. S. Managing physical dependencies through location system design. Journal of Engineering Design.2006,17(4):325-346
    [97]Zhu, L., Luo, H., Ding, H. Optimal design of measurement point layout for workpiece localization. ASME Journal of Manufacturing Science and Engineering. 2009,131(1):011006-011013
    [98]储云仙,苟剑波,吴洪等.工件自动混合定位包容问题的研究.机械工程学报.2000,36(1):45-49
    [99]Yan, Z., Yang, B.-D., Menq, C.-H. Uncertainty analysis and variation reduction of three dimensional coordinate metrology. International Journal of Machine Tools and Manufacture.1999,39(8):1199-126
    [100]Zhu, L., Ding, H. Application of kinematic geometry to computational metrology: distance function based hierarchical algorithms for cylindricity evaluation. International Journal of Machine Tools and Manufacture.2003,43(2):203-215
    [101]Yan, S., Zhou, Y, Peng, F., et-al. Research on the localisation of the workpieces with large sculptured surfaces in NC machining. International Journal of Advanced Manufacturing Technology.2004,23(5-6):429-435
    [102]Chatelain, J.-F. A level-based optimization algorithm for complex part localization. Precision Engineering.2005,29(2):197-207
    [103]Phoomboplab, T., Ceglarek, D. Process yield improvement through optimum design of fixture layouts in 3D multistation assembly systems. ASME Journal of Manufacturing Science and Engineering.2008,130(6):061005-061017
    [104]Chen, X., Chen, S., Lin, T., et al. Practical method to locate the initial weld position using visual technology. International Journal of Advanced Manufacturing Technology.2006,30(7-8):663-668
    [105]Park, E. J., Xu, W., Mills, J. K. Calibration-based absolute localization of parts for multi-robot assembly. Robotica.2002,20(4):359-366
    [106]Li, Z., Gou, J., Chu, Y. Geometric algorithms for workpiece localization. IEEE Transactions on Robotics and Automation.1998,14(6):864-878
    [107]Huang, X., Gu, P., Zernicke, R. Localization and comparison of two free-form surfaces. Computer-Aided Design.1996,28(12):1017-1022
    [108]Li, Y, Gu, P. Automatic localization and comparison for free-form surface inspection. Journal of Manufacturing Systems.2006,25(4):251-268
    [109]朱利民,罗红根,丁汉.测量定位误差度量与测点布局规划.中国科学E辑.2004,34(11):1271-1282
    [110]Sahoo, K. C., Menq, C.-H. Localization of 3-D objects having complex sculptured surfaces using tactile sensing and surface description. ASME Journal of Engineering for Industry.1991,113(1):85-92
    [111]Xiong, Z., Li, Z. On the discrete symmetric localization problem. International Journal of Machine Tools and Manufacture.2003,43(9):863-870
    [112]Wang, M. Y An optimum design for 3-D fixture synthesis in a point set domain. IEEE transactions on Robotics and Automation.2000,16(6):839-846
    [113]Hovhannes, S., Armen, Z., Vahram, A.,et al. Robust uniform triangulation algorithm for computer aided design. Computer-Aided Design.2006,38(10):1134-1144
    [114]Sitnik, R., Karaszewski, M. Optimized point cloud triangulation for 3D scanning systems. Machine Graphics and Vision.2008,17 (4):349-371
    [115]Hormann, K., Levy, B., Sheffer, A. Mesh parameterization:Theory and practice. SIGGRAPH Course Notes,2007
    [116]Lin, H., Wang, G, Liu, L., et al. Parameterization for fitting triangular mesh. Progress in Natural Science.2006,16(11):1214-1221
    [117]Wang, S., Wang, Y, Jin, M., et al. Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Transactions on Pattern Analysis and Machine Intelligence.2007,29(7):1209-1220
    [118]Eells J., Sampson, J. H. Harmonic mappings of Riemannian manifolds. American Journal of Mathematics.1964,86:109-160
    [119]Hamilton, R. S. Harmonic maps of manifolds with boundary. Springer-Verlag, New York,1975
    [120]Schoen, R., Yau, S.-T. On univalent harmonic maps between surfaces. Inventiones Mathematicae.1978,44(3):265-278
    [121]Sheffer, A., De Sturler, E. Parameterization of faceted surfaces for meshing using angle-based flattening. Engineering with Computers.2001,17(3):326-337
    [122]Sheffer, A., Levy, B., Mogilnitsky, M., et al. ABF++:fast and robust angle based flattening. ACM Transactions on Graphics.2005,24(2):311-330
    [123]Levy, B., Petitjean, S., Ray, N., et al. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics.2002,21(3):362-371
    [124]熊有伦,尹周平,熊蔡华等.机器人操作.湖北:湖北科学技术出版社,2000
    [125]Chen, H., Bhanu, B.3D free-form object recognition in range images using local surface patches. Pattern Recognition Letters.2007,28(10):1252-1262
    [126]Shen, D., Davatzikos, C. HAMMER:Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging.2002,21(11): 1421-1439
    [127]Lee, H., Lee, J., Kim, N., et al. Robust feature-based registration using a Gaussian-weighted distance map and brain feature points for brain PET/CT images. Computers in Biology and Medicine.2008,38(9):945-961
    [128]Wang, Sen., Wang, Y., Jin, M., et al.3D surface matching and recognition using conformal geometry, in:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006, pp.2453-2460
    [129]Li, X., Bao, Y., Guo, X., et al. Globally optimal surface mapping for surfaces with arbitrary topology. IEEE Transactions on Visualization and Computer Graphics. 2008,14(4):805-819
    [130]朱延娟,周来水,张丽艳.散乱点云数据配准算法.计算机辅助设计与图形学学报.2006,18(4):475-481
    [131]Floater, M. S. Mean value coordinates. Computer Aided Geometric Design.2003, 20(1):19-27
    [132]Averbuch, A., Coifman, R. R., Donoho, D. L., et al. Fast and accurate Polar Fourier transform. Applied and Computational Harmonic Analysis.2006,21(2):145-167
    [133]Koehl, P. Protein structure similarities. Current Opinion in Structural Biology.2001, 11(3):348-353
    [134]Gauss, C. F. Disquisitiones generales circa curvas. Typis Dieterichianis,1828
    [135]Masuda, T. Registration and integration of multiple range images by matching signed distance fields for object shape modeling. Computer Vision and Image Understanding.2002,87(1-3):51-65
    [136]Bentley, J. L. Multidimensional binary search trees used for associative searching. Communications of the ACM.1975,18(9):509-517
    [137]Nocedal, J., Wright, S. J. Numerical optimization. Springer-Verlag, New York,1999
    [138]Yang, D. C. H., Chuang, J. J., OuLee, T. H. Boundary-conformed toolpath generation for trimmed free-form surfaces. Computer-Aided Design.2003,35(2): 127-139
    [139]Li, C. L. A geometric approach to boundary-conformed toolpath generation. Computer-Aided Design.2007,39(11):941-952
    [140]Ding, S., Mannan, M. A., Poo, A. N., et al. Adaptive iso-planar tool path generation for machining of free-form surfaces. Computer-Aided Design.2003,35(2):141-153
    [141]Cohen-Steiner, D., Morvan, J.-M. Restricted delaunay triangulations and normal cycle. In:Proceedings of the Annual Symposium on Computational Geometry,2003, pp.312-321
    [142]Kreyszig, E. Differential geometry. Cover, New York,1991
    [143]Zhou, L., Lin, Y. J. An effective global gouge detection in tool-path planning for freeform surface machining. International Journal of Advanced Manufacturing Technology.2001,18(7):461-473
    [144]Vanderplaats, G. N. Numerical optimization techniques for engineering design:with applications. McGraw-Hill Publishing Company, New York,1984
    [145]Choi, B. K., Park, S. C. A pair-wise offset algorithm for 2D point-sequence curve. Computer-Aided Design.1999,31(12):735-745
    [146]Held, M., Lukacs, G, Andor, L. Pocket machining based on contour-parallel tool paths generated by means of proximity maps. Computer-Aided Design.1994,26(3): 189-203
    [147]熊有伦.精密测量的数学方法.北京:中国计量出版社,1989
    [148]Xiong, C. H., Ding, H., Xiong, Y. L. Fundamentals of Robotic Grasping and Fixturing. World Scientific Publishing Co. Pte. Ltd., Singapore,2007
    [149]刘次华,万建平.概率论与数理统计.北京:高等教育出版社,2003
    [150]程云鹏,徐仲,张凯院.矩阵论.西北工业大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700