用户名: 密码: 验证码:
碳化钨/钢基表层复合材料基体组织改性及其界面连续性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,碳化钨/钢基表层复合材料得到了较好的发展,有望在激冷激热工况下的冶金、机械等领域获得应用。但鉴于该类复合材料组织结构上的复杂性,欲解决以上应用问题,复合材料的组织、界面改性及其与热疲劳性能间的关联机制等基础理论研究将成为重中之重。论文通过在预制层中添加镍、钼、钴等合金粉末,对复合材料的组织、界面和性能进行改性,重点研究了合金粉末对复合材料组织、性能及界面连续性的影响机制,获得了一些有价值的结论,为丰富碳化钨颗粒/钢基表层复合材料的界面理论和扩大其应用范围奠定了基础。
     采用真空实型负压(V-EPC)铸渗工艺,成功制备了含不同种类、数量合金粉末的碳化钨/钢基表层复合材料,研究了工艺参数对组织和性能的影响,结果表明:(1)复合层表面均较平整,过渡层过渡平缓,颗粒与基体间界面呈冶金结合;(2)随着预制层中镍粉质量分数的增加,复合层组织越发均匀,缺陷减少,碳化物含量逐渐增加,其形态从网状变为独立的块状和杆状,复合层硬度呈增大趋势;(3)随着预制层中钼粉质量分数的增加,复合层组织中缺陷逐渐减少,共晶碳化物及含钨初生碳化物含量逐渐增加,复合层硬度呈增大趋势;(4)随着预制层中钴粉质量分数的增加,碳化钨颗粒的棱角更加分明,基体中珠光体组织和白色碳化物C03W3C增加,灰色(Cr,Fe)7C3碳化物的数量减少,而复合层硬度呈递增趋势。
     对含不同种类、数量合金粉末表层复合材料的界面连续性进行了研究,结果表明:(1)通过分区域EDS面扫描测试方法,建立了复合层与基材间宏观界面的连续性考察标准,研究发现,合金粉末的添加均能够改变宏观界面成分与性能的连续性,其中镍粉效果最佳;(2)建立了基体与增强体间微观界面的连续性考察标准:,通过该标准,获得了不同合金粉末添加后微观界面的过渡作用指数(Enon=19.0919;ENi=18.1604;EMo=19.8705;Eco=20.3745),其中镍粉具有最好的过渡作用;(3)获得了微观界面反应区的形成机制:碳化钨颗粒分解产生的W、C元素汇集在颗粒周围,并与基体中的Fe元素结合形成Fe3W3C,另外,由颗粒本身固有的W2C和通过颗粒内部相变生成的W2C直接与基体中的Fe发生反应(3Fe+3/2W2C→Fe3W3C+1/2C)生成Fe3W3C,两种方式产生的Fe3W3C相存在于颗粒与基体间的界面反应区中。
     通过热震实验及热疲劳裂纹观察,研究了组织改性与抗热疲劳性能间的关联性,结果表明:(1)复合材料的界面连续性越好,其抗热疲劳性能越高;(2)随着热震次数的增加,预制层中添加钴粉和钼粉的复合材料的裂纹扩展速度较快,而添加镍粉后,扩展速度显著降低,对于添加钴粉、钼粉的复合材料,宏观界面处裂纹贯穿整个复合层表面需要的热震次数分别为5次和3次,而在60次热震后,添加镍粉的复合材料的裂纹仍未贯穿复合层表面。
Recently, tungsten carbide particles reinforced steel substrate surface composite is developed greatly, and it is expected to be applied in many industries, such as metallurgy, machinery and so on. Because of its complex microstructure, the study on the relationship between microstructure, interface and thermal fatigue property is important for realizing practical application. In this paper, the microstructure and interface of the composite are adjusted through alloying, e.g. alloying element powders such as nickle powder, molybdenum powder and so on were added into the performs, respectively. The influences of alloying powder addition on the microstructure and properties of matrix, interface, interface continuity are studies. Some valuable research conclusions are obtained. The research could enrich the interface theories of tungsten carbide particles reinforced steel substrate surface composite and support its widely practical application.
     Vacuum expendable pattern casting infiltration is used to fabricate the cast tungsten carbide particle reinforced steel substrate surface composites with different kind and quantity alloying powders. The influence of process parameters on microstructure and properties are studied. The results show that:(1) the surface of the composite is smooth relatively, the interface between the surface composite and the substrate has a transition area, the interface between the particle and matrix in the composite have a metallurgical bonding;(2) With the increasing of nickle powder in the composite, the microstructure of composite becomes flawless, and the quantity of carbide in the matrix increases;(3) With the increasing of molybdenum powder, the thickness of the composite increases, the microstructure becomes flawless and harder, and the quantity of eutectic carbide in composite increases;(4) With the increasing of cobalt powder, the quantity of Co3W3C phase increases, and the quantity of (Cr, Fe)7C3decreases, and the tungsten carbide becomes sharply in shape. the hardness of the composite increases.
     The interface continuities of the composites with different process parameters are studied. The results show that:(1) a standard is proposed for the interface continuity measurement for the macroscopic interface between the surface composite and the substrate, and the interface continuity of the macroscopic interface could be influenced by adding alloying powder, in which the nickle powder addition could improve the interface continuity of macroscopic interface;(2) the interface continuity measurement of the microscopic interface between the particle and matrix, is also proposed, the interface tradition effect index of the composite without alloying powder, with nickel, molybdenum, cobalt powder are19.0919,18.1604,19.8705,20.3745, respectively, the microscopic interface continuity of the composite with nickel powder has the best tradition effect.(3) the formation mechanism for the microscopic interface has been revealed. The decomposition of the tungsten carbide particles offers W and C atoms to the matrix, then they react with Fe to produce Fe3W3C. Besides, the original W2C in WC particles and the W2C formed by phase transformation in WC particles react with Fe to produce Fe3W3C. The Fe3W3C from the two reactions form the microscopic interface reaction zone.
     The connection between the microstructure variation and the thermal fatigue property of composite is investigated by thermal shock test and observation on the crack. The results that:(1) the thermal fatigue property of the composite is in proportion to the interface continuity;(2) the crack propagation speeds for the composites with molybdenum and cobalt powder addition are higher, and that for the composite with nickle powder addition is lower. The cracks in composites with molybdenum and cobalt powder addition propagate through the surface of composite after5and3thermal shock cycles. However, after36thermal shock cycles, the crack does not propagate through the surface of composite with nickle powder addition.
引文
[1]陈华辉,邓海金,李明,等.现代复合材料.北京:中国物质出版社,1998.153
    [2]吴利英,高建军,靳武刚.金属基复合材料的发展及应用. 化工新型材料,2002,30(10):32
    [3]王海斗,徐滨士,魏世丞,等.导卫板失效分析及表面喷涂层的耐磨性能.金属热处理,2005,30(8):39-.41
    [4]邢建东,符寒光,高义民等.高温抗磨材料制备技术及其应用.铸造技术,28,2007(11):1407-1408
    [5]李卫.钢铁耐磨材料技术进展.铸造,2006,55(11):1105-1109
    [6]李茂林.我国金属耐磨材料的发展和应用.铸造,2002,51(9):525-529
    [7]李卫.中国铸造耐磨材料的发展—中国铸造耐磨材料产业技术路线图.铸造,2012,61(9):967-983
    [8]张晓玲,秦绪波,孟庆华,等.无压渗透法制备铸造表层复合材料.复合材料学报,1999,16(3):57-61
    [9]王恩泽,郑燕青,邢建东,等.铸渗法制备颗粒增强钢基复合材料的研究.复合材料学报,1998,15(2):12-17
    [10]李文虎.铸渗法制备金属表面涂层的研究现状与进展.热加工工艺,2009,38(17):17-20
    [11]S. F. Corbin, D. S. Wilkonson. Influence of matrix strength and damage accumulationon the mechanical response of a particulate metal matrix composite. Acta Metallurgica et Materialia,1994,42(4):1329-1335
    [12]Bryggman, U.Lindqvist, J.O. Non-Ferrous Materials., Vol.6. Metal Powder Industries Federation, Princeton,1992
    [13]Panchal, P.M., Vela.T. Robisch, T. Fabrication of particulate Reinforced metal composites. ASM International, Metals Park, OH,1990,245-260
    [14]E. Pagounis, M. Talvitie, V. K. Lindroos. Influence of the Metal/Ceramic interface on the microstructure and mechanical properties of HIPed iron-based composites. Composites Science and Technology.1996,56:1329-1337
    [15]E. Pagounis, V. K. Lindroos. Processing and properties of particulate reinforce steel matrix composites. Materials Science and Engineering A.1998,246:221-234
    [16]黄民建.颗粒增强铸造金属基复合材料.湖南冶金,2001(1):44-47
    [17]郭小军.铸渗法制取颗粒增强钢基复合材料的研究[硕士学位论文].沈阳:东北大学,2001
    [18]Rong Zhou, Yehua Jiang, Dehong Lu. The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites. Wear,2003,255(1-6):134-138
    [19]李祖来V-EPC制备铁基表面耐磨复合材料[硕士学位论文].昆明:昆明理工大学机电学院,2004
    [20]于思荣,隋忠祥.铸造碳化钨颗粒/中锰钢表面复合材料制作新工艺及理论研究.吉林工业大学学报,1996(4):30-34
    [21]D.Huda, M.A. El Baradie, M.S.J. Hashmi. Factors afecting the machinability of Al/SiC metal-matrix composite. Master Process Technology,1994,44:152-156
    [22]Wen Huang, Xu Nie, Yuanming Xia. An experimental study on the in situ strength of SiC fibre in unidirectional SiC/Al composites. Composites:Part A,2003,34: 1161-1166
    [23]王春江,王强,赫冀成.液态金属铸造法制备金属基复合材料的研究现状.材料导报,2005,19(5):53-57
    [24]赵敏海,郭面焕,冯吉才,等.外加颗粒增强表层复合材料制备方法.焊接学报,28,2007(2):108-112
    [25]曲寿江,耿林,曹国剑,等.挤压铸造法制备可变形SiCp/Al复合材料的组织与性能.复合材料学报2003,20(3):60-73
    [26]计玉珍,鲍素高.高频熔炼制备Al2O3陶瓷颗粒增强耐热钢基复合材料.铸造技术,2008,29(7):888-890
    [27]范景莲,徐浩翔,黄伯云,等.金属-Al2O3陶瓷基复合材料的研究现状及应用前景.粉末冶金材料科学与工程,2002,7(3):200-206
    [28]王春江,王强,赫冀成.液态金属铸造法制备金属基复合材料的研究现状.材料导报,2005,19(5):53-57
    [29]赵敏海,郭面焕,冯吉才,刘爱国.外加颗粒增强表层复合材料制备方法.焊接学报,28,2007(2):108-112
    [30]曲寿江,耿林,曹国剑等.挤压铸造法制备可变形SiCp/Al复合材料的组织与性能.复合材料学报2003,20(3):60-73
    [31]计玉珍,鲍素高.高频熔炼制备Al2O3陶瓷颗粒增强耐热钢基复合材料.铸造技术,2008,29(7):888-890
    [32]范景莲,徐浩翔,黄伯云等.金属-Al2O3陶瓷基复合材料的研究现状及应用前景.粉末冶金材料科学与工程2002,7(3):200-206
    [33]梁作俭.碳化钨颗粒增强金属基复合材料磨损性能研究[博士论文],西安交通大学,2000
    [34]蒋业华,周荣,卢德宏,等.渣浆泵用WC/铁基表层复合材料的研究.铸造,2002,51(3):170-172
    [35]郭小军.铸渗法制取颗粒增强钢基复合材料的研究[硕士论文].沈阳:东北大学,2001
    [36]李祖来,蒋业华,周荣.铸渗法制备钢铁基表面耐磨复合材料.铸造设备研究,2003,3(6):27-30
    [37]Y. He. Analysis of the Mechanism of Surface Alloying During Casting. Metallurgy Italiana,1998,11:456-457
    [38]华磊,宋月鹏,冯承明.铸渗法制造表面耐磨复合材料的工艺进展.现代铸铁,2002,2:25-27
    [39]于思荣,隋忠祥.铸造碳化钨颗粒/中锰钢表层复合材料制作新工艺及理论研究.吉林工业大学学报,1996,4:30-34
    [40]李祖来.V-EPC制备铁基表面耐磨复合材料[博士学位论文].昆明理工大学,2004
    [41]张玉勤.表面复合材料及其冲蚀磨损性能研究[硕士学位论文].昆明理工大学,2002
    [42]陈景宝.高锰钢基复合材料组织及耐磨性研究[硕士学位论文].西安交通大学,2004
    [43]隋育栋,蒋业华,李祖来,等.一种耐磨损的磨盘.中国.实用新型,ZL201120562281.1,2012年12月21日
    [44]隋育栋,蒋业华,李祖来,等.一种耐磨损的球磨机衬板,中国,实用新型,实用新型,ZL201120561879.9,2012年12月5日
    [45]隋育栋,蒋业华,李祖来,等.一种抗磨损的球磨机衬板,实用新型(授权)ZL201120561891.X,2012年12月5日
    [46]Bryggman, U.Lindqvist, J.O. Non-Ferrous Materials, Vol.6. Metal Powder Industries Federation, Princeton,1992
    [47]Panchal, P.M., Vela,T. Robisch, T. Fabrication of particulate Reinforced metal composites. ASM International, Metals Park, OH,1990,245-260
    [48]郭小军.铸渗法制取颗粒增强钢基复合材料的研究.沈阳:东北大学,200]
    [49]李祖来,蒋业华,周荣.铸渗法制备钢铁基表面耐磨复合材料.铸造设备研究,2003,3(6):27-30
    [50]Y. He. Analysis of the Mechanism of Surface Alloying During Casting. Metallurgy Italiana,1998,11:456-457
    [51]华磊,宋月鹏,冯承明.铸渗法制造表面耐磨复合材料的工艺进展.现代铸铁,2002,2:25-27
    [52]于思荣,隋忠祥.铸造碳化钨颗粒/中锰钢表层复合材料制作新工艺及理论研究.吉林工业大学学报,1996,4:30-34
    [53]李伟,陈美玲,陈玉喜.铸造金属基颗粒增强复合材料的研究现状与展望.铸造,2002,51(4):205
    [54]李恒德,等.现代材料科学与工程词典.济南:山东科学技术出版社,2002.386
    [55]郝兴明,刘红梅,张风林,等.金属基复合材料浸渗铸造的理论及实践问题.铸造设备研究,2002(4):50
    [56]Y. Sahin and M. Acilar. Production and properties of SiCp-reinforced aluminium alloy composites. Composites:Part A.2003,34(8):709-718
    [57]Ljiljana Trumbulovic, Zagorka Acimovic, Zvonko Gulisija et al. Correlation of technological parameters and quality of castings obtained by the EPC method. Materials Letters,2004,58(11):1726-1731
    [58]许大庆,罗吉荣.V-EPC铸渗工艺的研究.铸造设备研究,1999(2):3-6
    [59]Daheng Mao, Hengzhi Yan, Xiaoling Zhao, et al. The principle and technology of electromagnetic roll casting. Journal of Materials Processing Technology,2003, 138(1-3):605-609
    [60]Mehmet Acilar, Ferhat Gul. Effect of the applied load, sliding distance and oxidation on the dry sliding wear behaviour of Al-10Si/SiCp composites produced by vacuum infiltration technique. Materials and Design,2004,25:209-217
    [61]杨明波,代兵,李晖.金属铸渗技术的研究及进展.铸造,2003,52(9):647-651
    [62]纪朝辉,张成军.消失模铸钢件表面合金化铸渗机理研究.铸造,2000,49(3): 130-133
    [63]纪朝辉,魏尊杰,张成军.用铸渗工艺对消失模铸铁件进行表面合金化的研究.材料科学与工艺,2001,9(2):195-198
    [64]蒋业华,周荣,卢德宏,等.冲击角度对WC/铁基表面复合材料冲蚀磨损性能的影响.铸造,2004,53(7):521-524
    [65]K. Van Acker, D. Vanhoyweghen, R. Persoons, J. Vangrunderbeek. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear,2005,258:194-202
    [66]S. G. Long, Y. C. Zhou. Thermal fatigue of particle reinforced metal-matrix composite induced by laser heating and mechanical load. Composites Science and Technology,2005,65:1391-1400
    [67]Li Wei, Chen Zhenhua, Chen Ding. Thermal fatigue behavior of Al-Si/SiCp composite synthesized by spray deposition. Journal of Alloys and Compounds 504S(2010):S522-S526
    [68]M. Schobel, W. Altendorfer,H. P. Degische. Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications. Composites Science and Technology,71(2011):724-733
    [69]C. BADINI, M. LA VECCHIA, A. GIURCANU, et al. Damage of 6061/SiCw composite by thermal cycling. Journal of Materials Science 32(1997) 921-930
    [70]Hua-Tay Lin, Paul F Becher. Stress-temperature-lifetime working envelope of Nicalon fiber-reinforced SiC matrix composites in air. Composites Part A:Applied Science and Manufacturing,1997,28(11):935-942
    [71]Konstantinos G. Dassios, Dimitris G. Aggelis, Evangelos Z. Kordatos. Cyclic loading of a SiC-fiber reinforced ceramic matrix composite revealsdamage mechanisms and thermal residual stress state. Composites:Part A,2013,44: 105-113
    [72]高庆,康国政,杨川等.高温下短纤维增强金属基复合材料界面的微观结构和热残余应力状态研究.复合材料学报,2002,19(4):46-50
    [73]刘祥.铸造合金的热力学及物理性能.北京:机械工业出版社,1986
    [74]龚江宏.陶瓷材料断裂力学.北京:清华大学出版社,2001
    [75]潘牧,南策文.碳化硅(SiC)基材料的高温氧化和腐蚀.腐蚀科学与防护技术, 2000,12(2):109-113
    [76]殷小伟.3D C/SiC复合材料的环境氧化行为[博士学位论文].西安:西北工业大学,2000
    [77]斯庭智,刘宁,尤显卿,等.Al2O3基复合陶瓷抗热震研究.硬质合金,2003,20(4):237-241
    [78]于金江,孙晓峰,侯贵臣等.M951合金的热疲劳行为.钢铁研究学报,2003,15(7):179-182
    [79]李友林,袁超,郭建亭.铸造镍基高温合金K445的热疲劳行为.金属学报,2006,42(10):1056-1060
    [80]黄斌,杨延清.金属基复合材料中热残余应力的分析方法及其对复合材料组织和力学性能的影响.材料导报,2006,20(5):413-416
    [81]胡明,费维栋.非连续增强金属基复合材料的热残余应力.宇航材料工艺,2005(1):15-18
    [82]吴鹏,张建云,周贤良高体积分数SiCp/Al金属基复合材料的压渗铸造工艺及热物理性能.国外金属加工,2005,26(3):11-18
    [83]Yunpeng Jiang, Hui Yang, Keiichiro Tohgo.Three-phase incremental damage theory of particulate-reinforced composites with a brittle interphase. Composite Structures 2011(93):1136-1142
    [84]李微,陈鼎,陈振华,等.喷射沉积Al-Si/SiCp制动盘材料的热疲劳微裂纹扩展行为.中国有色金属学报,2009(9):1563-1569
    [85]闻立时.固体材料界面研究的物理基础.北京:科学出版社,2011
    [86]杨序纲.复合材料界面.北京:化学工业出版社,2010
    [87]徐惠娟,易茂中,熊翔,等.不同基体炭结构的炭/炭复合材料在制动过程中的温度场研究.无机材料学报,2009,24(1):133-138
    [88]雷宝灵,易茂中,徐惠娟.炭/炭复合材料制动过程中温度场的仿真.中国有色金属学报,2008,18(3):377-382
    [89]X. Lu, P. Tervola, M. Viljanen. Transient analytical solution to heat conduction in composite circular cylinder. International Journal of Heat and Mass Transfer,2006, 49:341-348
    [90]LIU Furong, YU Yueguang, ZENG Keli, REN Xianjing, K.C. Chan. Numerical Investigation of Interface Debonding of Particle Reinforced Composites by Unit Cell Model. Journal of Iron and Steel Research International,2007,14(5):200-204
    [91]C.S. Wright, B. Ogel, F. Lemoisson, Y. Bienvenu, Powder Metall.38(1995) 221-229
    [92]D. Lou, J. Hellman, D. Luhulima et al.Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Materials Science and Engineering.2003,340:155-162
    [93]李炯辉,林德成,等.金属材料进行图谱.机械工业出版社,2006
    [94]徐州,姚寿山,等.材料加工原理.科学出版社,2004
    [95]K. Kambakas, P. Tsakiropoulos. Solidification of high-Cr white cast iron-WC particle reinforced composites.2005,413-414:538-544
    [96]周志宏,严东生,钱宝筠,等.钢和铁、镍基合金的物理化学相分析.上海科学技术出版社,1979
    [97]Antoni A, Shen J Y, Durand M. About one stable and three metastable eutectic microconstituents in the Fe-W-C system. International Journal of Refractory Metals & Hard Materials,2008(26):372-382
    [98]李文虎,徐峰,刘福田.铸渗法制备Mo2FeB2增强钢基表层复合材料.特种铸造及有色合金,2009,29(1):57-60
    [99]Gopal S. Upadhyaya. Cemented tungsten carbides:production, properties, and testing. New Jersey:Noyes Publications,1998:7-54
    [100]Oladapo O. Eso, Peng Fan, Zhigang Zak Fang. A kinetic mould for cobalt gradient formation during liquid phase sintering of functionally graded WC-Co. International Journal of Refractory Metals & Hard Materials,2008(26):91-97
    [101]Xuemei Liu, Xiaoyan Song, Jiuxing Zhang, et al. Temperature distribution and neck formation of WC-Co combined particles during spark plasma sintering. Materials Science and Engineering A,2008(488):1-7
    [102]Mark Fitzsimmons, Vinod K. Sarin. Development of CVD WC-Co coatings. Surface and Coatings Technology,2001(137):158-163.
    [103]G. Bolelli, B. Bonferroni, G. Coletta, et al. Wear and corrosion behaviour of HVOF WC-CoCr/CVD DLC hybrid coating systems deposited onto aluminium substrate. Surface and Coatings Technology,2011(205):4211-4220
    [104]Suetin DV, Shein IR, Ivanovskii AL. Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations. Phys B 2008,403:2654-2661
    [105]韩德伟,田荣章.金属硬度检测技术手册.长沙:中南大学出版社,2003:337-344
    [106]崔忠圻.金属学与热处理.北京:机械工业出版社,2000:236-289
    [107]Yefei Li, Yimin Gao, Zijian Fan, et al. Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds. Journal of Alloys and Compounds,2010(502):28-37
    [108]D. V. Suetin, I. R. Shein and A. L. Ivanovskii. Structural, electronic properties and stability of tungsten mono-and semi-carbides:A first principles investigation. Journal of Physics and Chemistry of Solids,2009(70):64-71
    [109]Suetin D V. Shein I R, Ivanovskii A L. Structural, electronic and magnetic properties of carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations [J]. Phys B 2008(403):2654-2661
    [110]梁英教,车荫昌.无机物热力学数据手册,沈阳:东北大学出版社,1993
    [111]B. Reichel, K. Wagner, D.S. Janisch, etc. Alloyed W-(Co,Ni,Fe)-C phases for reaction sintering of hardmetals. International Journal of Refractory Metals & Hard Materials,2010(28):638-645
    [112]Suetin DV, Shein IR, Ivanovskii AL. Structural,electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations. Phys B 2008(403):2654-2661
    [113]D. V. Shtansky, G. Inden. Phase Transformation in Fe-Me-C and Fe-W-C Steel-Ⅰ. The Structural Evolution During Tempering at 700℃. Acta mater,1997(45): 2861-2878
    [114]宋世学,艾兴,赵军,等.Al2O3/TiC纳米陶瓷刀具材料的抗热震性能及断裂机理研究.硅酸盐通报,2003,43-46
    [115]J.A.迪安.兰氏化学手册.北京:高等教育出版社,1991:9-1-9-]40
    [116]Yefei Li, Yimin Gao, Zijian Fan, Bing Xiao, Qingwen Yue, Ting Min, Shengqiang Ma.First-principles study on the stability and mechanical property of eta M3W3C (M= Fe, Co, Ni) compounds. Physica B,2010,405:1011-1017

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700