用户名: 密码: 验证码:
基于跟驰模型的交通流分岔与混沌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的目标是分析车辆跟驰模型中的非线性动力学行为,以寻求交通流中各种非线性现象产生的基本机理。
     从有序到无序、再从无序到有序,是交通流中普遍存在的一种形式。交通流在一定条件下有可能在状态转化过程中出现混沌现象,这一事实已经被一些学者研究并从多角度所证实。本文在认真分析国内外交通流该领域研究现状的基础上,综合评述己有的成果,发现已有的研究缺乏对交通流混沌产生机理的分析,因此选择将分岔理论引入交通流混沌的研究作为突破方向,通过对交通流中由于稳定性丧失而导致的分岔现象进行研究,进一步分析了由分岔演化至混沌的不同途径,说明了交通流混沌产生的复杂性。
     文章的主要内容如下:
     利用非线性系统的稳定性理论分析了刺激-反应模型模型和优化速度模型的系统稳定性条件,简要介绍了三相交通流理论,并结合稳定性条件,通过对不同交通流状态之间转化的模拟仿真,发现了同一交通相下交通流状态的多样性特征,同时对相变过程中的连续相变与不连续相变进行了讨论。
     分别研究了无时滞参数和带时滞参数的交通流优化速度模型中的分岔现象,利用非线性系统的稳定性分析理论,给出了Hopf分岔产生时,各参数满足的临界关系表达式,并在时滞微分方程理论的基础上,通过中心流形方法和正规型的计算,推导出了确定Hopf分岔方向和分岔解稳定性的判别式,同时利用仿真软件分析了分岔行为对交通流状态的影响,并讨论了分岔行为的进一步演化至混沌的可能性。
     从分析车辆跟驰行为中的基本混沌特征入手,结合定量和定性的方法,在以往混沌识别算法的基础上,提出了基于组合特征分析的算法来验证交通流中的混沌现象存在性问题,并据此对速度优化模型的混沌现象进行了研究,同时讨论了模型中参数对交通流状态的影响。
     在对交通流模型中混沌分析的基础上,结合分岔理论,通过形式推演、计算机模拟等方法对交通流模型中的混沌产生的基本途径分别进行了分析,发现在一定参数条件下,交通流系统中确实会出现混沌现象,并且混沌是通过分岔行为的演化,沿袭倍周期分岔、阵发性以及Hopf分岔等不同的途径而引发的。
The purpose of this dissertation is to analyze the non-linear dynamic behaviors in the car-following models for the fundamental mechanism that lies in the various non-linear phenomena.
     From order to disorder and then disorder to order reflects the typical aspect of the traffic flow. The traffic flow might march into a chaos during the transformation process under certain conditions, which has been proved by many scholars from different angles. The dissertation carefully studies the achievements made so far in the field from both home and abroad only to find that, there’s a lack of the studies on the mechanism of the chaos in the traffic flow. Choosing the introduction of bifurcation theory into traffic chaos study as the breakthrough point, the stability in the traffic flow was studied and the results shows that the bifurcation phenomena incurred by the loss of stability in the traffic flow. The different scenarios for the transformation from bifurcation to chaos were further analyzed. the complicacy of chaos occurrence was explained.
     The main contents of the dissertation are as follows:
     The conditions for the stability of traffic flow were analyzed by the non-linear theory in the stimulus-response model and optimal velocity model. briefly covers the three-phase traffic flow theory, and through the simulation of transformation between different states of traffic flows, with the conditions of stability considered, the variety of the states of traffic flows was illustrated and the coexistence of continued-discontinued phase transition was discussed.
     The bifurcation phenomena were discussed respectively in both the optimal velocity model with the delay parameters and that without the delay parameters. And with the theory of stability analysis for the non-linear system a critical inter-relation expression, in which all the parameters are valid when the Hopf bifurcation occurs, is worked out. On the basis of the delay differential equation theory, by the center manifold and through the calculation of normal form, a discriminant was deduced for the judgment of direction and stability of Hopf bifurcation. Meanwhile, an analysis of the impact of bifurcating on the states of traffic flows was conducted with the help of simulating software and a further exploration was made on the possibility of the further transformation to chaos from bifurcating.
     From the chaotic quality of the car-following behaviors, by quantitive and qualitative analysis, and based on the identification algorithm of chaos previously achieved, the algorithm, for the confirmation of the chaos in the traffic flows based on the analysis of the combined group characteristics, was presented, and with it considered, a study over the chaotic phenomenon in the optimal velocity model was made and the impact of the parameters of the model on the states of traffic flows was also under discussion.
     Based on the analysis of the chaos of the traffic flow model, with the theory of bifurcation considered, and through deduction and computer simulation, etc. an exploration was conducted for basic channels to chaos in the traffic flow model. A conclusion was drawn that the chaotic phenomena do occur in the traffic flow system under certain conditions with the parameters, which were incurred by such different scenarios as through the development of the bifurcation, Feigenbaum , Pomeau-Manneville and Ruelle-Takens-Newhouse scenarios
引文
[1] 公安部 2005 年中国道路交通事故统计分析,2006
    [2] 贺国光 ITS 系统工程导论. 北京:中国铁道出版社,2004
    [3] Greenshields, B. D., A Study of Traffic Capacity .HRB 14 Part Ⅰ, Washington,D.C. 1935,(14):448~477.
    [4] Pipes, L. A., An Operational Analysis of Traffic Dynamics. J. Appl. Phys. 1953, 24, 274~281.
    [5] Lighthill, M. J., G. B. Whitham, On Kinematic Waves Ⅱ, A Theory of Traffic Flow on Long Crowded Roads. Proc. Roy. Soc. London, Ser. A 1955,(229):317~345.
    [6] Payne, H. J., Mathematical Models of Public Systems,edited by G. A. Bekey (Simulation Council, LaJolla, CA), 1971,(1):51~61.
    [7] Payne, H. J., A Critical Review of a Macroscopic Freeway Model, In Research Directions in Computer Control of Urban Traffic Systems, ASCE, New York, 1979, pp. 251~265.
    [8] Payne, H. J., FREFLO: a macroscopic simulation model. of freeway traffic.Transpn. Res. Rec. 1979, (722):68~77.
    [9] Papageorgiou, M., 1995, Transpn. Res. C 3, 19; Papageorgiou, M., 1999, in Hall (1999), pp. 231; Papageorgiou, M., and A. Pouliezos, 1997, Eds., TransportationSystems (IFAC, Technical University of Crete,Chania), Vol. 2.
    [10] Carlos F. Daganzo. The Cell Transmission Model:A Dynamic Representation of Highway Traffic Consistentwith the Hydrodynamic Theory. Transportation Research B, 1994,28(4):269~287.
    [11] 杨东凯,吴今培,张其善.智能交通系统及其信息化模型.北京航空航天大学学报2000,Vol.26(3):270~273
    [12] Jurgen R K. Smart cars and highways go global. IEEE Spectrum,1991,28(5):26~36.
    [13] Collier.W.C,Richard J W. Smart cars, smart highways. IEEE Spectrum,1994,31(4):27~33.
    [14] 陆化普,史其信.智能交通系统发展趋势与我国的发展战略.97 北京智能交通系统发展趋势国际学术讨论会论文集. 北京:人民交通出版社,1997.1~7.
    [15] ITS Report. United States Policy EPA 231-R-98-007 Environmental Protection (2126) December 1998
    [16] 刘力军,王春玉,贺国光.交通流模型中分岔现象研究综述. 系统工程 2006 Vol.24 No.8 P.23~26
    [17] 王东山,贺国光.交通流混沌研究综述.土木工程学报,2003(1):68~73
    [18] J.E.Disbro, M.Frame. Traffic flow theory and chaotic behaviour. Transportation research record 1225, 1989
    [19] R.D.Johanns, D.A.Roozemond. An object based traffic control strategy: a chaos theory approach with an object-oriented implementation, Advanced Technologies, 1993, 231~242
    [20] D.S.Dendrinos. Traffic-flow Dynamics: A Search for Chaos. Chaos Solitons & Fractals, 1994, 4(4): 605~617
    [21] D.J.Low, P.S.Addison. Chaos in a car-following model including a desired inter-vehicle separation. Proceedings of the 28th ISATA Conference. Stuttgart, Germany, 1995: 539~546
    [22] 冯蔚东.基于自组织理论的交通流及其管控研究:[博士学位论文].天津,天津大学,1998
    [23] 李英,刘豹,马寿峰.交通流时间序列中混沌特性判定的替代数据方法.系统工程,2000(6):54~58
    [24] P. S. Addison and D. J. Low. Order and chaos in the dynamics of vehicle platoons. Traffic Engineering and Control37 (7/8) 1996: 456~459
    [25] P. S. Addison and D. J. Low. The existence of chaotic behavior in a separation-distance centered non-linear car following model . Road Vehicle Automation II. C. Nwagboso(ed), Wiley, Chichester, 1997: 171~180
    [26] D.J.Low, P.S.Addison. Chaos in car-following model with a desired headway time . Proceeding of the 30th ISATA Conference, Florence, Italy, 1997,175~182
    [27] D.J.Low, P.S.Addison. A Nonlinear Temporal Headway Model of Traffic Dynamics . Nonlinear Dynamics, 1998.4, 16: 127~151
    [28] 张智勇,荣建,任福田.跟驰车队中的混沌现象研究.土木工程学报交通工程分册,2001(1):58~59
    [29] 刘力军,贺国光.基于智能司机模型的交通流混沌现象分析.武汉理工大学学报(交通科学与工程版)2006 Vol.30 (3):377~380
    [30] E.M.Shahverdiev, S.I.Tadaki. Instability control in two dimensional traffic flow model . Physics Letters A, 1999. 5, 256: 55~58
    [31] 贺国光,万兴义,王东山.基于跟驰模型的交通流混沌研究.系统工程,2003(2):50~55
    [32] 贺国光,王东山.仿真交通流混沌现象的传播特性研究.土木工程学报,2004(1):74~77
    [33] Lijun Liu, Guoguang He, Dongshan Wang. Simulation Study on the Transition between Chaos and Order Motion in the Traffic Flow . Proceedings of ICTTS’2004, ASCE:461~467
    [34] 贺国光,万兴义.基于最大 Lyapunov 指数的交通流仿真数据混沌状态识别.控制理论与应用,2003(4):8~10
    [35] 贺国光,万兴义.基于混沌判据评价几类跟驰模型合理性的仿真研究.系统工程理论与实践,2004(4):123~129
    [36] 张旭涛,贺国光,卢宇.一种在线实时快速地判定交通流混沌的组合算法.系统工程,2005(9):46~49
    [37] Sanjoy Das, Betty A. Bowles. Simulations of Highway Chaos Using Fuzzy Logic. Fuzzy Information Processing Society, 1999, NAFIPS. 18th International Conference of the North American, 130~133
    [38] 杜振财,王瑞峰,纪常伟.基于 Logistic 映射的交通流的混沌态研究.交通科技,2005(2):78~80
    [39] A.S.Nair, J.C.Liu, L.Rilett et al. Non-Linear Analysis of Traffic Flow.IEEE Intelligent Transportation Systems Conference Proceedings Oakland (CA), U.S.A, 2001. 8: 25~29
    [40] 卢宇,贺国光.基于改进型替代数据法的实测交通流的混沌判别.系统工程,2005(6):24~27
    [41] 陈淑燕,王炜.基于 Lyapunov 指数的交通量混沌预测方法.土木工程学报,2004(9):98~101
    [42] 王进,史其信,陆化普.交通流可预测性分析.ITS 通讯,2005(2):11~14
    [43] 董超俊,刘智勇,邱祖廉.基于混沌理论的交通量实时预测.信息与控制,2004(5):518~522
    [44] 宗春光,宋靖雁,任江涛,等.基于相空间重构的短时交通流预测研究.公路交通科技,2003(4):71~75
    [45] Jianming HU, Chunguang ZONG, Jingyan SONG et al. An Applicable Short-term Traffic Flow Forecasting Method based on Chaotic Theory . IEEE 6th International Conference on Intelligent Transportation Systems,Shanghai,2003:608~613.
    [46] 王进,史其信.基于延迟坐标状态空间重构的短期交通流预测研究.ITS通讯,2005(1):14~18
    [47] 唐阳山,李江,田育耕等.交通冲突量的混沌预测.吉林大学学报(工学版),2005(6):646~648
    [48] 杨立才,贾磊,何立琴等.基于混沌小波网络的交通流预测算法研究.山东大学学报(工学版),2005(2):46~49,
    [49] 唐明,陈宝星,柳伍生.基于相空间重构的短时交通流分形研究.山东交通学院学报,2004(1):50~54,
    [50] Huang Kun, Chen Senfa, Zhou Zhenguo et al. Research on a non-linear chaotic prediction model for urban traffic flow . Journal of Southeast University (English Edition), 2003(4): 410~413
    [51] 王正武,黄中祥,况爱武.短期交通流序列混沌识别及预测精度分析.长沙交通学院学报,2004(2):73~76
    [52] 杨立才,贾磊,王红.双交叉口两级模糊协调控制算法的研究.系统工程理论与实践,2005(6):35~40
    [53] 徐良杰,王炜.基于一种新的混合算法的交通流控制优化模型.信息与控制,2005(3):31~35
    [54] 董超俊,刘智勇,邱祖廉.基于混沌遗传算法的区域交通计算机控制配时优化.计算机工程与应用,2004(29):35~37
    [55] Xiaoyan Zhang & David F. Jarrett. Chaos in dynamic of traffic flows in an origin-destination network . American Institute of Physics, 1998. 6, 8(2): 503~513
    [56] 乔林.交通经济交互作用中的混沌现象:[博士学位论文].北京,北方交通大学,1996
    [57] 张秀媛,达庆东.交通运输结合部系统管理的内耗与混沌现象分析.系统工程理论与实践,2001(12):90~94
    [58] Gao Rong, Tsoukalas Lefteri H. Neural-wavelet Methodology for Load Forecasting. Journal of Intelligent and Robotic Systems . 2001,31(1): 149~157
    [59] Y.Igarashi, K.Itoh, K.Nakanishi. Bifurcation phenomena in the optimal velocity model for traffic flow, Phys.Rev. E 64 (2001).
    [60] Y.Igarashi, Quasi-Solitons in Dissipative Systems and Exactly Solvable Lattice Models.J. Phys. Soc. Japan, (1999)68:791~796
    [61] G.Orosz,, R.E.Wilson. Global bifurcation investigation of an optimal velocity traffic model with driver reaction time. Applied Nonlinear Mathematics Research Report 2004.1, University of Bristol.
    [62] I.Gasser, G.Sirito, B.Werner. Bifurcation analysis of a class of car following traffic models. Physica D 197 (2004) 222~241
    [63] L.A.Safonov, E.Tomer, et al. Multifractal chaotic attractors in a system of delay differential equations modeling road traffic.Chaos. 2002 Vol.12(4):1006~1014
    [64] L.A.Safonov, E.Tomer, et al. Delay induced chaos with multifractal attractor in a traffic flow model. Europhys. Lett., 2002,57 (2): 151~157
    [65] T.Nagatani. Complex motions of shuttle buses by speed control. Physica A . 2003 (322) 685~697
    [66] H.J.C. Huijberts. Analysis of a continuous car-following model for a bus route: existence, stability and bifurcations of synchronous motions. Physica A 2002 (308):489 ~517
    [67] Matthias Herrmann, Boris S. Kerner. Local cluster effect in different traffic flow models.Physica A ,1998 (255) 163~188
    [68] Tong Li, Nonlinear dynamics of traffic jams . Physica D 2005 (207) 41~51
    [69] B.S. Kerner, P. Konhauser, Structure and parameters of clusters in traffic flow, Phys. Rev. E 1994 (50) 54~83.
    [70] R.D. Kuhne, R. Becksculte, Nonlinear stochastics of unstable traffic flow[C], Proceedings of the 12th International Symposium on the Theory of traffic flow and transportation, 1993:367~386.
    [71] Hao B-L. Chaos [M]. Singapore: World Science, 1984
    [72] Hao B-L. Chaos II [M]. Singapore: World Science, 1990
    [73] James Gleich,张淑誉译.混沌:开创新科学[M].上海:上海译文出版社,1990
    [74] Jiang Rui,Wu Qingsong.First- and second-order phase transitions from free flow to synchronized flow. Physica A 2003(332):676~684.
    [75] Lan, Lawrence W., Feng-Yu Lin. Identification for Chaotic Phenomena in Short-term Traffic Flows: A Parsimony Procedure with Surrogate Data. Journal of the Eastern Asia Society for Transportation Studies, 2005 Vol.6, pp.1518~1533.
    [76] Lin, Feng-Yu and Lawrence W. Lan. Traffic Flow Analysis with Different Time Scales. Journal of the Eastern Asia Society for Transportation Studies, 2005 Vol.6, pp.1624~1636.
    [77] Brackstone M, McDonald M. Car-following: a historical review. Transportation Research Part F. 1999,Vol2(4):181~196
    [78] Gazis D C, Herman R, Rothery W. Nonlinear follow-the-leader models of traffic flow . Opns Res, 1961, 9: 545~567
    [79] Gazis D C, Herman P & Potts R B, Car-following theory of steady state flow . Opns. Res.1959, 499~505
    [80] Chandler R E, Herman R, Montroll E W. Traffic dynamics: studies in car following. Operations Research,1958 6, 165~184
    [81] Herman R, Montroll E W, Potts R B, et al. Traffic dynamics: analysis of stability in car following. Operations Research,1959 7, 86~106
    [82] Herman R, Potts R. B. Single lane traffic theory and experiment. In Proceedings of the Labs, General Motors.1959 147~157
    [83] Edie L C. Car following and steady state theory for non-congested traffic. Operations Research,1960 9, 66~76
    [84] Bierley R L. Investigation of an inter-vehicle spacing display . Highw. Res. Rec. 1963 (25), 58~75.
    [85] Rockwell T H and Treiterer J. Sensing and communication between vehicles. National Cooperative Highway research Program, report 51. Highway Research Board Washington, D. C. 1968
    [86] Newell G F. Nonlinear effects in the dynamics of car following. Operations Research, 1961,9(2): 209~229.
    [87] Bando H, Hasebe K, Nakayama A, et al. Dynamical model of traffic congestion and numerical simulation . Physic Review. 51 (2): 1035~1042.
    [88] M. Bando, K. Hasebe, Analysis of Optimal Velocity Model with Explicit Delay .Physical Reviews E, 1998, 58(5): 5429~5435.
    [89] T. S. Komatsu, S. Sasa, Phys. Rev. E (1995) 52: 5574.
    [90] M. Treiber, A.Hennecke, D.Helbing, Congested Traffic States in Empirical Observations and Microscopic Simulations. Phys. Rev. E (1999)59:239.
    [91] 董力耘 , 薛郁 , 戴世强. 基于跟车思想的一维元胞自动机交通流模型. 应用数学和力学 2002,(04):331~337
    [92] Cremer M , Ludwig J. A fast simulation model for traffic flow on the basis of Boolean operations . Mathematics and Computers in Simulation, 1986 28: 297~303
    [93] Nagel K, Schreckenberg M. A cellular automaton model for freeway traffic . Journal of Physics I France, 1992, 2: 2221~2229
    [94] Wolfram S. Theory and applications of cellular auto-mata. Singapore: World Scientific, 1986
    [95] Nagel K, Herrmann H J. Deterministic models for traffic jams . Physica A , 1993, 199: 254~263
    [96] Barlovic R, Santen L , Schadschneider A , et al Metastable states in cellular automata. European Physical Journal B, 1998, 5 (3) : 793~800
    [97] Fukui M , Ishibashi Y. Traffic flow in 1D cellular automata model including cars moving with high speed. Journal of Physics Society Japan, 1996,65 (1) : 868~870
    [98] Wolf D E. Cellular automata for traffic simulations. Physica A , 1999, 263: 438~451
    [99] 章三乐,肖秋生,任福田.车辆跟驰理论的实用研究.北京工业大学学报,18(3), 20~27,
    [100] 陈建阳.交通流微观模型与宏观模型的统一.同济大学学报,1997 2(1): 46~49.
    [101] 荣建.高速公路基本路段通行能力研究:[博士学位论文].北京,北京工业大学,1999.
    [102] 许伦辉,徐建闽,周其节.车辆跟驰问题的建模及其求解.华南理工大学学报,1998 1.26: 38~43,.
    [103] 何民.交通流跟驰问题研究:[博士学位论文].北京,北京工业大学,2000.
    [104] Lighthill M H, Whitham G B. On kinematics wave: A theory of traffic flow on long crowed roads . Proc R Soc London, Ser A, 1955, 22: 317~345
    [105] H.J.Payne. Models of freeway traffic and control, Mathematical Methods of Public Systems . 1971. 51~56
    [106] Papageorgiou M. A hierarchical control system for freeway traffic . Transportation Research, Part B: Methodological, v 17B, n 3, Jun. 1983, 251~261
    [107] Phillips W.F. A new continuum traffic model obtained from kinetic theory . Proceedings of the IEEE Conference on Decision and Control, 1978, p 1032~1036
    [108] Kuhne R.D. Macroscopic freeway model for dense traffic-stop-start waves and incident detection . Volmuller J, Hamerslag R, Proc. 9th Int. Symp. On Transpn and Traffic Theory, VNU Science Press, Utrecht, 1993
    [109] Michalopoulos P.G., Yi P. & Lyrintzis A.S. Continuem modeling of traffic dynamics for congested freeways . Transpn.Res., 1993
    [110] 吴正.低速混合型城市交通的流体力学模型.力学学报.1994(26):149~157
    [111] 冯苏苇 低速混合型城市交通流的建模、实测与模拟:[博士学位论文],上海,上海大学,1997.
    [112] Xue Yu,Dai Shiqiang. Continuum traffic model with the consideration of two delay time scales. Phys Rev E 2003,68(066123):1~6
    [113] Zhang H M. A nonequilibrium traffic flow model devoid of gas-like behavior. Transportation Research Part B: Methodological 2002 (36 ) :275~290
    [114] Helbing D. Traffic and Related self-driven many particle systems.Rev Mod Phys,2001,73(4):1067~1141.
    [115] Klar A, Wegener. A Hierarchy of Models for Multilane Vehicular Traffic:Modelling. SIAA Journal of Applied Mathematics.
    [116] Leutzbach W. An introduction to the traffic flow. Springer-Verlag, Berlin 1998.
    [117] Yserentant H. A New Class pf Particle Methods. Numerical Mathmatics. 1997(76):87~109
    [118] Van Aerde, M. INTEGRATION: A Model for Simulating In tegrated Traffic Networks. Transportation System Research Group. (1994).
    [119] Hoogendoorn, S.P., P.H.L. Bovy. Gas-Kinetic Modeling and Simulation of Pedestrian Flows. To appear in Transportation Research Board 2000. TRB-paper 00-1662 (2000)
    [120] 王兴元.复杂非线性系统中的混沌. 北京:电子工业出版社,2003
    [121] 张琪昌.分岔与混沌理论及应用. 天津:天津大学出版社,2005
    [122] 吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉水利电力大学出版社,2002
    [123] T.Faria, L.T.Magalhaes. Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differential Equations 122(1995) 181~200
    [124] Zhang.Xiaoyan, David.F.Jarrett. Stability Analysis of the Classical Car-following Models. Transpn Res.B 1997(31) 6:441~462
    [125] T.Nagatani. Traffic jam induced by fluctuation of a leading car. Physical Review E. 2000(61)4:3534~3540
    [126] Kerner B S. Three-phase traffic theory and high way capacity. Physica A , 2004, 333: 379~440
    [127] 洪昊,关伟. 交通流理论的新进展. 交通运输系统工程与信息. 2006 (6)1:80~85
    [128] Namiko.Mitarai, Hiizu.Nakanishi. Convective Instability and Structure Formation in Traffic flow. Journal of the Physical Society of Japan.2000(60)11:3752~3761
    [129] D.Helbing. Traffic and related self-driven many particle systems. Rev Mod Phy, 2001, 73(4): 1067~1141
    [130] Traffic flow theory . http://www.tfhrc.gov/its/tft/tft.htm
    [131] H. K. Lee, H.W. Lee, D. Kim.Macroscopic traffic models from microscopic car-following models Phys. Rev. E 64, 056126 (2001).
    [132] H. K. Lee, H.-W. Lee,D. Kim.Steady-state solutions of hydrodynamic traffic models Phys. Rev. E 69, 016118 (2004)
    [133] Komatasu T, S Sasa. Kink solution charactering traffic congestion. Phys Rev E,1995 55:5574~5581
    [134] Muramatsu M, T Nagatani. Soliton and kink jams in traffic flow with open boundaries. Phys. Rev. E, 1999,60:180~187
    [135] T Nagatani. Density wave in traffic flow. Phys. Rev. E, 1999,60:6395
    [136] 曹庆杰. 一类广义非线性发展方程的孤立子、混沌与分岔.CHINESE SCIENCE ABSTRACTS 2000 Vol.6 No.2 P.181~182
    [137] TANG Minying. Solitary waves and bifurcations of KdV like equation with higher nonlinearity. Science in china 2002.45(10):1255~1267
    [138] 杨芝燕,姜涛.分支方法在广义MKdV方程中的应用. 云南大学学报2002. 24(1):16~20
    [139] A.D.Mason, A.W.Woods. Car-following models of nultispecies systems of road traffic. Phys Rev E 1997(55)3:2203~2213.
    [140] Y.A.Kuznetsov. Elements of applied bifurcation theory. Springer, 1998.
    [141] T.Nagatani. The physica of the traffic jams. Rep.Prog.Phys.65(2002) 1331~1386.
    [142] Orosz, G.; Stépán, G. Hopf Bifurcation Calculations in Delayed Systems with Translational Symmetry. Journal of Nonlinear Science, 2004 (14) 6:505~528
    [143] Orosz, G, Krauskopf, Bernd. Bifurcations and multiple traffic jams in a car-following model with reaction-time delay. Physica D 2005(211) 3-4:277~293
    [144] M. Treiber, D. Helbing. Explanation of Observed Features of Self-Organization in Traffic Flow. Phys. Rev.Lett. 1998,81,3797.
    [145] 张智勇. 城市快速道路车辆跟驰模型研究:[博士学位论文]. 北京,北京工业大学 2001
    [146] 刘志华. 时滞微分方程的分岔问题:[博士学位论文],北京师范大学. 2004
    [147] 陈永海. 两种交通流模型的混沌现象研究: [硕士学位论文]. 天津,天津大学.2006.
    [148] 杜振财,王丽,荣建. 期望车头间距的混沌模型研究. 公路交通科技 2005 (22)5:124~127
    [149] 向小东,郭耀煌,混沌吸引子分形维数的计算,系统工程,2000,18(6):75~78
    [150] Xiaoyan Zhang, David F Jarrett, Chaos in dynamic of traffic flows in an origin-destination network, American Institute of Physics, 1998, 8(2): 503~513
    [151] T-Y Li, J.A.Yorke. Period three implies chaos. American Mathematical Monthly, 1975, 82: 985~992
    [152] E.J.Doedel, R.C.Paffenroth, et al. AUTO2000:Continuation and bifurcation software for ODE. Tech.Rep.,Caltech,2001.
    [153] K.Engelborghs,T.Luzyanina,D.Roose. Numerical bifurcation analysis of delay differential equations using DDE-BFTOOL.ACM Transactions on Mathematical software,2002 28(1):1~21.
    [154] A.Hense. On the possible existence of a strange attractor for the Southern Oscillation . Bectr. Phys. Atmosph. 1987,60(1): 34~37
    [155] 唐孝威,张训生,陆坤权.交通流与颗粒流.浙江:浙江大学出版社 2004
    [156] F.Takens. Determing strange attractor in turbulence . Lecture notes in Math, 1981, 898: 361~381
    [157] P.Grassberger, I.Procaccia. Measuring the strangeness of strange attractors . Physica D, 1983, (9): 189~208
    [158] 杨绍普 申永军. 滞后非线性系统的分岔与奇异性.北京:科学出版社,2003
    [159] S.Yukawa, M.Kikuchi, Coupled-Map Modeling of One-Dimensional Traffic Flow. M.: J. Phys. Soc. Japan 1995,(64) :35~37
    [160] 陈予恕.非线性振动系统的分岔和混沌理论.北京:高等教育出版社.1993.
    [161] 刘秉正.非线性动力学与混沌基础.长春:东北师范大学出版社,1994.
    [162] 李松.交通流混沌转化现象研究:[博士学位论文].天津,天津大学 2006.
    [163] F.Takens. Determing strong attractors in turbulence. Lecture notes in Math . 1981(898): 361~381
    [164] Wolf A. et al. Determining Lyapunov exponents from a time series, Physica D, 1985(16): 285~317
    [165] Liangyue Cao. Practical method for determining the minimum embedding dimension of a scalar time series . Physica D, 1997, 110: 43~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700