用户名: 密码: 验证码:
含磷聚硅氧烷的合成及其在PCABS中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前阻燃领域绿色环保的呼声日益高涨、各类阻燃法规日益严苛,特别是欧盟两项指令“废弃电子电器设备指令(West Electrical and Equipment Directive,WEEE)(2003年3月生效)及“电子电器设备中禁用有害物质指令(Restriction of Hazardous Substances Directive, RoHS)的颁布更加促使了无卤阻燃剂的研发。PC/ABS是工程塑料中产量最大的合金,具有优异的综合性能,广泛地应用于各类电子电器产品中,但是PC/ABS易燃,在很多应用中受到了一定的限制,因此阻燃PC/ABS的开发是较活跃的领域之一。无卤阻燃PC/ABS中使用的比较多的阻燃剂是含磷阻燃剂,常用的主要有磷酸三苯酯(TPP)、间苯二酚二缩合磷酸酯(RDP)和双酚磷系阻燃剂(BAPP)。含磷阻燃剂作用机理是在燃烧过程中促进聚合物成炭;有机硅化合物燃烧时形成的残炭具有高温热稳定性,能够有效地提高炭层的高温稳定性,在PC中具有一定的阻燃作用。在这基础上,本论文将有机硅元素和磷元素成功地结合到同一大分子中,合成了两类含磷聚硅氧烷阻燃剂,对其结构和性能进行了表征;研究了合成出的阻燃剂在PC/ABS中的应用以及阻燃剂和纳米蒙脱土在PC/ABS中的协同阻燃作用;通过对降解动力学以及降解产物的研究初步分析了阻燃剂的阻燃机理。
     1.含磷聚硅氧烷阻燃剂的合成及其结构表征
     首先通过9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)与乙烯基二甲氧基硅烷(VMDMS)的加成反应生成一种含磷硅氧烷,经过水解与脱水,得到中间体低聚含磷硅醇(DOPO-VMDMS),DOPO-VMDMS分别与氨基硅氧烷或二羟基硅烷进行共聚,合成出两类含磷聚硅氧烷阻燃剂(DVN和DVP)。用傅立叶变换红外光谱(FTIR)、核磁共振(NMR)氢谱、磷谱、凝胶色谱(GPC)、元素分析等对反应的中间产物以及最终产物进行结构分析表征;通过氮气和空气中的热重分析(TGA)对DVN和DVP的热性能进行了研究,结果表明DVN在氮气和空气中的残炭量都超过30wt.%,而DVP在空气中的残炭量也在20wt.%左右,同时发现DVN和DVP在空气中的成炭性均好于其自身在氮气中的成炭性,说明氧气的存在有利于促进聚硅氧烷成炭。
     2.含磷聚硅氧烷在PC/ABS中的应用
     利用自合成的含磷聚硅氧烷DVN和DVP对PC/ABS合金进行阻燃改性,采用直接熔融共混的方法得到无卤阻燃PC/ABS材料,通过氧指数(LOI)、垂直燃烧(VB)以及锥形量热仪(Cone)研究了阻燃剂对PC/ABS阻燃性能的影响,通过TGA研究了阻燃剂对PC/ABS热性能的影响,通过SEM研究了阻燃前后PC/ABS燃烧后残炭结构的区别,阻燃剂对PC/ABS力学性能的影响则通过拉伸和冲击测试来研究,通过EDS表征了P、Si元素在PC/ABS中的分布,从而推测阻燃剂在体系中的分散情况。研究表明:DVN或DVP的加入都可以显著地降低材料在燃烧过程中的热释放速率、总放热量、有效燃烧热、质量损失速率,提高燃烧成炭率以及极限氧指数值,但是DVN或DVP阻燃PC/ABS的点燃时间缩短了。TGA结果表明,相对PC/ABS来说,DVN或DVP阻燃PC/ABS的初始分解温度降低了;但是在氮气和空气中800℃下的残炭量都有所提高,并且DVP促进PC/ABS成炭的效果更为明显;阻燃PC/ABS的热降解速率要低于PC/ABS。在DVP添加量为10-15%时该阻燃体系能够通过垂直燃烧实验。与DVN阻燃PC/ABS相比,DVP阻燃PC/ABS在力学性能有所提高,但是相对于未阻燃的PC/ABS来说,还是下降较多。SEM结果和EDS结果表明,DVP在PC/ABS中的分散比较均匀。残炭的形貌研究表明,不论是DVN还是DVP阻燃的PC/ABS燃烧后形成的炭层都是表面致密、内部疏松的结构,该结构有利于阻止基体和外界进行能量和物质的交换,从而发挥较好的阻燃作用。
     3. DVP与OMT在PC/ABS中的协同阻燃作用
     研究了含磷聚硅氧烷DVP与有机纳米蒙脱土的在PC/ABS合金中的协同阻燃作用。用透射电子显微镜(TEM)和X射线衍射(XRD)考察了OMT在PC/ABS以及PC/ABS/DVP中的分散情况,结果表明蒙脱土在PC/ABS中呈插层型结构,在PC/ABS/DVP中呈插层/剥离型结构。由于DVP的存在,使得体系加工的粘度下降,剪切更为充分,从而使蒙脱土在PC/ABS中分散更为均匀。在锥形量热测试中发现,OMT的加入能够使得PC/ABS以及PC/ABS/DVP的热释放速率稍有降低,且大大延长了PC/ABS以及PC/ABS/DVP的点燃时间。PC/ABS/OMT插层结构和
     PC/ABS/DVP/OMT的插层/剥离型结构限制了分子链的热运动,且由于片层的阻隔效果有效地提高了材料的热稳定性,阻燃性能以及成炭性能。
     4.各阻燃PC/ABS体系的热降解过程的研究
     采用Flynn-Wall-Ozawa法研究了阻燃PC/ABS的降解动力学,通过TG-FTIR研究了在空气中DVP和DVP阻燃PC/ABS降解气相产物的结构,用FTIR和X光电子能谱(XPS)研究了PC/ABS和阻燃PC/ABS燃烧后残炭的化学结构,进而探讨阻燃剂阻燃机理。降解动力学研究结果表明,阻燃剂(DVN、DVP以及OMT)的加入降低了PC/ABS在降解初期的降解活化能;随着降解的进行,炭层逐渐形成,阻燃PC/ABS在高降解转化率时的降解活化能要比PC/ABS高,表明了阻燃PC/ABS形成的炭层的热稳定性高于PC/ABS;TG-FTIR和FTIR结果表明阻燃剂DVP在降解过程中确实形成了Si-O-Si交联结构;XPS的结果表明了PC/ABS/DVN在燃烧后Si和P元素有明显的富集现象,且结合能的结果证实了燃烧的残炭中磷的含氧酸以及P-Si键的存在,说明了Si和P存在协同成炭作用。
Polycarbonate/Acrylonitrile-Butadiene-Styrene (PC/ABS) is a kind of engineering plastic with good properties. It combines good physical properties of PC and easy processing of ABS, and has been widely used in automobile panel, parts, mobile-phone housing, power tools which need high heat and flame retardance property. PC/ABS is easily combustible, in order to meet the requirement of some applications, flame retardant formulations are needed in PC/ABS. According to West Electrical and Equipment Directive, WEEE and Restriction of Hazardous Substances Directive, RoHS, some halogen-containing flame retardants are forbidden to use in some applications although they are very effective in most polymers. The halogen-free flame retardant used in PC/ABS are mostly phosphorus-containing flame retardant, they mainly acts in condensed phase to help PC/ABS charring during burning. Organic silicon compounds form char with high thermal stability while burning, and have been used as flame retardant in PC. According to the above discussion, in this paper, organic silicon and phosphorus are successfully combined in one molecular, two kinds of phosphorus-containing polysiloxanes flame retardants are synthesized. The structure and thermal properties of the flame retardants are studied, and then they are applied into PC/ABS, their effects on flame retardancy, thermal property and thermal degradation behavior are also studied.
     (1) The synthesis and characteristic of phosphorus-containing polysiloxanes
     First, 9,10-dihydro-9-oxa-10-phospha-phanthrene-10oxide (DOPO) was reacted with vinyl methyl dimethoxysilane (VMDMS) to form a phosphorus-containing siloxane, after hydroxylation and dehydration, a intermediate product named DOPO–VMDMS was obtained. After that, two kinds of phosphorus-containing polysiloxanes (DVN and DVP) were synthesized by condensation of DOPO-VMDMS and N-β-(aminoethyl)-γ-aminopropyl methyl dimethoxysilane (NMDMS) orα,ω-dihydroxide polydimethsiloxane (PDMS). The structure of the intermediate product DOPO–VMDMS and product (DVN and DVP) was characterized by Fourier transform infrared spectroscopy (FTIR), Nuclear Magnetic Resonance (1H NMR, 31P NMR), element analysis and so on. The thermal properties of DVN and DVP were investigated by thermogravimetric analysis (TGA) in both nitrogen and air. It was found that both DVN and DVP had better char yield in air than in nitrogen at 800℃which indicates that oxygen can help the charring progress of polysiloxane..
     (2) Application of phosphorus-containing polysiloxanes in PC/ABS
     The phosphorus-containing polysiloxanes (DVN and DVP) were then incorporated into PC/ABS to improve its flame retardance. The flame retardance of the flame retarded PC/ABS was investigated by LOI, vertical burning test and cone calorimeter, the thermal stability was investigated by TGA, the structure of the char formed after fire were investigated by scanning electron microscopy (SEM). The results show that the LOI values of the flame retarded PC/ABS were increased by incorporation of DVN or DVP, the heat release rate (HRR), effective heat of combustion (EHC), total heat released (THC) and mass loss rate (MLR) were reduced in cone, and the char yield was increased in both cone and TG analysis. But the initial degradation temperature (IDT) in TGA and time to ignition (TTI) in cone were reduced which was caused by the relative early decomposition of phosphorus-containing polysiloxanes comparing with PC/ABS. SEM results reveal that the outer surface of the char layer of flame retarded PC/ASB after the LOI test was smooth and the inner side structure was swollen cells like, which benefits to the flame retardancy of PC/ABS. The char acts as an insulating barrier to reduce both radiant heat of flame and the diffusion of flammable degradation products into the combustion zone.
     (3) The synergistic effect of OMT and DVP in PC/ABS
     PC/ASB/OMT and PC/ABS/DVP/OMT were obtained by melting compounding; the flame retardance, thermal stability, the dispersion of OMT, and the structure of the char formed after fire were investigated. The dispersion of OMT in PC/ABS and PC/ABS/DVP was investigated by X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). It was found that OMT in PC/ABS was intercalation structure while in PC/ABS/DVP was intercalation and semi-exfoliation structure. The incorporation of OMT can not improve the LOI and vertical burning test behavior of PC/ABS and PC/ABS/DVP, but it can low down the HRR, increase the TTI and char yield in the cone.
     (4) Study of the degradation behavior of flame retarded PC/ABS
     The degradation behavior of flame retarded PC/ABS were investigated by TGA,TG-FTIR, FTIR and XPS. Flynrr-Wall-Ozawa method was used to calculate the degradation activation energies (E) of flame retarded PC/ABS at different degradation conversion degree (α). The results reveal that comparing with PC/ABS, E of DVN or DVP flame retarded PC/ABS decreased at lowαbut increased at highα. That mean the char formed by flame retarded PC/ABS had better thermal stability than PC/ABS. TG-FTIR and FTIR results convinced that during the degradation of DVP, a cross-linking structure with Si-O-Si formed. XPS results reveal that for PC/ABS/DVP, there are P-Si and phosphorous acids in the char formed after burning.
引文
1.葛世成,塑料阻燃技术. 2004.
    2. Levchik, S.V. and E.D. Weil, Flame retardants in commercial use or in advanced development inpolycarbonates and polycarbonate blends. Journal of Fire Sciences, 2006. 24(2): p. 137-151.
    3. Mao-Sheng, Z.D.-Q.W.S.-J.S.H.-S.W.X.-L.C., Synthesis and mechanism research of an ethylene glycol-based sol-gel method for preparing PZT nanopowders. J Sol-Gel Sci Techn, 2007. 41: p. 157-161.
    4. Ma, H.Y., et al., A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Polymer Degradation and Stability, 2007. 92(4): p. 720-726.
    5. Bourbigot, S., et al., Recent advances for intumescent polymers. Macromolecular Materials and Engineering, 2004. 289(6): p. 499-511.
    6. polyemr flammabiity. U.S. Department of Transportation, Federal Aviation Administration, 2005.
    7. Bourbigot, S. and S. Duquesne, Fire retardant polymers: recent developments and opportunities. Journal of Materials Chemistry, 2007. 17(22): p. 2283-2300.
    8.欧育湘,实用阻燃技术. 2002,北京:化学工业出版社.
    9.徐应麟,高聚物材料的实用阻燃技术1987,北京:化学工业出版社.
    10.欧育湘,阻燃剂1997:兵器工业出版社
    11.欧育湘,陈.,王筱梅,阻燃高分子材料2001:国防工业出版社
    12. Brebu, M., et al., The individual and cumulative effect of brominated flame retardant and polyvinylchloride (PVC) on thermal degradation of acrylonitrile-butadiene-styrene (ABS) copolymer. Chemosphere, 2004. 56(5): p. 433-440.
    13. Davis, J., The technology of halogen-free flame retardant additives for polymeric systems. Engineering Plastics, 1996. 9(5): p. 403-419.
    14. Levchik, S.V. and E.D. Weil, Overview of recent developments in the flame retardancy of polycarbonates. Polymer International, 2005. 54(7): p. 981-998.
    15. Grande, J.A., Halogen-free, flame-retardant TPU targets wire and cable, mass transit. Modern Plastics, 1998. 75(2): p. 95-95.
    16. Von Gentzkow, W., et al., Halogen-free flame-retardant plastics for electronic applications. Journal of Vinyl & Additive Technology, 1997. 3(2): p. 175-178.
    17. Nass, B., et al., Halogen-free flame-retardant for PP. Kunststoffe-Plast Europe, 1997. 87(8): p. 1000-&.
    18. Ulrike Braun a, A.I.B.a., Bernhard Schartel a,*, Uta Knoll a, Johannes Artner b,, M.D.r.b. Michael Ciesielski b, Raul Perez c, Jan K.W. Sandler c, Volker Altsta¨dt c,, and D.P.d. Thorsten Hoffmann d, Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer, 2006. 47: p. 8495-8508.
    19. Chen, W. and B.J. Qu, LLDPE/ZnAlLDH-exfoliated nanocomposites: effects of nanolayers onthermal and mechanical properties. Journal of Materials Chemistry, 2004. 14(11): p. 1705-1710.
    20. Du, X.H., et al., Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends. Materials Chemistry and Physics, 2006. 98(1): p. 172-177.
    21. Lee, K., et al., Studies on the thermal stabilization enhancement of ABS; synergistic effect by triphenyl phosphate and epoxy resin mixtures. Polymer, 2002. 43(8): p. 2249-2253.
    22. Laoutid, F., et al., Red phosphorus/aluminium oxide compositions as flame retardants in recycled poly(ethylene terephthalate). Polymer Degradation and Stability, 2003. 82(2): p. 357-363.
    23. Laoutid, F., et al., Flame-retardant action of red phosphorus/magnesium oxide and red phosphorus/iron oxide compositions in recycled PET. Fire and Materials, 2006. 30(5): p. 343-358.
    24. Pecht, M. and Y.L. Deng, Electronic device encapsulation using red phosphorus flame retardants. Microelectronics Reliability, 2006. 46(1): p. 53-62.
    25. Zatorski, W., Z.K. Brzozowsi, and K. Lebek, Production of PUR and PUR-PIR foams with red phosphorus as a flame retardant. Polimery, 2005. 50(9): p. 686-689.
    26. Liu, B., et al., Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker. Polymer Bulletin, 2007. 58(4): p. 747-755.
    27. Liu, Y. and Q. Wang, Synthesis of in situ encapsulated intumescent flame retardant and the flame retardancy in polypropylene. Polymer Composites, 2007. 28(2): p. 163-167.
    28. Ma, Z.L., J.G. Gao, and L.G. Bai, Studies of polypropylene-intumescent flame-retardant composites based on etched polypropylene as a coupling agent. Journal of Applied Polymer Science, 2004. 92(3): p. 1388-1391.
    29. Zong, R.W., et al., Thermogravimetric evaluation of PC/ABS/montmorillonite nanocomposite. Polymer Degradation and Stability, 2004. 83(3): p. 423-428.
    30. Wang, S.F., et al., Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites. Polymer Degradation and Stability, 2003. 80(1): p. 157-161.
    31. Wu, Q. and B.J. Qu, Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene. Polymer Degradation and Stability, 2001. 74(2): p. 255-261.
    32. Xie, F., et al., A novel intumescent flame-retardant polyethylene system. Macromolecular Materials and Engineering, 2006. 291(3): p. 247-253.
    33. J. Bozi, Z.C.g.n., E. Me′sza′ros, M. Blazso, Thermal decomposition of flame retarded polycarbonates. J. Anal. Appl. Pyrolysis, 2007.
    34. Bourbigot S, L.B.M., Delobel R, Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon, 1993. 31: p. 1229-1230.
    35. Camino G, C.L., Trossarelli L, Study of the mechanism of intumescence in fire retardant polymers:part v - mechanism of formation of gaseous products in the thermal degradation of ammonium polyphosphate. Polym Degrad Stabil., 1985. 12: p. 59-64.
    36. Camino G, C.L., Trossarelli L, Study of the mechanism of intumescence in fire retardant polymers: part vi - mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stabil., 1985. 12: p. 81-93.
    37. M.B. Talawar, J.K.N., S.M. Pundalik, R.S. Satpute, S. Venugopalan, Diaminofurazan (DAF): Thermolysis and evaluation as ballistic modifier in double base propellant. Journal of Hazardous Materials, 2006. B136: p. 978-981.
    38. R., B.S.B.M.L.D., Carbonization mechanisms resulting from intumescence - part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon, 1995. 33(3): p. 283~294.
    39. Zong, R.W., et al., Evaluation of the thermal degradation of PC/ABS/montmorillonite nanocomposites. Polymers for Advanced Technologies, 2005. 16(10): p. 725-731.
    40. Ian C. McNeil, M.H.M., Thermal analysis of blends of low density polyethylene, poly(ethyl acrylate) and ethylene ethyl acrylate copolymer with po;ydimethysioxane. Polymer Degradation and Stability, 1995. 50: p. 285-295.
    41. Li, Q., P.K. Jiang, and P. Wei, Synthesis, characteristic, and application of new flame retardant containing phosphorus, nitrogen, and silicon. Polymer Engineering and Science, 2006. 46(3): p. 344-350.
    42. Li, Q., et al., Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene. Journal of Applied Polymer Science, 2005. 96(3): p. 854-860.
    43. Shu, W.J., H.C. Ho, and L.H. Perng, Studies of silicon-containing maleimide polymers: 1. Synthesis and characteristics of model compounds. European Polymer Journal, 2005. 41(1): p. 149-156.
    44. Masatoshi lji, S.S., Silicone derivatives as new flame retardants for aromaic thermoplastics used in electronic devices. Polymers for Advanced Technologies, 1998. 9: p. 593-600.
    45. Mercado, L.A., M. Galia, and J.A. Reina, Silicon-containing flame retardant epoxy resins: Synthesis, characterization and properties. Polymer Degradation and Stability, 2006. 91(11): p. 2588-2594.
    46. M. Iji, S.S., Y. Kiuchi New environmentally conscious flame-retarding plastics for electronics products. meeting.
    47. Hayashida, K., et al., Flame retarding mechanism of polycarbonate containing trifunctional phenylsilicone additive studied by analytical pyrolysis techniques. Polymer Bulletin, 2002. 48(6): p. 483-490.
    48. Hayashida, K., S. Tsuge, and H. Ohtani, Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkalinehydrolysis gas chromatography. Polymer, 2003. 44(19): p. 5611-5616.
    49. Price, D., et al., Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polymer Degradation and Stability, 2007. 92(6): p. 1101-1114.
    50. Chigwada, G., et al., Fire retardancy of vinyl ester nanocomposites: Synergy with phosphorus-based fire retardants. Polymer Degradation and Stability, 2005. 89(1): p. 85-100.
    51.瞿雄伟;,刘.官.王.刘.,蒙脱土结构特性及在聚合物基纳米复合材料中的应用.塑料科技, 2004. 3: p. 40-45.
    52. Seo, K., J. Kim, and J.Y. Bae, Towards the development of thermally latent novolac-based char formers for ABS resins. Polymer Degradation and Stability, 2006. 91(7): p. 1513-1521.
    53. Camino, G., S.M. Lomakin, and M. Lageard, Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer, 2002. 43(7): p. 2011-2015.
    54. Camino, G., S.M. Lomakin, and M. Lazzari, Polydimethylsiloxane thermal degradation - Part 1. Kinetic aspects. Polymer, 2001. 42(6): p. 2395-2402.
    55. Bourbigot, S., S. Duquesne, and C. Jama, Polymer nanocomposites: How to reach low flammability? Macromolecular Symposia, 2006. 233: p. 180-190.
    56. Bourbigot, S., et al., PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire and Materials, 2000. 24(4): p. 201-208.
    57. Katajisto, J., et al., Ab initio study on thermal degradation reactions of polycarbonate. Journal of Molecular Structure-Theochem, 2003. 634: p. 305-310.
    58. Becker, L., et al., Thermal degradation of halogen-free flame retardant epoxides and polycarbonate in air. Journal of Analytical and Applied Pyrolysis, 2001. 60(1): p. 55-67.
    59. Montaudo, G., S. Carroccio, and C. Puglisi, Thermal and themoxidative degradation processes in poly(bisphenol a carbonate). Journal of Analytical and Applied Pyrolysis, 2002. 64(2): p. 229-247.
    60.刘述梅[1,蒋.赵., 2]叶华[1],聚碳酸酯阻燃测试方法结果分析.功能材料, 2007. 38(10): p. 1734-1737.
    61. zhenxia, d., et al., the study of thermal degradation of polycarbonates. polymer materials science and engneering, 2003. 19(3): p. 164-167.
    62. tao, d., et al., progress in halogen-free flame retardants of polycarbonate. modern chemical industry, 2004. 24: p. 10-14.
    63. soyama, m., k. inoue, and m. lji, flame retardancy of polycarbonate inhanced by adding fly ash. polymer for advanced technologies, 2007. 18(5): p. 386-391.
    64.戈明亮, ABS树脂阻燃技术研究概况.合成材料老化与应用, 2006. 1: p. 31-35.
    65.王元宏,阻燃剂化学及其应用. 1988,上海:上海科学技术文献出版社.
    66. Jang, J., J. Kim, and J.Y. Bae, Synergistic effect of ferric chloride and silicon mixtures on the thermal stabilization enhancement of ABS. Polymer Degradation and Stability, 2005. 90(3): p. 508-514.
    67. Kim, J., et al., Studies on the thermal stabilization enhancement of ABS; synergistic effect of triphenyl phosphate nanocomposite, epoxy resin, and silane coupling agent mixtures. Polymer Degradation and Stability, 2003. 79(2): p. 201-207.
    68. Choi, H.J., et al., Effects of acrylonitrile content on PC/ABS alloy systems with a flame retardant. Journal of Applied Polymer Science, 2000. 75: p. 417-423.
    69.周文,殷.张.张., PC/SAN/高胶ABS合金的制备与性能研究.塑料工业, 2007. 2007(3): p. 33-35.
    70.徐斌;,项.钟., PC/ABS多相体系的制备及性能研究.塑料工业, 2006. 06: p. 23-25.
    71. Fang, Q.Z., T.J. Wang, and H.M. Li, Large tensile deformation behavior of PC/ABS alloy. Polymer, 2006. 47(14): p. 5174-5181.
    72. Bhaskar, T., et al., Controlled pyrolysis of polyethylene/polypropylene/polystyrene mixed plastics with high impact polystyrene containing flame retardant: Effect of decabromo diphenylethane (DDE). Polymer Degradation and Stability, 2007. 92(2): p. 211-221.
    73. Inberg, J.P.F. and R.J. Gaymans, Co-continuous polycarbonate/ABS blends. Polymer, 2002. 43(8): p. 2425-2434.
    74. Levchik, S.V. and E.D. Weil, A review of recent progress in phosphorus-based flame retardants. Journal of Fire Sciences, 2006. 24(5): p. 345-364.
    75. Inberg, J.P.F. and R.J. Gaymans, Polycarbonate and co-continuous polycarbonate/ABS blends: influence of specimen thickness. Polymer, 2002. 43(13): p. 3767-3777.
    76. Inberg, J.P.F. and R.J. Gaymans, Polycarbonate and co-continuous polycarbonate/ABS blends: influence of notch radius. Polymer, 2002. 43(15): p. 4197-4205.
    77. Murashko, E.A., et al., Fire-retardant action of resorcinol bis(diphenyl phosphate) in PC-ABS blend. II. Reactions in the condensed phase. Journal of Applied Polymer Science, 1999. 71(11): p. 1863-1872.
    78. Murashko, E.A., et al., Fire retardant action of resorcinol bis(diphenyl phosphate) in a PC/ABS blend. I. Combustion performance and thermal decomposition behavior. Journal of Fire Sciences, 1998. 16(4): p. 278-296.
    79. minqi, x. and l. chunyan, application of phosphate esters and bromines flame retardants to PC/ABS alloys. plastic additives, 2006. 2: p. 32-34.
    80.张军,阻燃聚合物的燃烧实验进展与研究.第三届阻燃技术与阻燃材料最新研究进展研讨会, 2006 3.20-3.23: p. 1-31.
    81.舒中俊,徐.,李响聚合物材料火灾燃烧性能评价2007:化学工业出版社.
    82.欧育湘,李建军,材料阻燃性能测试方法.化学工业出版社, 2007.
    83. Mouritz, A.P., Z. Mathys, and A.G. Gibson, Heat release of polymer composites in fire. Composites Part a-Applied Science and Manufacturing, 2006. 37(7): p. 1040-1054.
    84. Morgan, A.B. and M. Bundy, Cone calorimeter analysis of UL-94 V-rated plastics. Fire and Materials, 2007. 31(4): p. 257-283.
    85. Chen, Y.H. and Q. Wang, Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polymer Degradation and Stability, 2007. 92(2): p. 280-291.
    86. Hussain, M., et al., Effect of organo-phosphorus and nano-clay materials on the thermal and fire performance of epoxy resins. Journal of Applied Polymer Science, 2004. 91(2): p. 1233-1253.
    87. Liu, Y.L., Y.C. Chiu, and T.Y. Chen, Phosphorus-containing polyaryloxydiphenylsilanes with high flame retardance arising from a phosphorus-silicon synergistic effect. Polymer International, 2003. 52(8): p. 1256-1261.
    88. Liu, Y.L., Y.C. Chiu, and C.S. Wu, Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins' thermal stability and flame retardancy. Journal of Applied Polymer Science, 2003. 87(3): p. 404-411.
    89. Liu, Y.L., et al., Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins. Journal of Polymer Science Part a-Polymer Chemistry, 2003. 41(15): p. 2354-2367.
    90. Li, Q., et al., Thermal degradation behaviors of polypropylene with novel silicon-containing intumescent flame retardant. Journal of Applied Polymer Science, 2005. 98(6): p. 2487-2492.
    91. Li, Q., P.K. Jiang, and P. Wei, Thermal degradation behavior of poly(propylene) with a novel silicon on-containing intumescent flame retardant. Macromolecular Materials and Engineering, 2005. 290(9): p. 912-919.
    92. Li, Q., P.K. Jiang, and P. Wei, Studies on the properties of polypropylene with a new silicon-containing intumescent flame retardant. Journal of Polymer Science Part B-Polymer Physics, 2005. 43(18): p. 2548-2556.
    93. Alcon, M.J., et al., Synthesis, characterization and polymerization of a novel glycidyl phosphinate. Macromolecular Rapid Communications, 2001. 22(15): p. 1265-1271.
    94. Cai, Y.B., et al., Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material. Energy Conversion and Management, 2007. 48(2): p. 462-469.
    95. Canadell, J., A. Mantecon, and V. Cadiz, Synthesis of a novel ris-spiroorthoester containing 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide as a substituent: Homopolymerization and copolymerization with diglycidyl ether of bisphenol A. Journal of Polymer Science Part a-Polymer Chemistry, 2007. 45(10): p. 1980-1992.
    96. Chang, S.J. and F.C. Chang, Characterizations for blends of phosphorus-containing copolyester with poly(ethylene terephthalate). Polymer Engineering and Science, 1998. 38(9): p. 1471-1481.
    97. Chang, Y.L., et al., A novel phosphorus-containing polymer as a highly effective flame retardant. Macromolecular Materials and Engineering, 2004. 289(8): p. 703-707.
    98. Chen, X.L., et al., Preparation and thermal properties of a novel flame-retardant coating. Polymer Degradation and Stability, 2007. 92(6): p. 1141-1150.
    99. Hamciuc, C., et al., New phosphorus-containing copolyesters. Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 2006. 43(9): p. 1355-1364.
    100. Hussain, M., et al., Synthesis, thermal behavior, and cone calorimetry of organophosphorus epoxy materials. Journal of Applied Polymer Science, 2003. 90(13): p. 3696-3707.
    101. Shumei Liu a, H.Y.a., Yongsheng Zhou a, Jihui He a, Zhijie Jiang a, and Jianqing Zhao a,Xianbo Huang b, Study on flame-retardant mechanism of polycarbonate containingsulfonate-silsesquioxane-fluoro retardants by TGA and FTIR. Polymer Degradation and Stability, 2006.91: p. 1808-1814.
    102. Liu, Y.L., Phosphorous-containing epoxy resins from a novel synthesis route. Journal of Applied Polymer Science, 2002. 83(8): p. 1697-1701.
    103. Liu, Y.L. and Y.C. Chiu, Novel approach to the chemical modification of poly(vinyl alcohol): Phosphorylation. Journal of Polymer Science Part a-Polymer Chemistry, 2003. 41(8): p. 1107-1113.
    104. Liu, Y.L., C.Y. Hsu, and C.S. Wu, Polyimides possessing bulky phosphorus groups: Synthesis and characterization. Journal of Applied Polymer Science, 2003. 89(3): p. 791-796.
    105. Liu, Y.L. and S.H. Tsai, Synthesis and properties of new organosoluble aromatic polyamides with cyclic bulky groups containing phosphorus. Polymer, 2002. 43(21): p. 5757-5762.
    106. Liu, Y.L., W.L. Wei, and W.Y. Chen, Reversibility of hydration and dehydration reactions of a phosphaphenanthrene oxide (DOPO) pendent group on polyamide. Polymer International, 2003. 52(8): p. 1275-1279.
    107. Liu, Y.L., et al., Flame-retardant epoxy resins from o-cresol novolac epoxy cured with a phosphorus-containing aralkyl novolac. Journal of Polymer Science Part a-Polymer Chemistry, 2002. 40(14): p. 2329-2339.
    108. Lu, S.Y. and I. Hamerton, Recent developments in the chemistry of halogen-free falme retardant polymers. Prog. Polym. Sci., 2002. 27: p. 1661-1772.
    109. Corneliu Hamciuc a, Tachita Vlad-Bubulac a, Oana Petreus a, Gabriela Lisa b, Kinetics of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides. European Polymer Journa, 2007.
    110. Schafer, A., et al., Synthesis and properties of flame-retardant epoxy resins based on DOPO and one of its analog DPPO. Journal of Applied Polymer Science, 2007. 105(2): p. 685-696.
    111. Semenzin, D., et al., Dual radical/polar Pudovik reaction: Application field of new activation methods. Journal of Organic Chemistry, 1997. 62(8): p. 2414-2422.
    112. Ho, T.H., et al., Thermal degradation kinetics and flame retardancy of phosphorus-containing dicyclopentadiene epoxy resins. Polymer Degradation and Stability, 2006. 91(10): p. 2347-2356.
    113. Stockland, R.A., et al., Microwave-assisted regioselective addition of P(O)-H bonds to alkenes without added solvent or catalyst. Organic Letters, 2005. 7(5): p. 851-853.
    114. T, S., S. K, and Cyclic organophophorus compounds and process for makeing same US 3702878.
    115. Wang, C.S. and J.Y. Shieh, Synthesis and flame retardancy of phosphorus containing polycarbonate. Journal of Polymer Research-Taiwan, 1999. 6(3): p. 149-154.
    116. Wang, C.S. and J.Y. Shieh, Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)1,4-benzenediol. Polymer, 1998. 39(23): p. 5819-5826.
    117. Wu, C.S., Y.L. Liu, and Y.S. Chiu, Preparation of phosphorous-containing poly(epichlorohydrin) and polyurethane from a novel synthesis route. Journal of Applied Polymer Science, 2002. 85(10): p. 2254-2259.
    1. T, S., S. K, and Cyclic organophophorus compounds and process for makeing same US 3702878.
    2. Alcon, M.J., et al., Synthesis, characterization and polymerization of a novel glycidyl phosphinate. Macromolecular Rapid Communications, 2001. 22(15): p. 1265-1271.
    3. Artner, J., et al., A novel and efficient synthesis of trivalent 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivatives. Arkivoc, 2007: p. 132-142.
    4. Artner, J., et al., A novel and effective synthetic approach to 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives. Phosphorus Sulfur and Silicon and the Related Elements, 2007. 182(9): p. 2131-2148.
    5. Cai, S.X. and C.H. Lin, Flame-retardant epoxy resins with high glass-transition temperatures from a novel trifunctional curing agent: Dopotriol. Journal of Polymer Science Part a-Polymer Chemistry, 2005. 43(13): p. 2862-2873.
    6. Canadell, J., A. Mantecon, and V. Cadiz, Synthesis of a novel ris-spiroorthoester containing
    9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide as a substituent: Homopolymerization and copolymerization with diglycidyl ether of bisphenol A. Journal of Polymer Science Part a-Polymer Chemistry, 2007. 45(10): p. 1980-1992.
    7. jie, h., et al., synthesis of 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. fine chemicals, 2005. 22(11): p. 853-856.
    8. Liu, Y.L., Phosphorous-containing epoxy resins from a novel synthesis route. Journal of Applied Polymer Science, 2002. 83(8): p. 1697-1701.
    9. Liu, Y.L., W.L. Wei, and W.Y. Chen, Reversibility of hydration and dehydration reactions of a phosphaphenanthrene oxide (DOPO) pendent group on polyamide. Polymer International, 2003. 52(8): p. 1275-1279.
    10. Schafer, A., et al., Synthesis and properties of flame-retardant epoxy resins based on DOPO and one of its analog DPPO. Journal of Applied Polymer Science, 2007. 105(2): p. 685-696.
    11. Stockland, R.A., et al., Microwave-assisted regioselective addition of P(O)-H bonds to alkenes without added solvent or catalyst. Organic Letters, 2005. 7(5): p. 851-853.
    12. Li, Q., et al., Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene. Journal of Applied Polymer Science, 2005. 96(3): p. 854-860.
    13. Chang, S.J. and F.C. Chang, Characterizations for blends of phosphorus-containing copolyester with poly(ethylene terephthalate). Polymer Engineering and Science, 1998. 38(9): p. 1471-1481.
    14. Chang, Y.L., et al., A novel phosphorus-containing polymer as a highly effective flame retardant. Macromolecular Materials and Engineering, 2004. 289(8): p. 703-707.
    15. Lin, C.H., Synthesis of novel phosphorus-containing cyanate esters and their curing reaction with epoxy resin. Polymer, 2004. 45(23): p. 7911-7926.
    16. Liu, Y.L. and S.H. Tsai, Synthesis and properties of new organosoluble aromatic polyamides with cyclic bulky groups containing phosphorus. Polymer, 2002. 43(21): p. 5757-5762.
    17. Liu, Y.L., et al., Flame-retardant epoxy resins from o-cresol novolac epoxy cured with a phosphorus-containing aralkyl novolac. Journal of Polymer Science Part a-Polymer Chemistry, 2002. 40(14): p. 2329-2339.
    18. Wu, C.S., Y.L. Liu, and Y.S. Chiu, Preparation of phosphorous-containing poly(epichlorohydrin) and polyurethane from a novel synthesis route. Journal of Applied Polymer Science, 2002. 85(10): p. 2254-2259.
    19. Liu, Y.L., et al., Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins. Journal of Polymer Science Part a-Polymer Chemistry, 2003. 41(15): p. 2354-2367.
    20. Bourbigot, S., et al., Recent advances for intumescent polymers. Macromolecular Materials and Engineering, 2004. 289(6): p. 499-511.
    21. Wu, Q. and B.J. Qu, Synergistic effects of silicotungistic acid on intumescent flame-retardantpolypropylene. Polymer Degradation and Stability, 2001. 74(2): p. 255-261.
    22. Anna, P., et al., Intumescent flame retardant systems of modified rheology. Polymer Degradation and Stability, 2002. 77(2): p. 243-247.
    23. Li, Q., P.K. Jiang, and P. Wei, Studies on the properties of polypropylene with a new silicon-containing intumescent flame retardant. Journal of Polymer Science Part B-Polymer Physics, 2005. 43(18): p. 2548-2556.
    24. Li, Q., P.K. Jiang, and P. Wei, Thermal degradation behavior of poly(propylene) with a novel silicon on-containing intumescent flame retardant. Macromolecular Materials and Engineering, 2005. 290(9): p. 912-919.
    25. Li, Q., et al., Thermal degradation behaviors of polypropylene with novel silicon-containing intumescent flame retardant. Journal of Applied Polymer Science, 2005. 98(6): p. 2487-2492.
    26. M. Iji, S.S., Y. Kiuchi New environmentally conscious flame-retarding plastics for electronics products. meeting.
    27. Camino, G., S.M. Lomakin, and M. Lageard, Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer, 2002. 43(7): p. 2011-2015.
    28. Camino, G., S.M. Lomakin, and M. Lazzari, Polydimethylsiloxane thermal degradation - Part 1. Kinetic aspects. Polymer, 2001. 42(6): p. 2395-2402.
    1. Masatoshi lji, S.S., Silicone derivatives as new flame retardants for aromaic thermoplastics used in electronic devices. Polymers for Advanced Technologies, 1998. 9: p. 593-600.
    2. M. Iji, S.S., Y. Kiuchi New environmentally conscious flame-retarding plastics for electronics products. meeting.
    3. Hayashida, K., S. Tsuge, and H. Ohtani, Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography. Polymer, 2003. 44(19): p. 5611-5616.
    4. Liu, Y.L., Y.C. Chiu, and C.S. Wu, Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins' thermal stability and flame retardancy. Journal of Applied Polymer Science, 2003. 87(3): p. 404-411.
    5. Wu, C.S., Y.L. Liu, and Y.S. Chiu, Preparation of phosphorous-containing poly(epichlorohydrin) and polyurethane from a novel synthesis route. Journal of Applied Polymer Science, 2002. 85(10): p. 2254-2259.
    6. Li, Q., P.K. Jiang, and P. Wei, Thermal degradation behavior of poly(propylene) with a novel silicon on-containing intumescent flame retardant. Macromolecular Materials and Engineering, 2005. 290(9): p. 912-919.
    7. Li, Q., et al., Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene. Journal of Applied Polymer Science, 2005. 96(3): p. 854-860.
    8. Li, Q., P.K. Jiang, and P. Wei, Studies on the properties of polypropylene with a new silicon-containing intumescent flame retardant. Journal of Polymer Science Part B-Polymer Physics, 2005. 43(18): p. 2548-2556.
    9. Inberg, J.P.F., A. Takens, and R.J. Gaymans, Strain rate effects in polycarbonate and polycarbonate/ABS blends. Polymer, 2002. 43(9): p. 2795-2802.
    10. Inberg, J.P.F. and R.J. Gaymans, Polycarbonate and co-continuous polycarbonate/ABS blends: influence of specimen thickness. Polymer, 2002. 43(13): p. 3767-3777.
    11. Inberg, J.P.F. and R.J. Gaymans, Polycarbonate and co-continuous polycarbonate/ABS blends: influence of notch radius. Polymer, 2002. 43(15): p. 4197-4205.
    12.周文,殷.张.张., PC/SAN/高胶ABS合金的制备与性能研究.塑料工业, 2007. 2007(3): p. 33-35.
    13.徐斌;,项.钟., PC/ABS多相体系的制备及性能研究.塑料工业, 2006. 06: p. 23-25.
    14. Fang, Q.Z., T.J. Wang, and H.M. Li, Large tensile deformation behavior of PC/ABS alloy. Polymer, 2006. 47(14): p. 5174-5181.
    15. Murashko, E.A., et al., Fire-retardant action of resorcinol bis(diphenyl phosphate) in PC-ABS blend. II. Reactions in the condensed phase. Journal of Applied Polymer Science, 1999. 71(11): p. 1863-1872.
    16. Murashko, E.A., et al., Fire retardant action of resorcinol bis(diphenyl phosphate) in a PC/ABS blend. I. Combustion performance and thermal decomposition behavior. Journal of Fire Sciences, 1998. 16(4): p. 278-296.
    17. Choi, H.J., et al., Effects of acrylonitrile content on PC/ABS alloy systems with a flame retardant. Journal of Applied Polymer Science, 2000. 75: p. 417-423.
    18. Chiang, W.Y. and G.L. Tzeng, Effect of the compatibilizers on flame-retardant polycarbonate (PC) acrylonitrile-butadiene-styrene (ABS) alloy. Journal of Applied Polymer Science, 1997. 65(4): p. 795-805.
    19. Jin, D.W., et al., Compatibility enhancement of ABS/polycarbonate blends. Journal of Applied Polymer Science, 1998. 69(3): p. 533-542.
    20. Inberg, J.P.F. and R.J. Gaymans, Co-continuous polycarbonate/ABS blends. Polymer, 2002. 43(8): p. 2425-2434.
    21. minqi, x. and l. chunyan, application of phosphate esters and bromines flame retardants to PC/ABS alloys. plastic additives, 2006. 2: p. 32-34.
    1. Inberg, J.P.F. and R.J. Gaymans, Co-continuous polycarbonate/ABS blends. Polymer, 2002. 43(8): p. 2425-2434.
    2. Jin, D.W., et al., Compatibility enhancement of ABS/polycarbonate blends. Journal of Applied Polymer Science, 1998. 69(3): p. 533-542.
    3. Inberg, J.P.F. and R.J. Gaymans, Polycarbonate and co-continuous polycarbonate/ABS blends: influence of notch radius. Polymer, 2002. 43(15): p. 4197-4205.
    4. Inberg, J.P.F. and R.J. Gaymans, Polycarbonate and co-continuous polycarbonate/ABS blends: influence of specimen thickness. Polymer, 2002. 43(13): p. 3767-3777.
    5. Inberg, J.P.F., A. Takens, and R.J. Gaymans, Strain rate effects in polycarbonate and polycarbonate/ABS blends. Polymer, 2002. 43(9): p. 2795-2802.
    6. Balart, R., et al., Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. European Polymer Journal, 2005. 41(9): p. 2150-2160.
    7. Sohn, J.I., et al., Effect of a reactive-type flame retardant on rheological and mechanical properties of PC/ABS blends. Journal of Materials Science, 2003. 38(7): p. 1485-1491.
    8. Chiang, W.Y. and G.L. Tzeng, Effect of the compatibilizers on flame-retardant polycarbonate (PC) acrylonitrile-butadiene-styrene (ABS) alloy. Journal of Applied Polymer Science, 1997. 65(4): p. 795-805.
    9. Choi, H.J., et al., Effects of acrylonitrile content on PC/ABS alloy systems with a flame retardant. Journal of Applied Polymer Science, 2000. 75: p. 417-423.
    10. Chigwada, G., et al., Fire retardancy of vinyl ester nanocomposites: Synergy with phosphorus-based fire retardants. Polymer Degradation and Stability, 2005. 89(1): p. 85-100.
    11. Murashko, E.A., et al., Fire retardant action of resorcinol bis(diphenyl phosphate) in a PC/ABS blend. I. Combustion performance and thermal decomposition behavior. Journal of Fire Sciences, 1998. 16(4): p. 278-296.
    12. Murashko, E.A., et al., Fire-retardant action of resorcinol bis(diphenyl phosphate) in PC-ABS blend. II. Reactions in the condensed phase. Journal of Applied Polymer Science, 1999. 71(11): p. 1863-1872.
    13. Levchik, S.V. and E.D. Weil, Flame retardants in commercial use or in advanced development in polycarbonates and polycarbonate blends. Journal of Fire Sciences, 2006. 24(2): p. 137-151.
    14. Levchik, S.V. and E.D. Weil, Overview of recent developments in the flame retardancy of polycarbonates. Polymer International, 2005. 54(7): p. 981-998.
    15. Zong, R.W., et al., Evaluation of the thermal degradation of PC/ABS/montmorillonite nanocomposites. Polymers for Advanced Technologies, 2005. 16(10): p. 725-731.
    16. Wang, S.F., et al., Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites. Polymer Degradation and Stability, 2003. 80(1): p. 157-161.
    17. Zong, R.W., et al., Thermogravimetric evaluation of PC/ABS/montmorillonite nanocomposite. Polymer Degradation and Stability, 2004. 83(3): p. 423-428.
    1. Du, L.C., B.J. Qu, and M. Zhang, Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation. Polymer Degradation and Stability, 2007. 92(3): p. 497-502.
    2. Roth, M., et al., Determination of reaction mechanisms and evaluation of flame retardants in wood-melamine resin-composites. Journal of Analytical and Applied Pyrolysis, 2007. 79(1-2): p. 306-312.
    3. Corneliu Hamciuc a, Tachita Vlad-Bubulac a, Oana Petreus a, Gabriela Lisa b, Kinetics of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides. European Polymer Journa, 2007.
    4. Zhao, H., et al., Kinetics of thermal degradation of flame retardant copolyesters containing phosphorus linked pendent groups. Polymer Degradation and Stability, 2003. 80(1): p.135-140.
    5. Qingfeng Wang, W.S., Kinetics study of thermal decomposition of epoxy resins containing flame retardant components*. Polymer Degradation and Stability, 2006. 91: p. 1747-1754.
    6. Chen, W. and B.J. Qu, LLDPE/ZnAlLDH-exfoliated nanocomposites: effects of nanolayers on thermal and mechanical properties. Journal of Materials Chemistry, 2004. 14(11): p. 1705-1710.
    7. joseph, H.F. and L.A. Wall, a quick, direct method for the determination of actication energy from thermogracimetric data. polymer letters, 1966. 4: p. 323-328.
    8. Polli, H., et al., Thermal analysis kinetics applied to flame retardant polycarbonate. Journal of Thermal Analysis and Calorimetry, 2006. 86(2): p. 469-473.
    9. Montaudo, G., S. Carroccio, and C. Puglisi, Thermal and themoxidative degradation processes in poly(bisphenol a carbonate). Journal of Analytical and Applied Pyrolysis, 2002. 64(2): p. 229-247.
    10. Ulrike Braun a, A.I.B.a., Bernhard Schartel a,*, Uta Knoll a, Johannes Artner b,, M.D.r.b. Michael Ciesielski b, Raul Perez c, Jan K.W. Sandler c, Volker Altsta¨dt c,, and D.P.d. Thorsten Hoffmann d, Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer, 2006. 47: p. 8495-8508.
    11. Chen, Y.H. and Q. Wang, Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polymer Degradation and Stability, 2007. 92(2): p. 280-291.
    12. Barontini, F. and V. Cozzani, Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards. Journal of Analytical and Applied Pyrolysis, 2006. 77(1): p. 41-55.
    13. L. Giroux, J.-P.C., and J. A. MacPhee, Application of Thermogravimetric Fourier Transform Infrared Spectroscopy (TG-FTIR) to the Analysis of Oxygen Functional Groups in Coal. Energy & Fuels, 2006. 20: p. 1988-1996.
    14. M.B. Talawar, A.P.A., M. Anniyappan, G.M. Gore, and S.V. S.N. Asthana, Method for preparation of fine TATB (2–5
    21.黄年华,王建祺,用TGA-FTIR联用技术研究聚酰胺6的热降解行为.北京理工大学学报. Vol. 2. 2004. 182-188.
    22.连晨舟,吕子安,徐旭常;,典型毒害气体的FTIR吸收光谱分析.中国环境监测. Vol. 2. 2004. 17-20.
    23.王树荣,刘倩,骆仲泱,文丽华,岑可法;,基于热重红外联用分析的纤维素热裂解机理研究.浙江大学学报(工学版). Vol. 7. 2006. 1155-1158.
    24.吴鹏, ABS阻燃性能测试中差热/热重-红外光谱技术的应用.工程塑料应用. Vol. 2. 2003. 30-33.
    25.徐朝芬,孙学信,胡松;,基于TGA-DSC-FTIR联用技术研究煤粉的燃烧特性.热能动力工程. Vol. 3. 2005. 287-290.
    26.姚燕,王树荣,郑赟,骆仲泱,岑可法;,基于热红联用分析的木质素热裂解动力学研究.燃烧科学与技术. Vol. 1. 2007. 50-54.
    27.王建祺,吴文辉,冯大明,电子能谱学(XPS,XAES,UPS)引论. 1992:国防工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700