用户名: 密码: 验证码:
面向生物工程的精密定位机构及其动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密定位技术在一定程度上体现了一个国家的制造水平和科技实力。随着生物医学的快速发展,基于精密定位技术的显微操作技术在细胞操作领域也得到了大力发展。由于细胞操作的特殊性,要求面向生物工程的精密定位系统应具有毫米级的工作行程和亚微米级的定位精度。本文结合教育部博士点基金项目“生物细胞显微操作机器人关键技术研究”(No.20090095110012)和江苏省高等学校研究生培养创新工程“微动工作台微位移检测及误差补偿方法研究”(No.CX09B_109Z),在吸收和借鉴相关领域的新思路、新技术的基础上,采取理论研究、有限元仿真和实验验证相结合的方法,对压电式微操作平台系统的解耦型大行程微操作平台的构型设计、静力学和动力学建模技术、微操作平台的控制技术等方面进行了研究。
     紧密联系面向生物工程的精密定位系统的技术需求,设计了一种新型基于直角柔性铰链的集柔性导向机构和桥式微位移放大机构于一体的全对称解耦型大行程二维微操作平台。考虑到柔性导向机构和桥式微位移放大机构对二维微操作平台的性能影响,根据结构的对称性,利用半结构模型建立了柔性导向机构的静刚度模型,利用四分之一模型建立了桥式微位移放大机构的位移放大比模型,在此基础上,采用矩阵法建立了二维微操作平台的静力学模型,并推导了其位移放大比、静刚度等计算公式。
     考虑到柔性铰链尺寸参数对其性能的影响,将柔性机构分为以柔顺杆为主要特征的柔性机构和以柔性铰链为主要特征的柔性机构,并分别采用有限元方法和集中质量法来建立其动力学模型。针对以柔顺杆为主要特征的柔性机构,选择矩形截面的2节点梁单元作为基本模型单元,在建立基本梁单元的运动微分方程的基础上,通过装配的方式获得了整体机构的动力学模型;针对以柔性铰链为主要特征的柔性机构,将柔性铰链等效为拉伸弹簧和扭转弹簧的组合体,并将均匀分布的质量视为质量集中的质点,结合Lagrange方程,建立了其动力学解析模型。
     为了验证所建立的静力学和动力学模型的有效性,采用基于虚拟样机技术的有限元仿真软件对微操作平台的工作行程、位移放大比、固有频率等特性进行了仿真分析,并分析了主要尺寸参数对微操作平台的微位移放大比和固有频率的影响。有限元仿真的结果验证了理论模型的合理性,也为二维微操作平台的优化设计和尺寸参数的选择提供了一定的理论依据。
     在压电式微操作平台的控制技术方面,采取了两种不同的方案来抑制压电式微操作平台的迟滞非线性因素。一种是将压电式微操作平台系统中的迟滞非线性、未建模动态等不确定因素统统视为外界的干扰,通过干扰观测器来观测和抑制系统中的扰动,并设计了基于干扰观测器的PID双回来控制器。另一种方式是在建立压电式微操作平台迟滞模型的基础上,通过逆模型补偿的方式来抑制系统中的迟滞非线性。首先采用Bouc-Wen迟滞模型来描述系统的迟滞特性,然后利用Bouc-Wen逆模型对微操作平台系统进行迟滞补偿,并设计了基于PID滑模面的带扰动估计的滑模控制器(SMCPE-PID)。为了缓解滑模控制的抖振缺陷,且考虑到系统中还存在有模型参数不确定以及外界扰动等因素,因而引入了自适应规则,设计了自适应SMCPE-PID控制器。
     最后,采用线切割的方式加工了实验样机,搭建了压电式微操作平台的实验系统,并对柔性导向机构、桥式微位移放大机构以及二维微操作平台进行了一系列的实验验证。实验结果表明,所设计的面向生物工程的精密定位系统实现了毫米级的工作行程,并具有亚微米级的位移分辨率和良好的抗干扰能力。
     本论文有图91幅,表19个,参考文献166篇。
Precision positioning technology reflects the manufacturing level andtechnology capabilities of a country. With the rapid development of biomedicalengineering, Micromanipulation technique based on precision positioningtechnology also greatly develops in the field of cell manipulation. Due to theparticularity of cell manipulation, the precision positioning system for bioengineeringshould have millimeter working stroke and the displacementresolution to micron or submicron. Based on the Research Fund for the DoctoralProgram of Higher Education (No.20090095110012) and Innovation Fund Project ofJiangsu province (No.CX09B_109Z) , absorbed new thoughts, original theory andtechnology of correlative subjects to study the configuration design, static anddynamic modeling and control techniques of the piezoelectric micro operationplatform by using theoretical analysis, computer simulation and experiments.
     Combining the technology need of the precision positioning system for bioengineering,a fully symmetrical decoupled large stroke micro operation platformwhich combines the flexible guiding mechanism and bridge-type microdisplacementamplifier based on right-angle flexure hinges is designed. Considering the influenceof the flexible guiding mechanism and the bridge-type microdisplacementamplification mechanism, and the symmetry of the structure, the static stiffnessmodel of the flexible guiding mechanism is established based on its semi-structuredmodel, while the displacement amplification ratio model of the bridge-type amplifieris established by using its a quarter model. On this basis, the static model ofmicrostage is built by using matrix method, and the performance of the microstagesuch as stiffness and the displacement amplification ratio are studied.
     The flexible mechanism can be divided into two categories according to thesizes of the flexure hinges. The main feature of one kind is complaint bar and theother is flexure hinge. The finite element method and lumped-mass method are usedto establish their dynamic model, respectively. For the complaint bar mechanism, a2-node beam element with rectangular cross-section is selected as the basic unit. Onthe basis of the differential equation of motion of the basic beam element, thedifferential equation of motion of the whole mechanism is assemblied. For theflexible mechanism based on flexure hinges, the flexure hinge is equivalent to a spring and a torsional spring, and the uniform distribution quality is regarded as aparticle, and then the dynamic model is established based on Lagrange equation.
     In order to verify the effectiveness of the established static and dynamic model,the work stroke, displacement amplification ratio, natural frequency and so on aresimulated by finite element simulation software based on virtual prototypingtechnology, and the influence of the main geometric parameters on them areanalyzed. The theoretical model are verified very well by the results of the finiteelement simulation which also provides some theoretical basis for the optimizationof the micro operation platform.
     In the control technology of the piezoelectric micro operation platform, twodifferent approaches are adopted to suppress the hysteresis nonlinearity factor of thepiezoelectric microstage. One way is that the hysteresis, unmodeled dynamics andother uncertainties are treated as the disturbance of the system and a two-loopcontroller which is consist of a distrubance observer and a PID controller isproposed to suppress the hysteresis of the micropositioning system. Another way isto establish the hysteresis model of the system first, and then the hysteresis iscompensated by the inverse model. Firstly, Bouc-Wen hysteresis model is used todescribe the hysteresis of the microstage, then the hysteresis compensation is doneby the inverse model of Bouc-Wen model and a sliding mode controller with PIDsiliding surface is designed. In order to alleviate the chattering of sliding modecontrol and also take into account the remaining hysteresis and uncertainty, theadaptive rule is introduced, and then a adaptive SMCPE-PID controller is designed.
     Finally, the experimental sample pieces are processed by wire cutting and theexperimental system of the piezoelectric micro operation platform is built. A seriesof experiments are carried on for the flexible guiding mechanism, the bridge-typedisplacement amplifier and the decoupled two-dimensional micro operation platform.The experimental results show that precision positioning system designed for bioengineeringcan achieve a stroke to millimeter and a displacement resolution to submicron,but also with a good ability of anti-interference and motion tracking.
     There are 91 figures, 19tables and 166 references in the dissertation
引文
[1] Feynman, Richard P. There's plenty of room at the bottom[J]. Journal ofMicroelectromechanical Systems, 1992, 1(1): 60-66.
    [2]沈大棱,吴超群.细胞生物学[M].天津:复旦大学出版社,2007:108-123.
    [3]曲东升.纳米级精密定位系统关键技术的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2003.
    [4]李旭东.微操作机器人显微视觉系统及其关键技术的研究[D].北京:北京航空航天大学博士学位论文,2003.
    [5] Vreeburg, C.G.M., Groeneveld, C.M. Packaging trends for semiconductor lasers forDWDM applications[C]. Proceedings of Electronic Components and TechnologyConference, 1999: 1-4.
    [6] Schilling, G. Adaptive optics comes of age[J]. Sky and Telescope, 2001, 10: 30-41.
    [7]李鸣鸣.大行程纳米定位系统若干关键技术研究[D].上海:上海大学博士学位论文,2007.
    [8] Xu Qingsong, Li Yangmin, Xi Ning. Design, fabrication, and visual servo control of an xyparallel micromanipulator with piezo-actuation[C]. IEEE Transactions on AutomationScience and Engineering, 2009, 6(4): 710-719.
    [9] Chang S.H., Du B.C. A precision piezodriven micropositioner mechanism with large travelrange[J]. Review of Scientific Instruments, 1998, 69(4):1785-1791.
    [10]徐征.微操作系统中定位控制、人机交互和微量注射问题研究[D].大连:大连理工大学博士学位论文,2003.
    [11]章维一,侯丽雅.微系统及其商品化[J].中国机械工程, 2000, 11(3): 116-120.
    [12]陈立国.基于显微视觉的微操作机器人系统的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2003.
    [13]杨国利.压电驱动器的研究与应用进展[J].内蒙古煤炭经济, 2009, 1:56-59.
    [14]宗光华,孙明磊,毕树生,等.宏-微操作结合的自动微装配系统[J].中国机械工程, 2005, 16(23):2125-2130.
    [15]陈国良,黄心汉,周祖德.微装配机器人系统[J].机械工程学报, 2009, 45(2):288-293.
    [16] Xie Hui, Sun Li-ning, Rong, Wei-bin, et al. Automatic microassembly robot for MEMS[J].Journal of Harbin Institute of Technology, 2006, 38(7): 1013-1016.
    [17]于保军.基于显微视觉的微操作系统及其伺服控制研究[D].吉林:吉林大学博士学位论文,2009.
    [18]田桂中,侯丽雅,章维一.显微注射中细胞位姿调节技术及实验研究[J].中国机械工程, 2009, 20(4): 409-412.
    [19] Arai Fumihito, Kawaji Akiko, Sugiyama Tomohiko, et al. 3D micromanipulation systemunder microscope[C]. Proceedings of the International Symposium on Micromechatronicsand Human Science, Japan: Nagoya, 1998: 127-134.
    [20] Shuxin Wang, Jienan Ding, Jienan Ding, et al. A robotic system with force feedback formicro-surgery[C]. Proceedings of IEEE International Conference on Robotics andAutomation, Spain: Barcelona, 2005: 199-204.
    [21]兰海英.微流体数字化细胞显微注射实验研究[D].南京:南京理工大学博士学位论文,2008.
    [22]田桂中,侯丽雅,章维一,等.数字化进退针装置在显微注射中的应用实验[J].中国机械工程, 2008, 19(7): 846-849.
    [23]马立,荣伟彬,孙立宁,等.面向光学精密装配的微操作机器人[J].机械工程学报,2009, 45(2): 280-287.
    [24] Chen Wen-Jie, Lin Wei, Low K.H., et al. A 3-DOF flexure-based fixture for passiveassembly of optical switches[C]. Proceedings of IEEE/ASME International Conference onAdvanced Intelligent Mechatronics, United states: Monterey, 2005: 618-623.
    [25] Ishii Yoshiharu, Ishijima Akihiko, Yanagida Toshio. Single molecule nanomanipulation ofbiomolecules[J]. Trends in Biotechnology, 2001, 19(6): 211-216.
    [26] Kamper K.P., Ehrfeld W., Dopper J., et al. Microfluidic components for biological andchemical microreactors[C]. Proceedings of Tenth Annual International Workshop onMicro Electro Mechanical Systems, Japan: Nagoya, 1997: 338-343.
    [27] http://www.qdyk123.com/products5.asp.
    [28] Ouyang P.R., Tjiptoprodjo R.C., Zhang W.J., et al. Micro-motion devices technology: Thestate of arts review[J]. International Journal of Advanced Manufacturing Technology, 2008,38(5): 463-478.
    [29]毕树生.面向生物工程的微操作机器人系统研究[D].北京:北京航空航天大学博士学位论文,2002.
    [30]贠远,徐青松,李杨民.并联微操作机器人技术及应用进展[J].机械工程学报,2008,44(12):12-23.
    [31]杨凯,张德林,辜承林.压电驱动器研究与应用中的若干新进展[J].微电机,2007,40(6):83-87.
    [32] F. E. Scire, E. C. Teague. Piezodriven 50-um range stage with subnanometer resolution[J].Review of scientific Instruments, 1978, 49(12): 1735-1740.
    [33] Nishimura, Kunitoshi. A spring-guided micropositioner with linearized subnanometerresolution[J]. Review of Scientific Instruments, 1991, 62(8): 2004-2007.
    [34]孙立宁,马立,荣伟彬,等.一种纳米级二维微定位工作台的设计与分析[J].光学精密工程,2006,14(03):406-411.
    [35]沈剑英,杨世锡,周庆华,等.单平行四杆柔性铰链机构的输出位移和耦合误差分析[J] .机床与液压,2004(03):27-29.
    [36]宗光华,裴旭,于靖军,等.一种新型柔性直线导向机构及其运动精度分析[J] .光学精密工程,2008,16(4):630-635.
    [37] Ryu Jae W., Gweon Dae-Gab. Error analysis of a flexure hinge mechanism induced bymachining imperfection[J]. Precision Engineering, 1997, 21(2): 83-89.
    [38]纪华伟.压电陶瓷驱动的微位移工作台建模与控制技术研究[D].浙江:浙江大学博士学位论文,2006.
    [39]田延岭,张大卫,闫兵.二自由度微定位平台的研制[J].光学精密工程,2006,14(1):94-99.
    [40] W. J. Zhang, J. Zou, L. G. Watson. The Coustant-Jacobian method for kinematics of athree-DOF planar micro-motion stage[J]. Journal of Robotic Systems, 2002, 19(2): 63-72.
    [41] Lu Tien-Fu, Handley Daniel C., Yong Yuen Kuan. Position control of a 3 DOF compliantmicro-motion stage[C]. Proceedings of 8th International Conference on Control, China:Kunming, 2004: 1274-1278.
    [42] Culpepper Martin L. Design of a low-cost nano-manipulator which utilizes a monolithic,spatial compliant mechanism[J]. Precision Engineering, 2004, 28(4): 469-482.
    [43] Li Yangmin, Xu Qingsong. A novel design and analysis of a 2-DOF compliant parallelmicromanipulator for nanomanipulation[C]. Proceedings of IEEE Transactions onAutomation Science and Engineering, 2006, 3(3): 248-254.
    [44]高振.空间三自由度并联/混联机构构型、性能与若干应用研究[D].合肥:中国科学技术大学博士学位论文,2009.
    [45] Chao Daihong, Zong Guanghua, Liu Rong. Design of a 6-DOF compliant manipulatorbased on serial-parallel architecture[C]. Rroceedings of International Conference onAdvanced Intelligent Mechatronics, United states: Monterey, 2005:765-770.
    [46]节德刚,刘延杰,孙立宁,等.一种宏微双重驱动精密定位机构的建模与控制[J].光学精密工程,2005,16(2):171-178.
    [47]节德刚.宏/微驱动高速高精度定位系统的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2006.
    [48]洪嘉振,刘铸永.刚柔耦合动力学的建模方法[J].上海交通大学学报,2008,42(11):1922-1926.
    [49] Zhao Kai, Wang Hao, Chen Genliang, et al. Kineto-static stiffness mapping based on finiteelement analysis for robot manipulators[C]. Proceedings of the ASME InternationalDesign Engineering Technical Conferences and Computers and Information inEngineering Conference 2009, United states: San Diego, 2010: 1069-1077.
    [50] Fallahi Behrooz. A nonlinear finite element approach to kineto-static analysis of elasticbeams[J]. Mechanism and Machine Theory, 1996, 31(3): 353-364.
    [51] Winfrey R.C. Dynamic analysis of elastic link mechanisms by reduction of coordinates[J].J Eng Ind Trans ASME, 1972, 94(2): 577-582.
    [52] Winfrey R.C. Elastic link mechanism dynamics[J]. J Eng Ind Trans ASME, 1971, 93(2):268-272.
    [53] Lan P., Ding Q., Lu N., et al. An explicit expression of kineto-elastodynamic analysis ofmechanisms by Finite Element Method[C]. Proceedings of the International Conference onManufacturing Automation: Advanced Design and Manufacturing in Global Competition,China: Wuhan, 2004: 271-277.
    [54] ERDMAN A. G., SANDOR G, N. OAKBERG R. G. A general method for kinetoelastodynamic analysis and synthesis of mechanisms[J]. Mechanism and Machine Theory,1972, 94(4): 1193-1205.
    [55] Meirovitch L., Nelson H.D. On the high speed motion of satellite containing elasticparts[J]. Journal of Spacecraft and Rockets, 1966, 3(11): 1597-1602.
    [56] Likins Peter W. Finite element appendage equations for hybrid coordinate dynamicanalysis[J]. International Journal of Solids and Structures, 1972, 8(5): 709-731.
    [57] Singh R P, Likins P W. Singular value decomposition for constrained dynamicalsystems[J]. Journal of Applied Mechanics, 1985, 52(4): 943-948.
    [58]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999:23-56.
    [59] T.R. Kane, R.R. Ryan, A.K. Banerjee. Dynamics of a cantilever beam attached to amoving base[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(2): 139-151.
    [60] Boutaghou Z.E., A.G. Erdman, H.K. Stolarski. Dynamics of flexible beams and plates inlarge overall motions[J]. Journal of Applied Mechanics, Transactions ASME, 1992, 59(4):991-999.
    [61] Haering W.J., R.R. Ryan, R.A. Scott. New formulation for flexible beams undergoinglarge overall plane motion[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1):76-83.
    [62] Hanagud S., S. Sarkar. Problem of the dynamics of a cantilever beam attached to a movingbase[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(3): 438-441.
    [63] Padilla C.E., von Flotow. Nonlinear strain-displacement relations and flexible multibodydynamics[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(1): 128-136.
    [64]洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展[J].动力学与控制学报,2004,2(2): 1-6.
    [65]洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学[J].力学进展,2000,30(1):15-20.
    [66]洪嘉振,于清.柔性多体系统动力学的递推建模与算法[J] .中国机械工程,2000,11(6):611-616.
    [67]洪嘉振,蒋丽忠.动力刚化与多体系统刚-柔耦合动力学[J].计算力学学报,1999,16(3):44-50.
    [68]刘锦阳.刚-柔耦合动力学系统的建模理论研究[D].上海:上海交通大学博士学位论文,2000.
    [69] Liu Jingyang, Hong Jiazhen. Dynamics of three-dimensional beams undergoing largeoverall motion[J]. European Journal of Mechanics, A/Solids, 2004, 23(6): 1051-1068.
    [70] Liu Jingyang, Hong Jiazhen. Geometric nonlinear formulation and discretization methodfor a rectangular plate undergoing large overall motions[J]. Mechanics ResearchCommunications, 2005, 32(5): 561-571.
    [71] Yang Hui, Hong Jiazhen, Yu Zhengyue. Dynamics modelling of a flexible hub-beamsystem with a tip mass[J]. Journal of Sound and Vibration, 2003, 266(4): 759-774.
    [72] Cai Guoping, Hong Jiazhen, Yang Simon X. Dynamic analysis of a flexible hub-beamsystem with tip mass[J]. Mechanics Research Communications, 2005, 32(2): 173-190.
    [73]尤超蓝.大变形多体系统刚-柔耦合动力学建模理论研究[D].上海:上海交通大学博士学位论文,2006.
    [74]蒋丽忠.柔性多体系统刚-柔耦合动力学建模理论研究[D].上海:上海交通大学博士学位论文,1999.
    [75]蒋丽忠,洪嘉振.大范围运动对弹性梁振动频率及模态的影响[J].振动与冲击,1999,18(1):14-18.
    [76]胡振东,洪嘉振.刚柔耦合系统动力学建模及分析[J].应用数学和力学,1999,20(10):1087-1093.
    [77] Her I, A. Midha. A Compliance Number Concept for Compliant Mechanisms, and TypeSynthesis[J]. Journal of mechanisms, transmissions, and automation in design, 1987,109(3): 348-355.
    [78]王雯静,余跃庆.基于有限元法的柔顺机构动力学分析[J].机械工程学报, 2010,46(9):79-86.
    [79]宋轶民,余跃庆,张策,等.柔性机器人动力学分析与振动控制研究综述[J].机械设计, 2003, 20(4): 1-5.
    [80]于会涛,孙洪,马培荪.基于伪刚体模型法的柔顺机构驱动特性研究[J].传动技术,2006(04):10-13.
    [81]黄则兵,葛文杰,马利娥.仿袋鼠跳跃机构伪刚体模型的动力学分析[J].机械科学与技术, 2005, 24(08): 978-980.
    [82] Biakeu G., L. Jezequel. Multibody formulation with large bending finite elements (LBFE).Nonlinear Dynamics, 2006, 46(1): 31-47.
    [83] Ider S.K. Finite-element based recursive formulation for real time dynamic simulation offlexible multibody systems[J]. Computers and Structures, 1991, 40(4): 939-945.
    [84] Shabana A.A. On the use of the finite element method and classical approximationtechniques in the non-linear dynamics of multibody systems[J]. International Journal ofNon-Linear Mechanics, 1990, 25(2): 153-162.
    [85]王远锋,杨雷,水小平.多体系统中规则柔性板的离散建模方法研究[J].动力学与控制学报,2006,4(01):37-42.
    [86]陈俊斌,陈乐生.双柔性机械臂多刚体模拟的动力学建模[J].沈阳工程学院学报(自然科学版),2006,2(02):179-181.
    [87] Zhang D.J., C.Q. Liu, R.L. Huston. On the dynamics of an arbitrary flexible body withlarge overall motion: an integrated approach[J]. Mechanics of Structures and Machines,1995, 23(3): 419-438.
    [88] Howell L L, Midha A. A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots[J]. Transactions of the ASME, 1994, 116(1): 280-290.
    [89] Howell L.L., Midha A., NortonT.W. Evaluation of equivalent spring stiffness for use in apseudo-rigid-body model of large-deflection compliant mechanisms[J]. Journal ofMechanical Design, Transactions of the ASME, 1996, 118(1): 126-131.
    [90] Howell L.L. Complaint Mechanisms[M]. New York:John Wiley & Sons, Inc, 2001: 57-121.
    [91] Yu Yue-Qing, Howell Larry L, Lusk Craiq, et al. Dynamic modeling of compliantmechanisms based on the pseudo-rigid-body model[J]. Journal of Mechanical Design,Transactions of the ASME, 2005, 127(4): 760-765.
    [92]陈知泰.柔顺机构的动力学研究[M].北京:北京工业大学硕士学位论文,2005.
    [93]强怀博,吴琼.模拟测头导向机构动力学特性研究[J].西安工业大学学报,2010,30(02):130-133.
    [94] Surdilovic D., Vukobratovic M. One method for efficient dynamic modeling of flexiblemanipulators[J]. Mechanism and Machine Theory, 1996, 31(3): 297-315.
    [95]陈炜,余跃庆,张绪平.欠驱动柔性机器人的动力学建模与耦合特性[J].机械工程学报, 2006,42(6): 16-23.
    [96] Konno A., Uchiyama M. Modeling of a flexible manipulator dynamics based upon Holzer'smodel[C]. Proceedings of the 1996 IEEE/RSJ International Conference on IntelligentRobots and Systems, Japan: Tokyo, 1996: 223-229.
    [97]曹彤,孙杏初.机器人弹性动力学研究及结构综合优化[J].机械工程学报, 1995,(5): 64-70.
    [98] Gao Xiaochung, King Zhiying, Zhang Qixian. Hybrid beam element for mathematicalmodelling of high-speed flexible linkages[J]. Mechanism & Machine Theory, 1989, 24(1):29-36.
    [99] Kawai T. New discrete models and their application to seismic response analysis ofstructures[J]. Nuclear Engineering and Design, 1978, 48(1): 207-229.
    [100] Huston R.L., Passerello C.E. Multibody structural dynamics including translationbetween the bodies[J]. Computers and Structures, 1980, 12(5): 713-720.
    [101]钱令希,张雄.结构分析中的刚体有限元法[J].计算结构力学及其应用, 1991,8(1): 1-14.
    [102]任伟新,郑兆昌,谭向光.平面刚架弹塑性大位移分析的多刚体离散元法[J].计算结构力学及其应用, 1996, 13(4): 32-41.
    [103]谢先海,廖道训.基于多刚体离散元模型的柔顺机构动力分析新方法[J].机械工程学报,2003,36(5):10-15.
    [104]黄进,谢先海.平行导向柔顺机构的加工制造与性能测试[J].实验技术与管理,2002,19(6): 7-9.
    [105] Liu Yung-Tien, Higuchi Toshiro, Fung Rong-Fong. A novel precision positioning tableutilizing impact force of spring-mounted piezoelectric actuator-part I: experimentaldesign and results[J]. Precision Engineering, 2003, 27(1): 14-21.
    [106] Liu Yung-Tien, Higuchi Toshiro, Fung Rong-Fong. A novel precision positioning tableutilizing impact force of spring-mounted piezoelectric actuator-part II: experimentaldesign and results[J]. Precision Engineering, 2003, 27(1): 22-31.
    [107] Ge Ping, Jouaneh Musa. Generalized Preisach model for hysteresis nonlinearity ofpiezoceramic actuators[J]. Precision Engineering, 1997, 20(2): 99-111.
    [108] Ge Ping, Jouaneh Musa. Tracking control of a piezoceramic actuator[C]. Proceedings ofIEEE Transactions on Control Systems Technology, USA: Houston, 1996: 209-216.
    [109]贾宏光.基于变比模型的压电驱动微位移工作台控制方法研究[D].长春:中国科学院长春光学精密机械与物理研究所博士学位论文,2000.
    [110]刘芳,赵跃进,刘小华,等.压电陶瓷致动器迟滞曲线插值算法研究[J].压电与声光, 2008,30(3): 382-384.
    [111] Goldfarb M., Celanovic N. Modeling piezoelectric stack actuators for control ofmicromanipulation[J]. IEEE Control Systems Magazine, 1997, 17(3): 69-79.
    [112] Jie De-gang, Sun Li-ning, Qu Dong-sheng, et al. Fuzzy-reasoning based self-tuning PIDcontrol for piezoelectric micro-displacement system[J]. Journal of Harbin Institute ofTechnology, 2005, 37(2): 145-147.
    [113] Stepanenko Y., Chun-Yi S. Intelligent control of piezoelectric actuators[C]. Proceedingsof the 37th IEEE Conference on Decision and Control, USA: Tampa, 1998: 4234-4239.
    [114] Lin Lih-Chang, Tsay Ming-Uei. Modeling and control of micropositioning systems usingStewart platforms[J]. Journal of Robotic Systems, 2000, 17(1): 17-52.
    [115] Ru ChangHai, Sun Lining, Kong Minxiu. Adaptive inverse control for piezoelectricactuator based on hysteresis model[C]. Proceedings of 2005 International Conference onMachine Learning and Cybernetics, China: Guangzhou, 2005: 3189-3193.
    [116] Kawafuku M., Sasaki M., Fujisawa F. Feedback-error-learning neural network fortrajectory control of a flexible micro-actuator[C], Proceedings of InternationalConference on Advanced Intelligent Mechatronics, Japan: Tokyo, 1997: 73.
    [117] Chuntao Li, Yonghong Tan. A hybrid neural network based modeling for hysteresis[C].Proceedings of the 20th IEEE International Symposium on Intelligent Control, Cyprus:Limassol, 2005: 53-58.
    [118] Wai, R.J., Lin C.M., Peng Y.F. Robust CMAC neural network control for LLCC resonantdriving linear piezoelectric ceramic motor[C]. Proceedings of Control Theory andApplications, UK, 2003: 221-232.
    [119] Sabanovic A., Abidi K., Elitas M. A Study on High Accuracy Discrete-Time SlidingMode Control[C]. in Power Electronics and Motion Control Conference, Slovenia:Portoroz, 2006: 355-360.
    [120]王湘江,王兴松,毛燕.基于普艾模型的迟滞系统自适应滑模控制[J].机械工程学报, 2008, 44(4): 171-178.
    [121]李黎,刘向东,侯朝桢. Preisach逆模型补偿的压电陶瓷执行器自适应滑模控制[J].北京理工大学学报, 2008, 28(3): 237-240.
    [122]冯颖,胡跃明,苏春翌.连续回滞系统的模型参考自适应控制[J].控制与决策,2006, 21(12): 1402-1406.
    [123]冯颖,胡跃明,苏春翌.基于Prandtl-Ishlinskii模型的一类回滞非线性系统自适应控制[J].自动化学报, 2006,32(3): 450-455.
    [124] Faa-Jeng Lin, Shieh H.J., Huang P.K. Adaptive wavelet neural network control withhysteresis estimation for piezo-positioning mechanism[C]. Proceedings of IEEETransactions on Neural Networks, USA, 2006: 432-444.
    [125]李春涛,谭永红.基于状态全反馈的动态迟滞非线性系统自适应控制[J].计算机仿真, 2004, 21(5): 106-108.
    [126]孙立宁,孙绍云,曲东升,等.基于PZT的微驱动定位系统及控制方法的研究[J].光学精密工程, 2004, 12(1): 55-59.
    [127]赵宏伟,吴博达,曹殿波,等.直角柔性铰链的力学特性[J].纳米技术与精密工程, 2007, 5(02): 143-147.
    [128]张景柱,徐诚,赵彦峻.新型柔性铰链的柔度计算[J].工程力学, 2008,25(11):27-32.
    [129] Paros J, W. How to design flexure hinges[J]. Machine Design, 1965, 1(27): 151-157.
    [130] Smith S.T., Badami V.G., Dale J.S., et al. Elliptical flexure hinges[J]. Review ofScientific Instruments, 1997. 68(3): 1474-1474.
    [131]李玉和,李庆祥,陈璐云,等.单轴柔性铰链设计方法研究[J].清华大学学报(自然科学版), 2002, 42(02): 172-174.
    [132]吴鹰飞,周兆英.柔性铰链的设计计算[J].工程力学, 2002, 19(06): 136-140.
    [133] Tseytlin Y.M. Notch flexure hinges: An effective theory[J]. Review of ScientificInstruments, 2002, 73(9): 3363-3363.
    [134]谢祖强.微位移机电系统机械结构的设计与分析计算[D].合肥:合肥工业大学硕士学位论文,2007.
    [135] Kim J.H., Kim S.H., Kwak Y.K. Development and optimization of 3-D bridge-type hingemechanisms[J]. Sensors and Actuators, 2004, 116(3): 530-538.
    [136]皮萨连科.材料力学手册[M].北京:中国建筑工业出版社, 1981: 46-96.
    [137]机械工程手册编辑委员会.机械工程手册:第5卷[M].北京:机械工业出版社,1982.
    [138]冯贤桂.用奇异函数及拉氏变换求解阶梯梁的弯曲变形[J].重庆大学学报(自然科学版), 1991, 14(6): 111-114.
    [139] Kim J.H., Kim S.H., Kwaka Y.K. Development of a piezoelectric actuator using a threedimensionalbridge-type hinge mechanism[J]. Review of Scientific Instruments, 2003.74(5): 2918-2924.
    [140]杨志刚,刘登云,吴丽萍,等.应用于压电叠堆泵的微位移放大机构[J].光学精密工程, 2007, 15(06): 884-888.
    [141] Niezrecki C., Brei D., Balakrishnan S., et al. Piezoelectric actuation: State of the art[J].Shock and Vibration Digest, 2001, 33(4): 269-280.
    [142] Hong-Wen Ma, Shao-Ming Yao, Li-Quan Wang, et al. Analysis of the displacementamplification ratio of bridge-type flexure hinge[J]. Sensors and Actuators, 2006, 132(2):730-736.
    [143] Yangmin Li, Qingsong Xu. Design of a new decoupled XY flexure parallel kinematicmanipulator with actuator isolation[C], Proceedings of International Conference onIntelligent Robots and Systems, France: Nice, 2008: 470-475.
    [144]王雯静.柔顺机构动力学分析与综合[D].北京:北京工业大学博士学位论文,2009.
    [145]王文锋,周翠莲.插值广义多项式[J].山东工程学院学报, 1998, 12(1): 26-30.
    [146]文畅平.埃尔米特插值函数的工程应用[J].人民黄河, 2006, 28(4): 69-70.
    [147]王子良,张策,黄永强.弹性连杆机构的分析与设计[M].北京:机械工业出版社,1997: 113-145.
    [148]成尔京.基于知识仓库的虚拟产品协同开发技术研究[D].成都:四川大学博士学位论文,2004.
    [149]颜兵兵.拱泥仿生机器人系统设计及其虚拟样机研究[D].哈尔滨:哈尔滨理工大学博士学位论文,2008.
    [150]王栋.基于PC的虚拟样机集成仿真平台及其关键技术的研究[D].上海:上海大学博士学位论文,2008.
    [151]高晋.基于虚拟样机技术的悬架K&C特性及其对整车影响的研究[D].长春:吉林大学博士学位论文,2010.
    [152]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社, 2002.
    [153] http://zlgc.zsc.edu.cn/jpkc/gclxkc/view.php?cid=39&lid=14.
    [154] http://baike.baidu.com/view/70776.htm.
    [155]杜平安,甘娥忠.有限元法—原理、建模及应用[M].北京:国防工业出版社,2004: 57-136.
    [156]朱炜.基于Bouc-Wen模型的压电陶瓷执行器的迟滞特性模拟与控制技术的研究[D].重庆:重庆大学硕士学位论文, 2009.
    [157] Ha Jih-Lian, Kung Ying-Shieh, Fung Rong-Fong, et al. A comparison of fitness functionsfor the identification of a piezoelectric hysteretic actuator based on the real-coded geneticalgorithm[J]. Sensors and Actuators, 2006, 132(2): 643-650.
    [158] Lin Chih-Jer, Yang Sheng-Ren. Precise positioning of piezo-actuated stages usinghysteresis-observer based control[J]. Mechatronics, 2006, 16(7): 417-426.
    [159] Gomis Bellmunt O., Ikhouane F., Castell-Vilanova P., et al. Modeling and validation of apiezoelectric actuator[J]. Electrical Engineering, 2007, 89(8): 629-638.
    [160] Elmali Hakan, Olgac Nejat. Implementation of sliding mode control with perturbationestimation (SMCPE)[J]. IEEE Transactions on Control Systems Technology, 1996, 4(1):79-85.
    [161] Kim Nag-In, Lee Chong-Won, Chang Pyung-Hun. Sliding mode control withperturbation estimation: Application to motion control of parallel manipulator[J]. ControlEngineering Practice, 1998, 6(11): 1321-1330.
    [162] Kuo Tzu-Chun, Huang Ying-Jeh, Chang Shin-Hung. Sliding mode control with selftuninglaw for uncertain nonlinear systems[J]. ISA Transactions, 2008, 47(2): 171-178.
    [163] Sadati N., and Ghadami R. Adaptive multi-model sliding mode control of roboticmanipulators using soft computing, in Neurocomputing[J]. Netherlands, 2008, 71(8):2702-2710.
    [164] Yong Cao, Stepanenko, Y. Novel variable structure control scheme for an industrial robot:theory and experiments[C]. Proceedings of the IEEE Conference on Control Applications,Canada: Vancouver, 1993: 723-728.
    [165] Yang Sheng-Ming, Ke Shuenn-Jenn. Performance evaluation of a velocity observer foraccurate velocity estimation of servo motor drives[C]. Proceedings of IEEE Transactionson Industry Applications, USA: St. Louis, 2000: 98-104.
    [166] German J.J., Dagalakis N.G., Boone B.G. Multi-loop control of a nanopositioningmechanism for ultra-precision beam steering[C]. Proceedings of International Conferenceon Society for Optical Engineering, United states: San Diego, 2003: 170-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700