用户名: 密码: 验证码:
纯电动汽车电液复合再生制动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源短缺和空气污染越来越严重的今天,率先发展低速微型纯电动汽车,正逐步成为人们的共识。电动汽车制动能量回馈对节能减排具有重要意义。本文对纯电动汽车再生制动开展较深入研究,主要工作包括:
     研究了制动过程中制动踏板角速度、位移随时间的变化规律以及制动踏板角速度随角位移的变化规律,阐明了制动强度与踏板位移的关系。应用由信息理论、混沌时间序列与符号动力学理论为基础发展的符号时间序列方法对制动踏板角速度变化规律进行分析,明确区分了紧急制动与一般制动,而且在制动踏板空行程范围即可作明确区分,具有预见性。该方法去噪作用明显,结论稳定可靠,为研究制动意图提供了一种新方法。
     设计了具有再生制动功能的直流电机四象限运行直流斩波电路,能够实现再生制动功能。进行了常用双向DC/DC拓扑分析与选型,并对超级电容参数进行了计算。
     建立了基于制动动力学和制动法规的安全制动范围数学模型,考虑蓄电池SOC与超级电容SOC对制动能量回收的影响,对再生制动的模糊控制和复合电源功率的模糊分配进行了研究,在此基础上设计了最大制动能量回收分配与控制流程。为实现此分配与控制流程,建立了液压制动系统模型,提出一种电制动力最大化实现方法,即把高速开关电磁阀和液压调节器并联,标定高速开关电磁阀占空比与制动轮缸压力的关系,在非紧急制动工况由高速开关电磁阀调节制动轮缸压力。这样,即可由分配策略满足约束条件下的电制动力,确定液压制动力需求,通过制动器模型转换为制动轮缸压力,确定高速开关电磁阀占空比,通过控制高速开关电磁阀占空比,即可实现在非紧急制动工况下液压制动力的按需调节。
     实验研究方法是本文的主要方法之一。建立了基于制动安全的纯电动汽车再生制动系统试验平台。设计了制动踏板瞬态控制器实现指定角速度输入;提出一种前轴地面制动力在台架上实现的方法,即用调速电机带动磁粉离合器-变速箱给实物车轮提供反转矩方法。
Today, energy shortage and air pollution are more and more serious. The development of low-speed micro-electric vehicles is becoming the consensus. Electric vehicle regenerative braking is important for energy conservation. An in-depth study on the regenerative braking of pure electric vehicles is carried out, and the main works in the dissertation include:
     The angular velocity and displacement variation of the brake pedal with time during braking is studied. The relationship of the braking strength and the pedal angular displacement is also illustrated. Based on the symbolic time series method, which is developed by information theory, chaotic time series and symbolic dynamics, the angular velocity variation of the brake pedal is analyzed. A clear distinction between the emergency braking and the general braking is found in the free clearance of the brake pedal. This method has obvious denoising effects, and the conclusion is stable and reliable, which provides a new method for the study of braking intention.
     A four quadrant DC chopper circuit is designed to produce regenerative current. The structure and working mode of composite power system is studied, which is composed of super-capacitors and lead-acid batteries. And the topology analysis and selection of commonly used bi-directional DC/DC are carried out.
     Based on the braking dynamic and braking regulations, a mathematical model on the range safe braking is established, and the brake-force distribution with maximum energy recovery and its control process are designed based on this model. To achieve this distribution and control process, a hydraulic brake system model is established firstly. Then, the high-speed on/off electromagnetic valves and hydraulic modulator are laid out in parallel. By calibrating the relationship between cylinder pressure and the duty ratio of the high-speed on/off electromagnetic valves, the wheel cylinder pressure can be controlled by them in non-emergency braking conditions. Of course, the wheel cylinder brake model must be studied. So, the constraints from electric braking force can be satisfied first, then, the need of the hydraulic braking force is determined by the allocation strategy. The wheel brake cylinder pressure is calculated through the brake model transformation, and the duty ratio of the high-speed on/off electromagnetic valve is determined by the wheel brake cylinder pressure. By controlling the duty ratio of the high-speed on/off electromagnetic valve, the hydraulic braking force can be adjusted according to need.
     The experimental study is one of the main works in this dissertation. The pure electric vehicle regenerative braking system test platform is established. To achieve the specified angular velocity, an instantaneous controller is designed. A new method is proposed to present the front axle braking force on tire from ground by the bench. That is to say, an anti-torque to wheel is provided by a magnetic particle clutch, which is driven by an inverter-driven induction motor. At the same time, the induction motor can follow the tracks of vehicle speed.
引文
[1]贾俊国.世界部分国家扶持电动汽车政策[J].国家电网,2007,4:44-45.
    [2]白莉.电动汽车引发可持续动力革命[J].汽车前沿观察,2009,4:64-67.
    [3]国务院发展研究中心课题组.电动汽车:我国汽车产业升级与跨越的突破口[J].发展研究,2009,4:4-8.
    [4]王瑛,王贺武,欧阳明高.电动汽车微型化发展路径分析[J].电源技术,2008,vol32(4):257-260.
    [5]AHMAN M. Government policy and the development of electric vehicles in Japan [J]. Energy Policy,2006,34:433-443.
    [6]孙逢春.德国和法国电动汽车的现状和发展[J].科技潮,2004(8):38-39.
    [7]万钢.中国“十五”电动汽车重大科技专项进展综述[J].中国科技产业,2006(2):110-117.
    [8]陈清泉,孙立泉.电动汽车的现状和发展趋势[J].科技导报,2005,23(4):24-28.
    [9]IWAHORI T, MITSUISHI I, SHIRAGA S. Development of lithium ion and lithium polymer batteries for electric vehicle and home-use load leveling system application [J]. Electro-chemical Acta,2000,45:1509-1512.
    [10]HORIBA T, HIRONAKA K, MATSUMURA T, et al. Manganse type lithium ion battery for pure and hybrid electric vehicles [J]. Journal of Power Sources,2001,97-98: 719-721.
    [11]HYUNG Y E, MOON S I, YUM D H, et al. Fabrication and evaluation of 100 Ah cylindrical lithium ion battery for electric vehicle applications [J]. Journal of Power Sources,1999,81-82:842-846.
    [12]CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries [J]. Journal of Power Sources,2005,140:111-124.
    [13]ARAKI T, NAKAYAMA M, FUKUDA K, et al. Thermal behavior of small nickel/metal hydride battery during rapid charge and discharge cycles[J]. Journal of the Electrochemical Society,2005,152:A 1128-A 1135.
    [14]AL-HALLAJ S, SELMAN J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications [J]. Journal of Power Sources,2002,110:341-348.
    [15]SIDDIQUE A, KHATEEB A, MOHAMMED M. et al. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter [J]. Journal of Power Sources,2004,128:292-307.
    [16]YANG Xiao-guang, LIAW B Y. Charge performance of a commercial nickel metal hydride traction battery system [J]. Journal of the Electrochemical Society, 2001,148:A 1023-A 1028.
    [17]JUNG D Y, LEE B H, KIM S W. Development of battery management system fro nickel-metal hydride batteries in electric vehicle applications[J]. Journal of Power Sources,2002,109:1-10.
    [18]MARKOLF R, OHMSA D, MILLER G, et al. Investigations into a battery management for high power nickel metal hydride batteries [J]. Journal of Power Sources, 2006,154:539-544.
    [19]KODAMA T, SAKAEBE H. Present status and future prospect for national project on lithium batteries [J]. Journal of Power Sources,1999,81-82:144-149.
    [20]管丛胜,杜爱玲,杨玉国.高能化学电源[M].北京:化学工业出版社,2005:27-33.
    [21]李国良,初亮,鲁和安.电动汽车续驶里程的影响因素[J].吉林工业大学自然科学学报,2000,30(3):20-24.
    [22]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].长春:吉林大学,2005.
    [23]一汽集团技术中心.春兰QNF27动力电池组试验报告[R].长春:一汽集团,2006.
    [24]A. M. Walker, M. U. Lamperth and S. Wilkins. On Friction Braking Demand with Regenerative Braking [J], SAE paper,2002-01-2581.
    [25]Eiji Nakamura, Masayuki soga, Akira Sakai.Development of Electronically Controlled Brake System for Hybrid Vehicle[J], SAE paper,2002-01-0300.
    [26]李国斐,林逸,何洪文.电动汽车再生制动控制策略研究[J].北京理工大学学报,2007,29(6):520-524.
    [27]李玉芳,林逸,何洪文.电动汽车再生制动控制算法研究[J].汽车工程,2007,29(11):1059-1064.
    [28]石庆升.纯电动汽车能量管理关键技术问题的研究[D].济南:山东大学,2009.
    [29]MICHAEL D, THEODORE B, HENLING L. Investigating possible fuel economy bias due to regenerative braking in testing HEVs on 2WDand 4WD chassis dynamometers [J]. SAE Transactions,2005,114(4):324-334.
    [30]Yimin Gao, Liping Chen and Mehrdad Ehsani. Investigation of the Effectiveness of Regenerative Braking for EV and HEV[J].SAE paper,1999-01-2910.
    [31]赵国柱.电动汽车再生制动稳定性研究[D].南京:南京航空航天大学能源与动力学院,2006.
    [32]Hoon Yeo. Performance Analysis of Regenerative Electric Vehicle Using HILS[C], EVS.19,2003.
    [33]Yimin Gao and Mehrdad Ehsani. Electrinic Braking System of EV and HEV Integration of Regenerative Braking, Automatic Braking Forces Control and ABSLJ]. SAE paper,2001-01-2478.
    [34]陈庆樟,何仁.基于ABS系统的汽车能量再生制动集成控制研究[J].汽车工程,2008,Vol30(4):301-304.
    [35]U. Koehler, E. Niggemann.High performance nickle metal hybrid batteries for electric and hybrid vehicles[R]. Belgium, Brussels:EVS.15,1998.
    [36]Gunter Gutmann. Hybrid electric vehicles and electrochemical storage system.a technology push.pull couple [J], Journal of Power Sources,1999, Vol.84, P275-279.
    [37]J. Van Mierlo. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles [J]. Energy Conversion and Management 47 (2006):2748-2760.
    [38]K. E. Bailey, S. R. Cikanek. Comparison of energy recovery capability of electric vehicle braking systems[C]. Proceedings of the AVEC International Symposium of Advanced Vehicle Control, Aachen,Germany,1996.
    [39]B. J. Amet, L. EHaines. Combining Ultracapacitors with Lead acid Batteries[C], EVS17,2000.
    [40]Morimasa Hayashida, Kazuyuki Narusawa, Yushi Kamiya. Energy Regeneration of City Commuter car by Uitracapacitor and Battery[C]. EVS16,1999.
    [41]A. EBurke, M. Miller. Update of Ultracapacitor Technololgy and Hybrid Vehicle Applications:Passenger Cars and Transit Buses[C]. EVS18,2001.
    [42]于远彬.车载复合电源设计理论与控制策略研究[D].长春:吉林大学,2008.
    [43]张淼.混合动力电动汽车复合电源设计与控制策略的研究[D].镇江:江苏大学,2009.
    [44]Masanori I. Hardware-in-the-Loop Simulator with Auto Building Vehicle Model for Adaptive Cruise Control System. SAE Paper 2004-01-1243.
    [45]何忠波,白鸿柏,李东伟等.AMT车辆制动工况换挡控制策略与实验[J].汽车工程,2005,vol27(4):438-443.
    [46]谭川.电液复合制动系统制动力分配方法研究[D].上海:同济大学,2007.
    [47]FINNEY C E, NGUYEN K, DAW C S, HALOW J S. Symbolic statistics for monitoring fluidiziation. International mechanical Engineering Congress and Exposition(ASME)[C]. Aanaheim, California, USA,1998.
    [48]LIN F. Use of Symbolic time Series Analysis for Stall Precursor Detection[J]. AIAA,1998.
    [49]Hiroaki Yoshida, Tatsuo Sugitani, Masashi Ohta. Development of the Brake Assit[J]. System, SAE960801.
    [50]Peter Kappelmann, Reclmergestueme Ausleguag von Pkw-Bremesalagen unter Berueck4ichtigung des Pcdalgefuehls[J], Stuttgart:University Stuttgart,2005.
    [51]徐科军.信号处理技术[M].武汉:武汉理工大学出版社,2001.
    [52]应启珩,冯一云,窦维蓓.离散时间信号分析和处理[M].北京:清华大学出版社,2001.
    [53]沈维道,郑佩芝,蒋淡安.工程热力学[M].北京:高等教育出版社,1983.
    [54]陈士华,陆君安.混沌动力学初步[M].武汉:武汉水利电力大学出版社,1998.
    [55]C. E. A. Finney, J. B. Green, C. S. Daw, Symbolic Time-Series Analysis of Engine Combustion Measurements[J]. SAE Paper,1998,980624:888-897
    [56]X. Z. Tang, E. R. Tracy, A. D. Boozer et al, Symbol sequence statistics in noisy chaotic signal reconstruction[J], Physical Review E,1995,51(5):3871~3889.
    [57]顾绳谷.电机及拖动基础[M].机械工业出版社,1980
    [58]谢宝昌,任永德.电机的DSP控制技术及其应用[M].北京航空航天大学出版社,2005,pp97-111
    [59]王兆按,黄俊.电力电子技术(第4版)[M].机械出版社,2002
    [60]陈国呈.新型电力电子变换技术[M].中国电力出版社,2004
    [61]Monhan, Undeland, Robbins电力电子学(第3版)[M].高等教育出版社,2004
    [62]谢宝昌,任永德.电机的DSP控制技术及其应用[M].北京航空航天大学出版社,2005,pp97-111
    [63]李兴虎.电动汽车概论[M].第1版.北京:北京理工大学出版社,2005.
    [64]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].第1版.北京:北京理工大学出版社,2002
    [65]宋慧.电动汽车[M].第1版.北京:人民交通出版社,2006
    [66]张臣,陈杰.车用超级电容器应用设计[J].电源技术.2006(09):740-743
    [67]李舒欣,曹秉刚,白志峰等.电动汽车再生制动的模糊PI控制实验研究[J].电气技术.2006(01):52—54
    [68]J. K. AHN, K. H. JUNG, D. H. KIM, et al. Analysis of a regenerative braking system for hybrid electric vehicles using an electro-mechanical brake[J]. International Journal of Automotive Technology,2009, VollO(2):229-234.
    [69]M. Ye, Z. Bai, B. Cao. Robust control for regenerative braking of battery electric vehicle[J]. IET Control Theory Appl.,2008, Vol2(12):1105-1114.
    [70]PENG Dong, YIN Cheng-liang, ZHANG Jian-wu. An investigation into regenerative braking control strategy for hybrid electric vehicle[J]. Journal of Shanghai Jiaotong University (Science),2005, Vol E-10(4):407-412.
    [71]K. T. Chau, Y.S.Wong. Overview of power management in hybrid electric vehicle [J]. Energy Conversion and Management,2002, Vol.43:1953-1968.
    [72]Y. Sasaki, A. Otomo, EKawahata, A. Matui. Toyota braking system for hybrid vehicle with regenerative system. The 14th International Electric Vehicle Symposium and Exposition[J]. Orlando, USA,1997.
    [73]Martin Schmidt, Rolf Isermann, Bernd Lenzen. Potential of regenerative braking using an integrated starter alternator[J]. SAE paper 2000-01-1020.
    [74]Valerie H.Johnson, Keith B. Wipke. HEV control strategy for real, time optimization of fuel economy and emission[J]. SAE Paper,2000-01-1543.
    [75]Joseph Beretta. New tools for energy efficiency evaluation on hybrid architecture[C]. The 18th International Electric Vehicle Symposium and Exposition. Berlin Germany,2001.
    [76]张俊智,卢青春,王丽芳.汽车混合动力传动的能量流动与比较[J].机械科学与技术,2001,vol 20(9):47-51.
    [77]余志生.汽车理论[M].北京:机械工业出版社,2002:87-95.
    [78]石庆升.纯电动汽车能量管理关键技术问题的研究[D].济南:山东大学,2009:87-88.
    [79]羌嘉曦,敖国强,何建辉等.电动汽车动力电池特性仿真系统[J].上海交通大学学报,2009,43(8):1196-1200.
    [80]邓隆阳,黄海燕,卢兰光等.超级电容性能试验与建模研究[J].车用发动机,2010,1:28-32.
    [81]李贵远,陈勇.动力电池与超级电容混合驱动系统设计与仿真[J].系统仿真学报,2007,19(1):101-105.
    [82]汪贵平.纯电动汽车驱动与制动能量回收控制策略研究[D].西安:长安大学,2009.
    [83]张昌利,张亚军,闫茂德等.双能量源纯电动汽车再生制动模糊控制与仿真[J].系统仿真学报,2011,23(2):233-238.
    [84]徐海东.电动汽车再生制动能量高效回收控制策略研究[D].济南:山东大学,2007.
    [85]Moreno J., OrtuzarM. E., DixonJ. W.. Energy management system for a hybrid eleetric vehiele, using ultracapacitors and neural networks[J]. IEEE Transaetions on Industrial Electronics,2006,53(2):614-623.
    [86]田德文,谢大纲,崔淑梅.军用汽车混合电力驱动系统复合能源控制策略[J].机械工程学报,2009,45(2):42-47.
    [87]张丹红,周艳.混合动力汽车能量管理系统的模糊控制与仿真研究[J].世界电子元器件,2008,(5):69-73.
    [88]何洪文,熊瑞.车用复合电源模糊控制策略研究[J].高技术通讯,2011,21(2),203-209.
    [89]Wang L, Bai W. Development and Simulation of Electric Vehicle Based on ADVISOR [J]. Journal of Southeast University-English Edition (S1003-7985),2006,22(2): 196-199.
    [90]Baisden A C, Emadi A. ADVISOR-based Model of a Battery and an Ultra-capacitor Energy Source for Hybrid Electric Vehicles [J]. IEEE Transactions on Vehicular Technology (S0018-9545),2004,53(1):199-205.
    [91]曾小华,王庆年,李骏,等.基于ADVISOR2002混合动力汽车控制策略模块开发[J].汽车工程,2004,26(4):394-396.
    [92]胡安平.基于AMESim-Simulink联合仿真的再生制动系统研究[D].长春:吉林大学,2008.
    [93]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].吉林工业大学.2000.
    [94]章宏甲,黄宜.机床液压传动[M].机械工业出版社,1987
    [95]郭孔辉,丁海涛,刘溧.汽车混合仿真试验台的开发与研究[J].中国机械工程,2000,11(12):1417-1421.
    [96]郭孔辉,刘溧,丁海涛等.汽车防抱制动系统的液压特性[J].吉林工业大学自然科学学报,1999,29(4):1-5
    [97]刘忠,刘卫萍,何谦.高速开关电磁阀动态响应建模与仿真[J].湖南师范大学自然科学学报,2009,32(3):53-58.
    [98]Yang Minggao, Lu Qilong. Study of Injection control Valve in a New Electronic Diesel Fuel System [J].SAE Paper 980813.
    [99]Bianchi G M.Pelloni P. Optimization of the Solenoid Valve Behavior in Common-Rail Injection Systems[J]. SAE Paper 2000-01-2042.
    [100]张斌.用于汽车制动力分配的数字电液比例系统[D].长春:吉林大学,2005.
    [101]初亮.ABS液压控制系统压力变化速率的机理研究[J].汽车技术,2010(9):19-23.
    [102]刘兴华,李广荣.高速开关电磁阀的研究及测试[J].内燃机工程,2004,25(1):38-43.
    [103]Qingyuan Li, Keis W.Beyer and QuanZheng. A model-based brake pressure estimation strategy for traction control system[J]. SAE Technical Paper 2001-01-0595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700