用户名: 密码: 验证码:
集合降维变分方法及其在全球谱模式T106中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决资料同化中“观测量小于模式变量数”这一欠定性问题,Qiu和Chou从在大气模式吸引子上求解资料同化问题的思想出发,提出了一种基于奇异值分解(SVD)的四维资料同化方法。这一方法建议利用奇异值分解技术从一个模式输出的样本集合中产生支撑起模式大气吸引子的正交基向量,将观测投影到这些基向量张成的空间,通过变分方法得到分析场。这一方法经过不断发展完善形成了一种基于集合的降维变分同化方法(Eensemble-based ReducedDimension Variational Assimilation Method,简称ERDVar)。ERDVar方法把同化问题从高维空间变换到低维空间来求解,这种方法和四维变分(4DVar)一样可以在一个同化循环里使用多个观测,又不需要计算切线性模式和伴随模式,能够减小程序工作量;它不像三维变分(3DVar)、四维变分(4DVar)那样采用固定不变、各向均匀同性的预报误差协方差,而是通过预报样本来估计预报误差协方差;但是和一般的集合卡尔曼滤波不同,ERDVar是在变分框架下的同化方法,更容易加入其他的物理约束,更适合同化遥感资料。另外,和集合卡尔曼滤波不同的是,ERDVar每次循环都要由新的初始扰动场出发积分模式产生样本,由这样的样本得到的误差协方差的流依赖性介于EnKF和3DVar之间。
     本文对ERDVar方法作了进一步的研究,特别集中研究了影响该方法同化效果的两个基本问题:(1)如何产生好的初始扰动场;(2)如何减少用来生成大量预报样本花费的计算时间。本文首次将ERDVar方法应用到全球谱模式T106上,利用模式资料进行了同化探空资料和卫星资料的试验;本文还发展了一种分区同化的ERDVar方案,一定程度上解决了全球同化中的局地化问题。
     通过这些研究得到以下结果:
     (1)运用浅水方程模式和模式资料进行的同化试验表明,初始扰动场的生成方式对预报结果有重要的影响。通过对3种不同扰动方法的比较看到,Evensen给出的方法得到的同化效果最好。通过比较不同的特征尺度的扰动场的同化效果得到结论:在所有模式变量都有观测时,同化精度和扰动特征尺度的关系较小,但是观测变量不完全时同化精度和扰动特征尺度的关系明显,选择和预报误差特征尺度相近的扰动尺度有利于得到好的同化效果。采用独立的初始扰动和满足地转关系的初始扰动得到的同化效果大体相当。
     (2)利用多次预报/同化循环产生的预报时间序列,统计分析预报误差的统计特征,并将它们和由扰动预报集合估计的预报误差的统计特征比较,得到结论:预报误差协方差随位置不同有所不同,随初始扰动尺度不同也有所不同,但是变量h的自相关结构都接近于高斯函数分布,变量u和v的自相关结构都接近于按地转关系得到的相关结构。不同变量间的相关也大体符合按地转关系得到的相关结构,但是由扰动预报样本得到的相关结构和由预报时间序列统计的相关结构相差较大,不同点和不同初始扰动得到的结果相差也较大。
     (3)对不同尺度的初始扰动产生的预报样本分析发现,初始扰动尺度过小得到的预报扰动不容易发展,尺度和实际的预报误差尺度不匹配,这应该是造成同化效果不好的原因。
     (4)通过同化试验说明,ERDVar方法的同化效果对样本容量是敏感的。样本数量对同化的影响来自于两方面:过少的样本得到的预报误差协方差不可靠;如果样本过少,在将变量按照基向量展开时有较大的截断误差。通过对预报样本的统计分析得出,截断误差是造成同化效果对样本容量敏感的主要原因。
     (5)通过对预报样本的统计分析看到,ERDVar方法所用的预报集合估计的误差协方差的流依赖性比一般的EnKF的误差协方差弱,随时间变化较慢,为减少计算时间提供了可能。基于这一研究,提出了几种减少计算时间的方案,这些方案的基本思想是尽量利用较大容量的预报集合,但是减少预报样本更新频率,或者采取固定样本和动态样本相结合的方式。试验表明,这样的方法可以大大减少计算时间,而且可以提高预报精度,这对将ERDVar方法用于业务是很有意义的。
     (6)设计了ERDVar方法与T106全球模式相结合的同化流程,用于同化探空和卫星资料;对初始扰动产生方法进行了分析,比较了通过扰动Fourier展开系数得到随机扰动场的方法和NMC扰动方法,分析表明,NMC方法得到的扰动场和模式动力协调,在预报中不容易衰减,随机扰动场的离散度则过小,不利于同化;应用这两种扰动方法分别进行了敏感性试验,研究样本个数、截断阶数、观测间隔、观测误差对同化结果的影响。
     (7)针对全球同化的特点,提出了分区同化的RERDVar方案,进行了同化探空资料的分区试验,初步试验表明分区同化大部分区域的效果比全球同化要好。说明具备局地化功能的RERDVar方案在T106模式同化中有很大优势。试验还表明,同时加入探空资料和卫星资料比只同化卫星资料效果好。
ERDVar (Ensemble-based reduced dimension Variational assimilation method) , a new and promising data assimilation method, which was initially proposed by Qiu and Chou, has continuously developed and completed. The method tries to seek a solution in the attractor of model atmosphere to reduce the under-determination of the data assimilation. In this method, the SVD was used to extract the leading singular vectors from an ensemble of 4D perturbation fields produced by the model and the analysis is obtained by projecting actual observation data into a space spanned by the base vectors, as getting the best expanding coefficients through minimizing a cost function. As 4DVar does, the ERDVar is able to assimilate the observations at multi-time levels in an analysis cycle but avoid the heavy labor on coding the tangent and adjoint model in 4DVAR. As conventional EnKF does, the ERDVar estimates the forecast error covariance matrix from the forecast ensemble but it is belong to a variational assimilation method. The method is especially more suitable than conventional EnKF for assimilating various remote sense data by considering additional physical restricts in the cost function. Besides, the ERDVar requests to produce the forecast ensemble by integrating model from a set of initial disturbed fields in every analysis cycle, which is different from EnKF. The "flow- dependent" characteristic of the background error covariance estimated by such ensemble is intermediate between EnKF and 3DVar, which maybe is a problem but also can be a advantage for the weak dependent on model overcoming the systematic errors as the model with it.
     Based on the previous studies on ERDVar method, we find that there are still at least two questions must be solved before its application for real operation: the first one is the technique of producing initial perturbation, which is the common headache for ensemble based method, the other one is making a balance between improving the analysis accuracy of the assimilation and the computational efficiency by reducing the frequency of perturbation updating. In this dissertation we make a research on the above problems first. Then we put ERDVar into an application with the global spectral model T106, absorbing the simulative radiosonde data and satellite data. Until recently it is unusual in assimilating satellite data in global models with ensemble method. We develop a regional assimilation method of ERDVar to resolve the localization of background error covariance in global assimilation.
     The first part in this dissertation is about the perturbation research: (1) A series of experiments on ERDVar were performed with a shallow water model with three different perturbation methods (A. Monte Carlo method, B. Monte Carlo method improved by Shao, C. Evensen perturbation method). Perturbations produced by A and C are statistically uniform and isotropic with a gauss probability distribution function, while perturbation produced by B just appear approximately to that. The result of assimilation analysis shows the C method as the best one. (2) Then we make assimilation analysis using perturbation C with different de-correlation length. It is shown that the analysis accuracy is sensitive to de-correlation length when the observation types is incomplete (only height and wind), which is opposite with the complete observation types. It is benefit for assimilation by choosing proper de-correlation length of perturbation which is similar to that of forecast errors; (3) A conclusion based on the model forecast errors time-series shows that the forecast error covariance changes as location or the initial de-correlation length varies, the variance of h (or u, v) is similar to gauss function distribution (or the correlation structure derived from the geostrophic relationship). And the correlation of different variables fit the correlation structure derived from the geostrophic relationship. But the correlation structure of the perturbation forecast samples is quite different from that of forecast time series, and greatly varies with respect to different location and different initial perturbation. (4) We discover that from experiments the bad assimilation analysis comes with too small de-correlation length of the initial perturbation compared with that of the real forecast errors, also without an easily developing perturbation. The probable reason is the filter effect of the model on the high-frequency noise.
     Secondly, we make a research on the possibility of reducing the updating frequency of perturbation. (1) In every assimilation cycle of ERDVar, forecast perturbation sample need to be produced from integrating model. Usually an ensemble with too small size cause a bad analysis, maybe because the unreliable forecast error covariance or the truncation errors when the observation innovations are expand on the base vectors with too small size. We verify the truncation error as the leading reason through the experiments. (2) We verify that the error covariance based on forecast ensemble in ERDVar, changing slowly as time varies, shows less 'flow-dependent' than that of conventional EnKF methods, which makes it possible to reduce the updating frequency of perturbation. (3) Based on the research above, we propose several methods to improve the computational efficiency. The main idea is using forecast ensemble with large size as possible as we can, but reducing the updating frequency, or using fixed ensemble mixed with dynamic ensemble. The results of these experiments are effective on both reducing computational cost greatly and improving the analysis accuracy, which is very meaningful to apply ERDVar to real operation.
     Thirdly, a frame of ERDVar global assimilation with T106, the global medium-range numerical weather prediction spectral model, is set up and applied to absorb radiosonde data and satellite data. We also make a research on ensemble perturbation methods, here for Fourier random perturbation and NMC perturbation in global assimilation. The first leading singular vector of the Fourier random perturbation forecast ensemble can cover the 99% cumulative variance contribution; but is terribly filtered especially for high-order perturbation. While the NMC ensemble perturbation forecast is quite consisitent with the model dynamics, and there is no filter attenuation by the model in forecast process. Then we perform ERDVar Observing System Simulation Experiments (OSSE) with these perturbation methods, to make clear the impact of ensemble size, truncated order, observation interval, observation error on the assimilation analysis. Then in order to realize the covariance localization in ERDVar global assimilation, we develop a regional ERDVar method, and the preliminary study of OSSE with radiosonde data shows its advantage over full-area ERDVar. Then we design the OSSE with satellite data and radiosonde data, the result shows that assimilation of both the two types of data is better than that of satellite data alone.
引文
[1]Talagrand O.Assimilateion of observations,an introduction.J.Met.Soc.Japan Special Issue,1997,75:1B
    [2]邱崇践,资料同化讲义,2005,兰州大学
    [3]Panofsky,H.,Objective weather map analysis.J.Meteor.,1949,6:386-392
    [4]Lorene,A.,Analysis methods for numerical weather prediction.Quart.J.Roy.Meteor.Soc.,1986,112:1177-1194
    [5]Ghil,M.,Meteorological Data Assimilation for Oceanographers.Part Ⅰ:Description and Theoretical Framework.Dyn.of Atmos.Oceans,1989,13:171-218
    [6]Bergthorsson,P.,and B.R.Doos,Numerical weather map analysis.Tellus,1955,7:329-340
    [7]Cressman,G.P.Cressman,An operational objective analysis system,Mon.Wea.Rev.1959,87:367-374
    [8]Gandin,L.S.Objective Analysis of Meteorological Fields.Israel Program for Scientific Translation,Jerusalem.1965,242 pp
    [9]F.Bouttier and P.Courtier,1999,ECMWF training course series
    [10]Daley,R.,1991:Atmospheric Data Analysis.Cambridge Atmospheric and Space Science Series,Cambridge University Press.ISBN 0-521-38215-7,457 pp
    [11]Kalman R.E.A new approach to linear filtering and prediction problems.Transaction of the ASME,J.of Basic Engineering,1960,82D:34-45
    [12]Kalman R.E.,Bucy R.New results in linear filtering and prediction.Transaction of thhe ASME,J.of Basic Engineering,1961,83D:95-108
    [13]Sasaki Y.An objective analysis based on the variational method.J.Meteorol.Soc.Japan,1958,36:77-88
    [14]Sasaki Y.Some basic formaliams in numerical variational analysis.Mon.Wea.Rev.,1970,98:875-883
    [15]Sasaki Y.Numerical variational analysis formulated under the constraints as determined by longwave equations and a low-pass filter.Mon.Wea.Rev.,1970,98:884-898
    [16]Sasaki Y.Numerical variational analysis with weak constraint and application to surface analysis of severe storm gust.Mon.Wea.Rev.,1970,98:899-910
    [17]Stauffer D.R.and N.L.Seaman.Use of four-dimensional data assimilation in a limited-aera mesoscale model.Part Ⅰ:Experiments with synoptic-scale data.Mon.Wea.Rev.,1990,118:1250-1277
    [18]Stauffer D.R.and N.L.Seaman.Use of four-dimensional data assimilation in a limited-aera mesoscale model.Part Ⅱ:Effects of data assimialtion within the planetary boundary layer.Mon.Wea.Rev.,1991,119:734-754
    [19]Courtier P,Thepaut J N,and Hollingsworth A.A strategy for operational implementation of 4DVar using an incremental approach.Quart J R Meteor Soc,1994,120:1367-1388
    [20]Courtier P,Andersson E,Hecldey W,et al.The ECMWF implementation of three-dimensional Variational assimilation(3DVar).I:Formulation.Quart J R Meteor Soc,1988,124(550):1783-1807
    [21]Parrish D and Derber J.The National Meteorological Center's spectral statistical analysis system.Mon Wea Rev,1992,120:1747-1763
    [22]Daley R and Barker E.NAVDAS:Formulation and diagnostics.Mon Wea Rev,2001,129:869-883
    [23]Barker D M,Huang W,Guo Y R,et al.A three-dimensional Variational data assimilation system for MMS:Implementation and initial results.Mon Wea Rev,2004,132:897-914
    [24]Evensen,G..The ensemble Kalman filter:theoretical formulation and practical implementation,Ocean Dynamics,2003,53:343-367.
    [25]Evensen,G..Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics.J.Geophys.Res.,1994,99:10143-10612
    [26]Burgers G,van Leeuwen P J and Evensen G.On the analysis scheme in the ensemble Kaiman filter.Mon Wea Rev,1998,126:1719-1724
    [27]Lorenc,A.,A global three-dimensional multivariate statistical interpolation scheme.Mon.Wea.Rev.,1981,109:701-721.
    [28]高斌斌,集合kalman滤波在T106L19中期数值预报谱模式中的应用研究,南京信息工程大学理学硕士学位论文,2008
    [29]资料同化和中期数值预报,国家气象中心编译,气象出版社,1991年3月第一版
    [30]丑纪范,数值预报的创新之路——从初值问题到反问题,气象学报,2007,65(5),673-682
    [31]Lorenc,A.C.,Optimal nonlinear objective anallysis.Q.J.R.Meteorol.Soc.,1988,114:205-240.
    [32]Deber,J.and Rosati,A.,A global data assimilation system.J.Phys.Ocean,1989,19:319-329
    [33]Xu Q.Generalized adjoint for physical processes with parameterized discontinuities.Part Ⅰ:basic issues and heuristic examples.J Atmos Sci,1996,53(8):1123-1142
    [34]Mu M,and Wang J.A method for adjoint variational data assimilation with physical "On-Off" processes.J Atmos Sci,2003,60:2010-2018
    [35]Kalnay E,Park S K,Pu Z X,et al.Application of the quasi-inverse method to data assimilation.Mon Wea Rev,2000,128:864-857
    [36]王斌,赵颖.一种新的资料同化方法.气象学报,2005,63:694-700
    [37]Evensen G.,Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,J.Geophys.Res,1994,99:10143-10162.
    [38]Evensen G.,Advanced data assimilation for strongly nonlinear dynamics.Mon.Wea.Rev,1997,125:1342-1354.
    [39]Evensen G,The ensemble Kalman filter.Theoretical formulation and practical implementation.Ocean Dyn,2003,53:343-367.
    [40]Kalnay E,H Li,T Miyoshi,et al.4-DVar or ensemble Kalman filter?,Tellus Ser A,2007,59(5):758-773.
    [41]Beezley,J.D.,and J.Mandel,Morphing ensemble Kalman filters,Tellus Ser A,2008,60(1):131-140.
    [42]Heemink AW,Verlaan M,Segers JA.Variance reduced ensemble Kalman filtering.Mon.Weather Rev.2001,129(7):1718-1728.
    [43]Brian F.Farrell and Petros J.Ioannou,State Estimation Using a Reduced-Order Kalman Filter,Journal of the Atmospheric Sciences,2001,58(23):3666-3680
    [44]P.F.J.Lermusiaux and A.R.Robinson,Data Assimilation via Error Subspace Statistical Estimation.Part Ⅰ:Theory and Schemes,Monthly Weather Review,1999,127(7):1385-1407
    [45]Alexander Beck,Martin Ehrendorfer,Singular-Vector-Based Covariance Propagation in a Quasigeostrophic Assimilation System,Monthly Weather Review,2005,133(5):1295-1310
    [46]Hamill T M and Snyder C.A hybrid ensemble Kalman Filter-3D Variational analysis scheme.Mon Wea Rev,2000,128:2905-2919
    [47]Lorenc A C.Modelling of error covariances by 4DVar Variational data assimilation.Quart J R Meteor Soc,2003,129:3167-3182
    [48]Vermeulen P T M,and AW Heemink,Model-reduced variational data assimilation,Mon Weather Rev,2006,134(10):2888-2899.
    [49]Cao Yanhua,Zhu Jiang,Navon I M,et al.A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition,Int.J.numer.Meth.Fluids.,2007,53:1571-1583
    [50]Ly H V,and H T Tran,Modeling and control of physical processes using proper orthogonal decomposition,Math Comput Modeling,2001,33:223-236.
    [51]Ly H V,and H T Tran,Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor,Q Appl Math,2002,60(3):631-656.
    [52]Volkwein,S.Model reduction using proper orthogonal decomposition(script in English language),2008,41 pp.,available as a PDF-file.(Available at http://www.uni-graz.at/imawww/volkwein/publist.html)
    [53]Tian X J,Z H Xie,and A G Dai.An ensemble-based explicit four-dimensional variational assimilation method,J Geophys Res,2008,113:D21124,doi:10.1029/2008JD010358.
    [54]Qiu C,Chou J.Four-dimensional data assimilation method based on SVD:Theoretical aspect.Theor.Appl.Climat.,2006,83:51-57
    [55]Qiu,C.J.,L.Zhang,and A.M.Shao,An explicit four-dimensional variational data assimilation method,Sci.China(D),2007,50(8):1232-1240.
    [56]Qiu,C.J.,A.M.Shao,Q.Xu,and L.Wei(2007),Fitting model fields to observations by using singular value decomposition:An ensemble-based 4DVar approach,J Geophys Res,112:D11105,doi:10.1029/2006JD007994
    [57]邵爱梅,邱崇践.一种基于预报集合的降维资料同化方法的数值试验研究,大气科学,2007,31:675-684.
    [58]邱崇践,张蕾,邵爱梅,一种显式四维变分资料同化方法,中国科学D辑,2007,37(5):698-704
    [59]张蕾,奇异值分解技术在卫星资料反演和同化中的应用研究:[博士学位论文],兰州大学大气科学学院,2008
    [60]Bouttier,F.and Kelly,G.2001:Observing-system experiments in the ECMWF 4DVar data assimilation system.Q.J.Roy.Meteorol.Soc.,127,1469-1488
    [61]方宗义,许健民,赵凤生.中国气象卫星和卫星气象研究的回顾和发展,气象学报,2004,62(5):550-561
    [62]Andersson E,Pailleux J,Thepaut J-N,Eyre J R,McNally A P,Kelly G A,and Courtier P.Use of cloud-clear radiances in three/four-dimensional variational data assimilation.Q.J.Roy.Meteorol.Soc.1994,120:627-653
    [63]Rabier F,Jarvinen J,Klinker E,Mahfouf J F,and Simmons A.The ECMWF implementation of four-dimensional variational assimilation.I:Experimental results with simplified physics.Q.J.Roy.Meteorol.Soc.,2000,126:1143-1170
    [64]Masahiro Kazumori,Kozo Okamoto,Hiromi Owada.Operational use of the ATOVS radiances in global data assimilation at the JMA.2006,Proc.International TOVS Study Conference ⅩⅢ,Sainte Adele,Canada
    [65]McNally T.The assimilation of satellite data at ECMWF:Operational status and research plans.2006,Proc.International TOVS Study Conference XV,Maratea,Italy.
    [66]L Garand,M Buehner,G Deblonde,A Beaulne,D Anselmo,J Halle,and N Wagneur.Operational implementation of AIRS and SSM/I assimilation at MSC.2006,Proc.International TOVS Study Conference XV,Maratea,Italy.
    [67]McNally A P,P D Watts,J A Smith.The assimilation of AIRS radiance data at ECMWF.2003,Proc.International TOVS Study Conference ⅩⅢ,Sainte Adele,Canada
    [68]翁永辉,徐祥德.TOVS资料的变分处理方法在青藏高原地区的数值试验.大气科学,1999,23(6):703-712
    [69]孟智勇,徐祥德,陈联寿.卫星亮温资料四维同化方案及其对“7.20”武汉特大暴雨的模拟试验.大气科学,2002,26(5):663-677
    [70]徐祥德,翁永辉,孟智勇.卫星TOVS资料变分分析“98.7”武汉—黄石地区特大暴雨中尺度锋面对流特征.大气科学,2002,26(6):845-856
    [71]潘宁,董超华,张文建.ATOVS辐射率资料的直接变分同化试验研究气象学报.2003,61(2):226-236
    [72]张华,丑纪范,邱崇践,西北太平洋威马逊台风结构的卫星观测同化分析,科学通报,2004,49(5):493-498
    [73]张华,ATOVS辐射率资料的直接同化方法及应用研究:[博士论文],兰州大学资源环境学院,2003
    [1]Osborne A R,Pastorello A.Simultaneous occurrence of low-dimensional chaos and colored random noise in nonlinear physical system.Phys Lett A,1999,181:159-171.
    [2]郝柏林,分岔、混沌、奇怪吸引子、湍流及其它——关于确定论系统中的内在随机性,物理学进展,1983,3(3):330-406
    [3]Lions J L,Teman R,Wang S.Mathematical theory for the coupled atmosphere-ocean models (CAO Ⅲ),J Math Pures App,1995,74:105-163.
    [4]Li J P,Chou J F.Existence of atmosphere attractor,Science in China(Ser D),1997,40(2):15-224.
    [5]Karhunen K."Zur spektraltheorie stochasticher." Annales Academiae Scientiarum Fennicae (Set A),1946,1:34
    [6]Loeve M.Probability Theory,New York:Van Nostrand,1955
    [7]Cizmas P G,Palacios A,O'Brien,Syamal T M.Proper-orthogonal decomposition of spatio-temporal patterns in fluidized beds,Chemical Engineering Science,2003,58:4417-4427.
    [8]Willem Cazemier,Proper Orthogonal Decomposition and Low Dimensional Models for Turbulent Flows,1968,ISBN 90-367-0682-3
    [9]Prohaska J T.A Technique for Analyzing the Linear Relationships between Two Meteorological Fields,Mon.Wea.Rev,.,1976,104:1345-1353.
    [10]Anindya Chatterjee.A instruction to the proper orthogonal decomposition,Current Science (Special section:Computational Science),2000,78(7):808-817
    [11]Astrid P,Weiland S,Willcox K,Backx T.Missing point estimation in models described by proper orthogonal decomposition,Decision and Control,2004,CDC.43rd IEEE Conference,2:1767-1772
    [12]Ehrendorfer,Martin,Tribbia,Joseph J.Optimal Prediction of Forecast Error CoVariances through Singular Vectors,Journal of the Atmospheric Sciences,1997,54(2):286-313
    [13]Smith,Jonathan A,Taylor,Jonathan P.Initial Cloud Detection Using the EOF Components of High-Spectral-Resolution Infrared Sounder Data.Journal of Applied Meteorology,2004, 43(1):196-210.
    [14]Lermusiaux P F J.Data Assimilation via Error Subspace Statistical Estimation..Monthly Weather Review,1999,127(7):1408-1432
    [15]Beckers,J.M.,Rixen,M.EOF Calculations and Data Filling from Incomplete Oceanographic Datasets,Journal of Atmospheric and Oceanic Technology,2003,20(12):1839-1856
    [16]Thompson,Owen E.Regularizing the Satellite Temperature-Retrieval Problem through Singular-Value Decomposition of the Radiative Transfer Physics,Monthly Weather Review,1992,120(10):2314-2328
    [17]Thompson,Owen E,Tripputi,Mark T.NWP-Initialized Satellite Temperature Retrievals Using Statistical Regularization and Singular Value Decomposition Methods.Monthly Weather Review,1994,122(5):897-926.
    [18]Cherry Steve.Some Comments on Singular Value Decomposition Analysis,Journal of Climate,1997,10(70):1759-1761
    [19]Hu Qi.On the Uniqueness of the Singular Value Decomposition in Meteorological Applications.Journal of Climate,1997,10(7):1762-1766.
    [20]Wallace,John M.,Smith,Catherine,Bretherton,Christopher S.Singular Value Decomposition of Wintertime Sea Surface Temperature and 500-mb Height Anomalies.Journal of Climate,1992,5(6):561-576.
    [21]Xue Yan,Cane M A,Zebiak S E,Palmer T N.Predictability of a Coupled Model of ENSO Using Singular Vector Analysis.Part Ⅱ:Optimal Growth and Forecast Skill.Monthly Weather Review,1997,125(9):2057-2073.
    [22]Vantard R,Yiou P,Ghil M.Singular spectrum analysis:A toolkit for short,noisy chaotic signals,Physica D,1992,58:95-126
    [23]张邦林,丑纪范,经验正交函数在气候数值模拟中的应用,中国科学B辑,1991,4:442-448.
    [24]张邦林,丑纪范,经验正交函数展开精度的稳定性研究,气象学报,1992,50(3):342-345
    [25]王金成,李建平,丑纪范,两种四维奇异值分解同化方法的比较及误差分析,大气科学,2008,32(2):277-288
    [26]Qiu C,Chou J F.Four-dimensional data assimilation method based on SVD:Theoretical aspect,Theor Appl Climat,2006,83:51-57
    [27]Qiu C,A Shao,Q Xu,and L Wei.Fitting Model Fields to Observations by Using Singular Value Decomposition-An Ensemble-Based 4DVar Approach.J.Geophys.Res.,2007,112,D11105,doi:10.1029/2006JD007994.
    [28]邵爱梅,邱崇践.一种基于预报集合的降维资料同化方法的数值试验研究,大气科学,2007,31:675-684
    [29]Qiu C,L Zhang,A Shao.An explicit four-dimensional variational data assimilation method,Science in China Series D:Earth Sciences,2007,50(8):1232-1240
    [30]Shao A,S Xi,C Qiu.A Hybrid-Space Approach for Ensemble-Based 4DVa,2009,submitted to JGR
    [1]Cai M,Kalnay E,Toth Z.Bred vectors of the Zebiak-Cane model and their potential application to ENSO predictions.J Clim,2003,16(1):40-56
    [2]Buizza R,Houtekamer P L,Toth Z,et al.A comparison of the ECMWF,MSC,and NCEP global ensemble prediction systems.Mon Weather Rev,2005,133(5):1076-1097
    [3]Houtekamer P L,Derome J.Methods for ensemble prediction.Mon Weather Rev,1995,123(7):2181-2196
    [4]Hamill T M,Snyder C,Morss R E.A comparison of probabilistic forecasts from bred,singular-vector,and perturbed observation ensembles.Mon Weather Rev,2000,128:1835-1851
    [5]Toth Z,Kalnay E.Ensemble forecasting at NMC:the generation of perturbations.Bull Amer Meteorol Soc,1993,74(12):2317-2330
    [6]Gilmour I,Smith L A.Enlightenment in shadows.In:Kadtke J B,Bulsara A,eds.Applied Nonlinear Dynamics and Stochastic Systems Near the Millennium.New York:Springer-Verllag,1997,335-340
    [7]Zupanski D,Zupanski M.Model error estimation employing an ensemble data assimilation approach.Mon Wea Rev,2006,134:1337-1354
    [8]Lorenz E N.An Experiment in Nonlinear Statistical Weather Forecasting.Mon Weather Rev,1977,105:590-602
    [9]邵爱梅,邱崇践,一种降维集合同化方法的数值试验研究,大气科学,2007,3,31(4):675-684
    [10]Evensen G.The ensemble Kalman filter:Theoretical formulation and practical implementation.Ocean Dynamics,2003,53:343-367
    [11]Qiu C,A Shao,Q Xu,and L Wei.Fitting Model Fields to Observations by Using Singular Value Decomposition-An Ensemble-Based 4DVar Approach.J.Geophys.Res.,2007,112,D11105,doi:10.1029/2006JD007994.
    [12]资料同化和中期数值预报,国家气象中心编译,气象出版社,1991年3月第一版
    [13]黄嘉佑,气象统计分析与预报方法,气象出版社,2000年3月第二版
    [14]Matsuno T,Numerical integration of the primitive equations by a simulated backward difference method,J Meteorol Soc Jpn,1966,44:76-84
    [1]资料同化和中期数值预报,国家气象中心编译,气象出版社,1991年3月第一版
    [2]赵军,国防科技大学计算机学院,全球中期数值天气预报系统介绍,内部交流
    [3]张理论,国防科技大学软件研究所应用软件研究室,T106模式数值离散和理论计算,内部交流
    [4]Gandin,L.S.Objective Analysis of Meteorological Fields.Israel Program for Scientific Translation,Jerusalem.1965,242 pp.
    [5]Lorenc,A.,A global three-dimensional multivariate statistical interpolation scheme.Mon.Wea.Rev.,1981,109:701-721.
    [6]高斌斌,集合kalman滤波在T106L19中期数值预报谱模式中的应用研究,南京信息工程大学理学硕士学位论文,2008
    [7]国家卫星气象中心.NOAA系列极轨卫星数据格式[EB/OL]
    [8]张华.ATOVS辐射率资料的直接同化方法及应用研究.兰州大学博士论文,2003
    [9]Roger Saunders.2005:RTTOV-7 users guide,ECMWF Technical Memorandum 345
    [1]Parrish D F,J C Derber.The National Meteorological Center spectral statistical interpolation analysis system,Mon Wea Rev,1992,120:1747-1763.
    [2]梁昆淼,数学物理方法,高等教育出版社,1998,第三版,103.
    [3]Whitaker J S,T M Hamill.Ensemble Data Assimilation without Perturbed Observations.Mon Wea Rev,2002,130:1913-1924.
    [1]Qiu C,Chou J.F,Four-dimensional data assimilation method based on SVD:Theoretical aspect,Theor Appl Climat,2006,83:51-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700