用户名: 密码: 验证码:
大跨度斜拉桥拉索索力与车辆荷载识别及建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国经济的迅猛发展,公路交通运输量不断增加,公路桥梁上的车辆荷载强度和频度均持续上升,这造成了严重的桥梁累积损伤、甚至失效。近十年来因超载而造成的桥梁垮塌事故接连不断,桥梁上实际车辆荷载的识别、实时统计分析、分布规律的研究至关重要。结构健康监测系统的出现和广泛应用,使得实时的识别和监测桥梁上运行的车辆荷载成为可能。目前,关于桥梁荷载的识别研究主要集中在梁桥,对斜拉桥车辆荷载的研究仍十分缺乏,且已有研究方法需要已知车辆荷载位置。此外,斜拉索是斜拉桥上的关键结构构件,其疲劳效应十分突出,目前斜拉索时变索力的监测和识别仍然没有有效的方法。本文研究大跨度斜拉桥斜拉索时变索力识别方法、车辆荷载及其空间分布识别方法、以及车辆荷载建模与极值预测模型。
     主要研究内容包括:
     首先,提出基于扩展卡尔曼滤波的时变索力识别方法,并进行数值模拟和试验验证。推导考虑支座位移的斜拉索的扩展状态空间运动方程和观测方程,给出基于监测的加速度响应的斜拉索时变索力识别的扩展卡尔曼滤波算法;采用南京长江三桥的斜拉索进行数值计算,验证方法的精度和鲁棒性;进一步通过模型试验,验证方法的识别精度。
     其次,提出基于斜拉索振动信息识别桥梁车辆荷载的方法。推导包含车重、车速和上桥时间的扩展状态空间运动方程及斜拉索观测方程,提出基于扩展卡尔曼滤波方法的车重、车速和上桥时间识别算法,采用南京长江三桥进行数值计算,验证本文方法的精度。
     再次,提出基于斜拉索索力监测信息的斜拉桥上车辆荷载及其位置识别方法。建立车辆荷载等效力与斜拉索索力之间的关系方程,利用Tikhonov正则化方法降低此病态线性方程求解的不适定性;采用区间理论,研究识别结果的误差上、下界。
     提出基于斜拉索索力监测信息的斜拉桥车辆荷载及其空间分布的稀疏优化识别算法。建立车辆荷载与斜拉索索力之间的线性关系方程,采用稀疏优化算法求解上述方程,识别车辆荷载及其空间分布,采用南京长江三桥进行数值计算,验证本文方法的精度及其抗噪性。
     最后,在上述车辆荷载识别的基础上,采用南京长江三桥健康监测实测车辆数据,按照密集运行状态和一般运行状态分别统计其到达时间间隔的随机分布;推导适用于任意齐次更新随机过程的极值预测定理;按照密集运行状态和一般运行状态对车重的截口分布分别进行统计建模及极值预测。并进一步统计数据尾部的随机模型,建立具有高精度的尾分布半参数化概率模型,对南京长江三桥车辆荷载的周极值进行预测,并与实测数据进行对比验证。
With rapid development of Chinese economics, traffic volume keeps increasing. The magnitude and frequency of vehicle loads on bridges are rising, which causes serious damages to bridges. There are many collapse accidents of bridges in last decade. It’s urgent to identify vehicle loads and to investigate and update their statistical characteristics. The development and application of structural health monitoring system make it possible to monitoring and identifying vehicle loads on bridge real-time. Meanwhile, up to date and larger amount of data are available from structural health monitoring systems which is a solid foundation of the extreme value research of vehicle loads. The previous researches of moving loads identification paid much attention to the problem on beam bridges and slab bridges. However, there was lack of information on the problem of moving force identification on cable-stayed bridges, and the vehicle loads position must be determined in advance to carry out identification. The existing cable force identification methods were limited to determine the mean value of cable tension during a certain period. To solve these problems, this dissertation is devoted to a relatively systematic study on vehicle loads, with emphasis on, identification of time-varying cable force caused by traffic loads, identification of moving forces and their locations, and vehicle loads modeling and extreme value prediction on the cable-stayed bridge.
     The main research works are outlined as following:
     First, the identification method of time-varying cable force using extended Kalman filter is proposed, and it is verified through numerical simulation and model experiment in laboratory. Taking the support displacement into consideration, the equation of motion in augmented state space and measurement equation is derived. Based on that, cable time-varying tension identification algorithm is developed based on measured acceleration of the stay cable using extended Kalman filter. The precision and robustness of proposed method is investigated by numerical simulation based on one cable on Nanjing Yangtze River No.3Bridge. Furthermore, a model experiment is conducted to verify the accuracy of proposed method.
     Second, an identification approach of vehicle loads on cable-stayed bridge is developed based on monitored vibration of one stay cable. The process equation and measurement equation of the augmented state variable including vehicle weight speed and arrival time is derived, based on which, the identification method of vehicle weight, speed and arrival time is presented. In order to demonstrate the accuracy of proposed method, the numerical simulation is conducted based on Nanjing Yangtze River No.3Bridge.
     Third, an identification approach of moving forces and their locations on the cable-stayed bridge is established based on the monitored cable forces. The relationship equation between vehicle loads and cable forces of stay cables is established first, and then the Tikhonov regularization is adopted to overcome the ill-poseness of the equation. Furthermore, the error bound of the identification result is investigated using interval analysis theory.
     An identification approach of moving forces and their spatial distributions on cable-stayed bridges is derived from sparse signal reconstruction theory based on monitored cable tension. The vehicle loads and cable tension of stay cables is connected by a linear equation, and then the sparse signal reconstruction theory is introduced to solve this seriously underdetermined equation, from which the vehicle loads and their spatial distributions can be identified. The numerical simulation based on Nanjing Yangtze River No.3Bridge is conducted to verify the accuracy and robustness of the proposed method.
     Finally, based on the above research on vehicle loads identification, using the field data from structural health monitoring system on Nanjing Yangtze River No.3Bridge, the probability distribution of the inter-arrival-time in normal status and in dense status are statistically analyzed separately. And the extreme value distribution theorem for any homogeneous renewal process is derived. The probability distributions of vehicle weights in normal status and dense status are investigated separately. And based on the formula derived above, the extreme value distributions of vehicle loads in normal status and dense status are predicted. The stochastic model of the tail part of vehicle loads is investigated, and one semi-parametric probability model with high accuracy is established. Using this tail model, the weekly extreme value distribution is predicted, and then it is compared with in-field data to verify the accuracy of the proposed model and method.
引文
[1] Ou J P. Some Recent Advances of Intelligent Health Monitoring Systems forCivil Infrastructures in Mainland China [C]//Proceeding of the1stInternational Conference on Structural Health Monitoring and IntelligentInfrastructure. Tokyo Japan,2003.
    [2] Casas J R. A Combined Method for Measuring Cable Forces: TheCable-Stayed Alamillo Bridge, Spain [J]. Structural EngineeringInternational,1994,4(4):235-40.
    [3]史家钧,章关永.用随机振动法测量曼谷Rama IX斜拉桥的索力[J].土木工程学报,1992,(2):68-71.
    [4]吴海军,陈思甜,龚尚龙,许羿,施尚伟.斜拉桥索力测试方法研究[J].重庆交通学院学报,2001,(4):23-5+37.
    [5]许俊.斜拉索索力简化计算中的精度分析[J].同济大学学报(自然科学版),2001,(5):611-5.
    [6]刘青.考虑参数振动影响的斜拉索索力及索力测试研究[D].哈尔滨:哈尔滨工业大学,2007.
    [7]李凤臣,刘青,王大鹏,田石柱.斜拉索索力识别精度的提高方法[J].建筑科学与工程学报,2008,87(4):42-6.
    [8]李凤臣.大跨度桥梁斜拉索的参数振动及索力识别研究[D].哈尔滨:哈尔滨工业大学,2010.
    [9] Ren W X, Liu H L, Chen G. Determination of Cable Tensions Based onFrequency Differences [J]. Engineering Computations,2008,25(2):172-5.
    [10] Gentile C. Application of Microwave Remote Sensing to Dynamic Testing ofStay-Cables [J]. Remote Sensing,2009,2(1):36-51.
    [11] Gentile C. Deflection Measurement on Vibrating Stay Cables byNon-Contact Microwave Interferometer [J]. NDT&E International,2010,43(3):231-40.
    [12]侯立群,欧进萍,赵雪峰,李宏伟.哈尔滨四方台斜拉桥模态参数和索力识别[J].振动与冲击,2009,28(05):106-10+207-8.
    [13]周毓,王启明,李建斌. FAST无线式索力传感器节点的设计制作与测试[J].天文研究与技术,2011,(01):21-8.
    [14] Zhao Z, Sun J, Fei X, Liu W, Cheng X, Wang Z, Yang H. Wireless SensorNetwork Based Cable Tension Monitoring for Cable-Stayed Bridges [C]//The14th International Conference on Advanced Communication Technology.PyeongChang Korea,2012.
    [15] Sim S H, Li J, Cho S, Jo H, Park J, Spencer Jr B F. Automated Cable TensionMonitoring Using Smart Sensors [C]//Proceedings of the World Congress onAdvances in Structural Engineering and Mechanics. Seoul Korea,2011.
    [16] Humar J L. Dynamics of Structures [M]. Englaewood Cliffs, N.J.:Prentice-Hall, Inc.,1990.
    [17] Hiroshi Z, Tohru S, Yoshio N. Practical Formulas for Estimation of CableTension by Vibration Method [J]. Journal of Structural Engineering,1996,122:651-6.
    [18] Russell J, Lardner T. Experimental Determination of Frequencies andTension for Elastic Cables [J]. Journal of engineering mechanics,1998,124:1067.
    [19]方志,张智勇.斜拉桥的索力测试[J].中国公路学报,1997,(1):51-8.
    [20] Mehrabi A B, Tabatabai H. Unified Finite Difference Formulation for FreeVibration of Cables [J]. Journal of Structural Engineering,1998,124(11):1313-22.
    [21]王卫锋,韩大建.斜拉桥的索力测试及其参数识别[J].华南理工大学学报(自然科学版),2001,1:18-21.
    [22]陈刚,任伟新.基于环境振动的斜拉桥拉索基频识别[J].地震工程与工程振动,2003,3:100-6.
    [23]陈刚.振动法测索力与实用公式[D].福州:福州大学,2004.
    [24] Ren W X, Chen G, Hu W H. Empirical Formulas to Estimate Cable Tensionby Cable Fundamental Frequency [J]. Structural Engineering and Mechanics,2005,20(3):363-80.
    [25] Cho S, Lynch J P, Yun C B. Development of a Low-Cost Automated TensionEstimation System for Cable-Stayed Bridges [C]//ASME Conference onSmart Materials, Adaptive Structures, and Intelligent Systems. Snowbird UH,2008
    [26] Cho S, Lynch J P, Lee J J, Yun C B. Development of an Automated WirelessTension Force Estimation System for Cable-Stayed Bridges [J]. Journal ofIntelligent Material Systems and Structures,2010,21(3):361-76.
    [27] Fang Z, Wang J. A Practical Formula for Cable Tension Estimation byVibration Method [J]. Journal of Bridge Engineering,2010,1:118.
    [28] Wei J, Li G, Razavi M R. Theoretical Study on Cable Tension DetectionConsidering Support Vibration [C]//Transportation and DevelopmentInnovative Best Practices. Beijing China,2008.
    [29] Geier R, De Roeck G, Flesch R. Accurate Cable Force Determination UsingAmbient Vibration Measurements [J]. Structure and InfrastructureEngineering,2006,2(1):43-52.
    [30] Peeters B. System Identification and Damage Detection in Civil Engineering[D]. Leuven: Katholieke Universiteit,2000.
    [31] Park T, Kim B. Estimation of Cable Tension Using System IdentificationTechnique: I. Theory [J]. Korean Society of Civil Engineers Journal,2005,25:661-8.
    [32] Kim B, Park T. Estimation of Cable Tension Using System IdentificationTechnique: II. Experiments and Applications [J]. Korean Society of CivilEngineers Journal,2005,25:669-75.
    [33] Park S, Choi S, Oh S T, Stubbs N, Song H C. Identification of the TensileForce in High-Tension Bars Using Modal Sensitivities [J]. InternationalJournal of Solids and Structures,2006,43(10):3185-96.
    [34] Kim B H, Park T. Estimation of Cable Tension Force Using theFrequency-Based System Identification Method [J]. Journal of Sound andVibration,2007,304(3-5):660-76.
    [35] Kim B H, Park T, Shin H, Yoon T Y. A Comparative Study of the TensionEstimation Methods for Cable Supported Bridges [J]. International Journalof Steel Structures,2007,7(1):77-84.
    [36] Ceballos M A, Prato C A. Determination of the Axial Force on Stay CablesAccounting for Their Bending Stiffness and Rotational End Restraints byFree Vibration Tests [J]. Journal of Sound and Vibration,2008,317(1-2):127-41.
    [37] Wang L, Zhang J. Vehicle Load Effect Model for Existing Bridge Based onEquilibrium Renewal Process [J]. China Journal of Highway and Transport,2008,5(21):6.
    [38] Liao W, Ni Y, Zheng G. Tension Force and Structural ParameterIdentification of Bridge Cables [J]. Advances in Structural Engineering,2012,15(6):983-96.
    [39] Xu X, Pei Y, Yong S. A Method for Identification of Short Hanger TensionConsidering Damper [C]//International Conference on IntelligentComputation Technology and Automation. Shenzhen China,2011.
    [40] Xie X, Shen Y G, Sun L F, Huang S H. Estimation of Tension Force in ShortHangers Using Added Mass Method [J]. Advanced Materials Research,2013,658:124-33.
    [41]张宇鑫,李国强,赵世峰.张弦梁结构振动方法索力识别(Ⅰ):振动特性的参数分析[J].振动与冲击,2009,(3):152-7+206.
    [42]张宇鑫,李国强,赵世峰.张弦梁结构振动方法索力识别(Ⅱ):实用公式及误差分析[J].振动与冲击,2009,(3):158-60+81+206.
    [43]张宇鑫,李国强,刘海成.基于遗传算法进行张弦梁结构索力识别[J].哈尔滨工业大学学报,2009,(4):177-80.
    [44]袁俊桃.短吊杆索力识别研究[D].广州:华南理工大学,2011.
    [45] O'connor C, Chan T H T. Dynamic Wheel Loads from Bridge Strains [J].Journal of Structural Engineering,1988,114(8):1703-23.
    [46] O'connor C, Chan T H T. Wheel Loads from Bridge Strains: LaboratoryStudies [J]. Journal of Structural Engineering,1988,114(8):1724-40.
    [47] Chan T H T. Wheel Loads from Highway Bridge Strains: Field Studies [J].Journal of Structural Engineering,1990,116:1751.
    [48] Chan T H T, Yung T. A Theoretical Study of Force Identification UsingPrestressed Concrete Bridges [J]. Engineering Structures,2000,22(11):1529-37.
    [49] Chan T H T, Law S, Yung T. Moving Force Identification Using an ExistingPrestressed Concrete Bridge [J]. Engineering Structures,2000,22(10):1261-70.
    [50] Law S, Chan T H T, Zeng Q. Moving Force Identification: A Time DomainMethod [J]. Journal of Sound and Vibration,1997,201(1):1-22.
    [51] Chan T H T, Law S, Yung T, Yuan X. An Interpretive Method for MovingForce Identification [J]. Journal of Sound and Vibration,1999,219(3):503-24.
    [52] Law S S, Chan T H T, Zeng Q H. Moving Force Identification-a Frequencyand Time Domains Analysis [J]. Journal of Dynamic Systems, Measurement,and Control,1999,121(3):394-401.
    [53] Chan T, Yu L, Law S. Comparative Studies on Moving Force Identificationfrom Bridge Strains in Laboratory [J]. Journal of Sound and Vibration,2000,235(1):87-104.
    [54] Law S, Chan T H T, Zhu Q, Zeng Q. Regularization in Moving ForceIdentification [J]. Journal of engineering mechanics,2001,127:136.
    [55] Chan T. Moving Force Identification Studies, I: Theory [J]. Journal of Soundand Vibration,2001,247(1):59-76.
    [56] Chan T. Moving Force Identification Studies, II: Comparative Studies [J].Journal of Sound and Vibration,2001,247(1):77-95.
    [57] Yu L, Chan H T. Moving Force Identification Based on the Frequency–TimeDomain Method [J]. Journal of Sound and Vibration,2003,261(2):329-49.
    [58]满洪高,袁向荣,高勇利,卜建清.由广义正交多项式函数逼近法识别桥上移动载荷[C]//第八届全国结构工程学术会议.中国云南昆明,1999.
    [59]满洪高,卜建清,袁向荣.基于广义正交域理论识别桥上移动载荷的方法研究[J].石家庄铁道学院学报,1999,(04):40-3.
    [60]袁向荣,卜建清,满红高,高勇利.移动荷载识别的函数逼近法[J].振动与冲击,2000,(01):60-2+72+94.
    [61]陈锋,袁向荣,李明.移动载荷识别的B-样条函数逼近法[J].石家庄铁道学院学报,2003,(01):11-4.
    [62]袁向荣.移动荷载识别的响应曲线滑动拟合法[J].振动、测试与诊断,2007,(04):320-3+43.
    [63]李忠献,王波,陈锋.桥梁移动荷载的识别与参数分析[J].福州大学学报(自然科学版),2005,(S1):56-61.
    [64]李忠献,陈锋.简支梁桥与多跨连续梁桥上移动荷载的识别与参数分析[J].工程力学,2006,(12):91-9.
    [65]姜增国,孙艳茹.三次样条函数在桥梁移动荷载识别中的应用[J].振动与冲击,2006,(06):124-6+84.
    [66]吴大宏,赵人达.基于神经网络的混凝土桥梁荷载识别方法研究[J].中国铁道科学,2002,(01):27-30.
    [67]李忠献,陈锋,王波.基于BP神经网络的桥上移动荷载分阶段识别方法[J].工程力学,2008,(09):85-92.
    [68]淡丹辉,何广汉.基于神经计算的智能桥梁结构载荷识别[C]//交通土建及结构工程计算机应用学术研讨会.中国四川成都,2001.
    [69]张策萍.基于BP神经网络的移动荷载识别方法研究[D].杭州:浙江大学,2007.
    [70] Zhu X, Law S. Moving Forces Identification on a Multi-Span ContinuousBridge [J]. Journal of Sound and Vibration,1999,228(2):377-96.
    [71] Law S. Study on Different Beam Models in Moving Force Identification [J].Journal of Sound and Vibration,2000,234(4):661-79.
    [72] Zhu X. Orthogonal Function in Moving Loads Identification on a Multi-SpanBridge [J]. Journal of Sound and Vibration,2001,245(2):329-45.
    [73] Jiang R. Identification of Masses Moving on Multi-Span Beams Based on aGenetic Algorithm [J]. Computers&Structures,2003,81(22-23):2137-48.
    [74] Au F. Parameter Identification of Vehicles Moving on Continuous Bridges[J]. Journal of Sound and Vibration,2004,269(1-2):91-111.
    [75] Law S. Moving Force Identification: Optimal State Estimation Approach [J].Journal of Sound and Vibration,2001,239(2):233-54.
    [76] Law S, Bu J, Zhu X, Chan S. Vehicle Axle Loads Identification Using FiniteElement Method [J]. Engineering Structures,2004,26(8):1143-53.
    [77] Pinkaew T. Identification of Vehicle Axle Loads from Bridge ResponsesUsing Updated Static Component Technique [J]. Engineering Structures,2006,28(11):1599-608.
    [78]李忠献,陈锋.基于时间元模型的复杂桥梁结构移动荷载识别[J].天津大学学报,2006,(09):1043-7.
    [79] Zhu X. Identification of Vehicle Axle Loads from Bridge DynamicResponses [J]. Journal of Sound and Vibration,2000,236(4):705-24.
    [80] Zhu X Q, Law S S. Identification of Moving Loads on an Orthotropic Plate[J]. Journal of Vibration and Acoustics,2001,123(2):238.
    [81] Zhu X. Dynamic Axle and Wheel Loads Identification: Laboratory Studies[J]. Journal of Sound and Vibration,2003,268(5):855-79.
    [82] Zhu X Q, Law S S. Time Domain Identification of Moving Loads on BridgeDeck [J]. Journal of Vibration and Acoustics,2003,125(2):187.
    [83]李忠献,陈锋.基于梁格法的桥梁移动荷载识别[J].土木工程学报,2006,(12):83-7.
    [84]陈修辉.基于神经网络的桥梁移动荷载识别[D].成都:西南交通大学,2009.
    [85]金虎.基于人工神经网络的结构荷载识别与损伤识别研究[D].杭州:浙江大学,2005.
    [86]金虎,楼文娟,陈勇.基于自适应BP神经网络的桥梁结构荷载识别[J].浙江大学学报(工学版),2005,(10):138-44.
    [87] Chatterjee P, Obrien E, Li Y, Gonzalez A. Wavelet Domain Analysis forIdentification of Vehicle Axles from Bridge Measurements [J]. Computers&Structures,2006,84(28):1792-801.
    [88] Zhang Q, Jankowski, Duan Z. Identification of Coexistent Load andDamage [J]. Structural and Multidisciplinary Optimization,2009,41(2):243-53.
    [89]中华人民共和国交通部.公路工程结构可靠度设计统一标准[S][M].1999.
    [90]李扬海,鲍卫刚,郭修武,程翔云.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.
    [91] Cook N. Towards Better Estimation of Extreme Winds [J]. Journal of WindEngineering and Industrial Aerodynamics,1982,9(3):295-323.
    [92] Simiu E, Filliben J J, Shaver J R. Short-Term Records and Extreme WindSpeeds [J]. Journal of the Structural Division,1982,108(11):2571-7.
    [93] Grigoriu M. Estimates of Extreme Winds from Short Records [J]. Journal ofStructural Engineering,1984,110(7):1467-84.
    [94] Gusclla V. Estimation of Extreme Winds from Short-Term Records [J].Journal of Structural Engineering,1991,117(2):375-90.
    [95] Csorgo S, Deheuvels P, Mason D. Kernel Estimates of the Tail Index of aDistribution [J]. The Annals of Statistics,1985,13(3):1050-77.
    [96] Hosking J R, Wallis J R. Parameter and Quantile Estimation for theGeneralized Pareto Distribution [J]. Technometrics,1987,29(3):339-49.
    [97] Smith R L. Extreme Value Theory Based on the R Largest Annual Events [J].Journal of Hydrology,1986,86(1):27-43.
    [98] Davis R, Resnick S. Tail Estimates Motivated by Extreme Value Theory [J].The Annals of Statistics,1984,1467-87.
    [99] Pickands J. Statistical Inference Using Extreme Order Statistics [J]. TheAnnals of Statistics,1975,119-31.
    [100] Castillo E, Sarabia J M. Engineering Analysis of Extreme Value Data:Selection of Models [J]. Journal of waterway, port, coastal, and oceanengineering,1992,118(2):129-46.
    [101] Nowak A S. Live Load Model for Highway Bridges [J]. Structural Safety,1993,13(1-2):53-66.
    [102] Nowak A S. Load Model for Bridge Design Code [J]. Canadian Journal ofCivil Engineering,1994,21(1):36-49.
    [103] Mei G. Bimodal Renewal Processes Models of Highway Vehicle Loads [J].Reliability Engineering&System Safety,2004,83(3):333-9.
    [104] Guo T, Li A, Zhao D. Multiple-Peaked Probabilistic Vehicle Load Model forHighway Bridge Reliability Assessment [J]. Journal of Southeast University(Natural Science Edition),2008,
    [105] Lan C, Li H, Ou J. Traffic Load Modelling Based on Structural HealthMonitoring Data [J]. Structure and Infrastructure Engineering,2011,7(5):379-86.
    [106] Getachew A, Obrien E J. Simplified Site-Specific Traffic Load Models forBridge Assessment [J]. Structure and Infrastructure Engineering,2007,3(4):303-11.
    [107] Mishra S K, Chaudhuri S R, Chakraborty S, Frantziskonis G. SpectralCharacterization of the Stochastically Simulated Vehicle Queue on Bridges[J]. Engineering with Computers,2009,25(4):367-78.
    [108] Fujino Y, Warnitchai P, Pacheco B. Active Stiffness Control of CableVibration [J]. Journal of Applied Mechanics,1993,60(4):948-53.
    [109] Gattulli V, Vestroni F. Nonlinear Strategies for Longitudinal Control in theStabilization of an Oscillating Suspended Cable [J]. Dynamics and Control,2000,10(4):359-74.
    [110] Franklin G F, Workman M L, Powell D. Digital Control of Dynamic Systems[M]. Addison-Wesley Longman Publishing Co., Inc.,1997.
    [111]欧进萍.结构振动控制:主动,半主动和智能控制[M].科学出版社,2003.
    [112]中华人民共和国建设部.建筑结构荷载规范[S][M].北京:中国建筑工业出版社.2001.
    [113] Achkire Y, Preumont A. Active Tendon Control of Cable-Stayed Bridges [J].Earthquake Engineering&Structural Dynamics,1996,25(6):585-97.
    [114] Achkire Y. Active Tendon Control of Cable-Stayed Bridges [D]. Belgium:Universit′e Libre de Bruxelles,1997.
    [115]李国豪.桥梁结构稳定与振动[M].中国铁道出版社,1992.
    [116] Fryba L, Fryba L. Vibration of Solids and Structures under Moving Loads[M]. Thomas Telford,1999.
    [117]中国人民共和国交通部.公路桥涵设计通用规范[S][M].北京:人民交通出版社.2004.
    [118] Rao C R, Mitra S K. Generalized Inverse of a Matrix and Its Applications [J].J Wiley, New York,1971,
    [119] Bakushinsky A, Goncharsky A. Ill-Posed Problems: Theory and Applications[M]. Kluwer Academic Pub.,1994.
    [120] Hansen P C, O'leary D P. The Use of the L-Curve in the Regularization ofDiscrete Ill-Posed Problems [J]. SIAM Journal on Scientific Computing,1993,14(6):1487-503.
    [121] Moore R E. Interval Arithmetic and Automatic Error Analysis in DigitalComputing [D]. Stanford, CA: Stanford University,1962.
    [122] Moore R E, Bierbaum F. Methods and Applications of Interval Analysis [M].Society for Industrial Mathematics,1979.
    [123] Jaulin L. Applied Interval Analysis: With Examples in Parameter and StateEstimation, Robust Control and Robotics [M]. Springer Verlag,2001.
    [124] Moore R E, Kearfott R B, Cloud M J. Introduction to Interval Analysis [M].Society for Industrial Mathematics,2009.
    [125]李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-77.
    [126] Marks I, Robert J. Introduction to Shannon Sampling and InterpolationTheory [M]. Springer-Verlag New York, Inc.,1991.
    [127] Candes E J, Romberg J K, Tao T. Stable Signal Recovery from Incompleteand Inaccurate Measurements [J]. Communications on Pure and AppliedMathematics,2006,59(8):1207-23.
    [128] Donoho D L. Compressed Sensing [J]. IEEE Transactions on InformationTheory,2006,52(4):1289-306.
    [129] Candes E J, Tao T. Near-Optimal Signal Recovery from Random Projections:Universal Encoding Strategies?[J]. IEEE Transactions on InformationTheory,2006,52(12):5406-25.
    [130] Candes E J, Tao T. Decoding by Linear Programming [J]. IEEE Transactionson Information Theory,2005,51(12):4203-15.
    [131] Donoho D L. For Most Large Underdetermined Systems of Linear Equationsthe Minimal [J]. Communications on Pure and Applied Mathematics,2006,59(6):797-829.
    [132] Tropp J A, Gilbert A C. Signal Recovery from Random Measurements ViaOrthogonal Matching Pursuit [J]. IEEE Transactions on Information Theory,2007,53(12):4655-66.
    [133] Tropp J A. Greed Is Good: Algorithmic Results for Sparse Approximation [J].IEEE Transactions on Information Theory,2004,50(10):2231-42.
    [134] Koh K, Kim S-J, Boyd S. An Interior-Point Method for Large-ScaleL1-Regularized Logistic Regression [J]. Journal of Machine learningresearch,2007,8(8):1519-55.
    [135] Chen S S, Donoho D L, Saunders M A. Atomic Decomposition by BasisPursuit [J]. SIAM Journal on Scientific Computing,1998,20(1):33-61.
    [136] Donoho D L, Elad M, Temlyakov V N. Stable Recovery of SparseOvercomplete Representations in the Presence of Noise [J]. InformationTheory, IEEE Transactions on,2006,52(1):6-18.
    [137] Obrien E J, Enright B, Getachew A. Importance of the Tail in Truck WeightModeling for Bridge Assessment [J]. Journal of Bridge Engineering,2010,15(2):210–213.
    [138] Lan C, Li H, Ou J. Traffic Load Modelling Based on Structural HealthMonitoring Data [J]. Structure and Infrastructure Engineering,2011,7(5):379-86.
    [139] Croce P, Salvatore W. Stochastic Model for Multilane Traffic Effects onBridges [J]. Journal of Bridge Engineering,2001,6:136.
    [140] Papoulis A, Pillai S U. Probability, Random Variables and StochasticProcesses with Errata Sheet [M]. McGraw-Hill,2001.
    [141] Roussas G G. A Course in Mathematical Statistics [M]. Academic Press,1997.
    [142] Ross S M. Introduction to Probability Models [M]. Academic press,2006.
    [143] Bracewell R N, Bracewell R. The Fourier Transform and Its Applications[M]. McGraw-Hill New York,1986.
    [144] Melchers R E. Structural Reliability Analysis and Prediction [M]. JohnWiley&Son Ltd,1999.
    [145] Parzen E. Stochastic Processes [M]. Society for Industrial and AppliedMathematics,1987.
    [146] Papoulis A. Probability, Random Variables, and Stochastic Processes [M].New York: McGraw-Hill,1991.
    [147]邓永录,梁之舜.随机点过程及其应用[M].科学出版社,1992.
    [148] Embrechts P, Klüppelberg C, Mikosch T. Modelling Extremal Events: ForInsurance and Finance [M]. Springer Verlag,1997.
    [149] Dupuis D. Exceedances over High Thresholds: A Guide to ThresholdSelection [J]. Extremes,1999,1(3):251-61.
    [150]史道济.实用极值统计方法[M].天津科学技术出版社,2006.
    [151] Cohen A M. Numerical Methods for Laplace Transform Inversion [M].Springer,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700