用户名: 密码: 验证码:
炭黑自组装行为的研究及其在导电复合材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用热降解和超声声化学的方法,结合炭黑捕获自由基的固有特性,制备出了两种不同有机物接枝的炭黑。两种接枝炭黑分别可以在有机溶剂或水中稳定分散。利用接枝炭黑和聚合物微球之间的非共价键作用,以及接枝炭黑和无机棒状黏土之间的静电共凝聚作用,制备出了不同的自组装复合粒子。通过对自组装过程的控制,使制备的复合粒子形成稳定和表面性质可控的结构,利用该结构作为功能性砌块在聚合物基体内部构建有效的导电网络。并通过对炭黑层层自组装特性的研究,制备出了厚度和电性能可控的复合薄膜。文本的主要内容如下:
     1.使用原位固相接枝的方法制备Irganox1330接枝改性的炭黑(CB)。利用CB表面Irganox1330的苯环与聚苯乙烯(PS)微球模板表面的芳香环产生π-π共轭作用,来简单而有效地制备PS/CB自组装微球。通过调整共凝聚过程中的溶剂极性,对自组装微球的表面结构进行可控构建。使用SEM和AFM对PS/CB自组装微球的形貌进行表征,并利用水接触角对自组装微球的表面性质进行测试。结果证明了通过控制CB在PS微球表面的吸附量,能够有效构建PS/CB自组装微球的表面形貌和性质。
     2.使用共凝聚方法制备可控形貌的PS/CB自组装微球,并使用SEM观察其表面。分别研究了使用PS/CB自组装粒子制备的CB/PS和CB/PS/PC复合材料的电导性。详细研究了PS含量、自组装粒子上CB的包覆率以及CB的含量对CB/PS/PC复合材料电性能的影响。结果显示,相比一般溶液混合法制备的复合材料,利用PS/CB自组装复合粒子表面形貌变化与电阻率的关系可以有效降低复合材料的渗流阈值。不仅如此,PC/PS材料间的“零双折射”现象增加了复合材料的透光率。
     3.采用超声降解聚合物的方法制备了具有良好水分散性的聚(甲基乙烯基醚/马来酸酐)(PVM/MA)接枝CB,并使用FT-IR和TGA对其进行表征。Zeta电位分析表明接枝在CB表面的PVM/MA分子具有pH值响应性。利用PVM/MA和聚乙烯亚胺(PEI)在水中带有的异相表面电荷为驱动力,制备聚对苯二甲酸乙二醇酯为基材的接枝CB/PEI层层自组装薄膜,并使用AFM进行表征。薄膜制备过程中的pH值、沉积循环次数和浸没时间影响薄膜的CB厚度。随着薄膜循环数的增加,薄膜材料的透过率以及表面电阻率均出现不同程度的下降。
     4. PVM/MA接枝CB在水性聚氨酯乳液和固体复合材料中分别具有良好的分散性和界面相容性。HRTEM观察发现表面带有相反电荷的PVM/MA接枝CB和凹凸棒(ATT)之间在水中发生静电共凝聚,接枝CB组装在ATT表面并提高了整个体系的分散稳定性。接枝CB和ATT的质量比影响着两种粒子在水中或者在复合材料内部的分散,这导致了复合材料电学和力学性能的变化。DMA和电阻测试结果表明,当GCB与ATT具有合适的质量比时,复合材料的电学和力学性能同时提高。
     5.通过溶液混合法制备了ATT/CB/环氧树脂(EP)复合材料。UV-Vis和Zeta电位测试仪对CB和(或)ATT在丙酮溶剂中的分散稳定性进行了研究。使SEM、电阻仪分别研究了不同填料含量以及不同填料比例对EP复合材料微观结构和体积电阻率的影响。结果表明,ATT的加入可以有效增强CB在溶剂中的分散稳定性,促进EP基体中导电网络的形成,并提高材料的储能模量。
Combined with the radical trapping nature of carbon black (CB), thermal degradation and ultrasonic degradation methods were used to prepare two different kinds of organic compound grafted CB. Two kinds of grafted CB have good dispersiblity and stability in organic solvent or water, respectively. Take advantage of the non-covalent bond between grafted CB and polymer microsphere, or the electrostatic heterocoagulation between grafted CB and inert clay nanorods to create different self-assembly composite particles. Controllable morphology of composite particles were acted as building blocks in order to create conductive networks with the polymer matrix, and fabricated through tailoring the process of self-assemble behavior of CB. According to the study for layer-by-layer (LBL) self-assemble behavior of CB, the CB/polymer thin film with controllable thickness and electrical property was prepared. The main conclusions are as follow:
     1. A simple in-situ solid grafting approach was used to prepare Irganox1330 grafted CB. Take advantage ofπ-πinteraction between Irganox1330 and polystyrene (PS) to prepare PS/CB self-assembly microspheres. The morphology of PS/CB microsphere was tailored through adjusting the polarity of heterocoagulation process, and investigated by SEM and AFM. The wetability of PS/CB microsphere was measured by water contact angle (WCA). The results indicated that the morphology and surface property was determined by the CB concentration of PS/CB self-assembly microsphere.
     2. PS/CB self-assembly microspheres were prepared by heterocoagulation process from grafted CB and PS microspheres through aπ-πinteraction. Their morphologies could be tailored as the coverage dgree of CB on PS microsphere and were investigated by SEM. The CB/PS composites and CB/PS/PC composites prepared by using PS/CB microspheres were investigated. The effects of concentration of PS, coverage degree of CB and concentration of CB on electrical properties were studied. The results showed that, compared with general composites, the percolation threshold of composites could be improved by utilizing the interaction between the morphology of self-assembly microsphere and resistivity. In addition, the zero birefringence of PS/PC blends improved the light transmittance of such composites.
     3. Polyelectrolyte poly (methyl vinyl ether-co-maleic acid) (PVM/MA) was grafted on the surface of CB by ultrasonically degraded method. FT-IR, TGA were used to analyze the surface properties and structure of PVM/MA grafted CB. The pH-responsive of PVM/MA grafted CB influence the particle size of grafted CB in water. A thin film was frabicated from LBL assembly of grafted CB and polyethyleneimine (PEI) due to different surface charge. AFM was used to investigate the surface morphology of this grafted CB/PEI film. pH value, immersion time and the number of deposition circles affected the film thickness. The light tansmittance and resistivity of film were improved as the increase of deposition circles.
     4. PVM/MA grafted CB had better dispersibility and compatibility than that of pristine CB in water-bonre polyurethane (WPU) and corresponding solid composites. DLS and HRTEM results demonstrated that anionically charged grafted CB nanoparticles were heterocoagulated on the surface of cationically charged ATT nanorods and improved the stabilization of ATT in wate as dispersing aids. The microstructure development in matrix that depended on various weight ratios of the nanoparticles ultimately influenced the electrical conductivity and mechanical property of WPU composites. The results showed that both electrical conductivity and storage modulus of composite could be improved simultaneously when CB and ATT had a appropriate weight ratio.
     5. ATT/CB/Epoxy (EP) composites were prepared by liquid mixing method. The stability of CB and (or) ATT suspensions in acetone was analyzed by UV-Vis and Zeta potential. The microstructures and volume resistivity of the composites were examined by scanning electron microscope (SEM), resistance meter and DMA. The results indicated that ATT can effectively improve the dispersion of CB in solution, which resulted in conductive networks in the matrix and improved storage modulus.
引文
[1]RH Norman. Conductive rubbers and plastics, Chapter 3 [M]. London:Applied science publishers,1970
    [2]吴长勤.导电塑料的发现和发展—从2000年诺贝尔奖提起[J].世界科学,2000,12:23-24
    [3]M Omastova, I Chodak, J Pionteck. Electrical and mechanical properties of conducting polymer composites [J]. Synth. Met.1999,102 (1):1251-1256
    [4]雀部博之.导电高分子材料[M].科学出版社,1989
    [5]张凯,曾敏,雷毅等.导电高分子材料的进展[J].化工新材料.2002,30(7):13-16
    [6]杨小利,王钧,付杰.导电复合材料的研究[J].玻璃钢/复合材料.1997,5:28-30
    [7]谢长琼,李忠明,黄锐等.炭黑填充复合导电高分子材料研究和应用[J].中国塑料.2002,16(7):7-11
    [8]AI Madalia. Electrical conducting in carbon black eomposities [J]. Rubber chem. technol. 1986,59 (3):432-454
    [9]曾戎,曾汉民.导电高分子复合材料导电通路的形成[J].材料工程.1997,10:9-13
    [10]B Wessling. Process and device for purifying exhaust air [P]. PCT/EP1987/000046
    [11]J Grunlan. An estimate of contact and continuity of dispersion in opaque samples [J]. Transactions of the Metallurgical Society of AIME.1966,236 (5):642-646
    [12]S Kirpatrick. Percolation and conduction [J]. Reviews of Modern Physics.1973,45 (4): 574-588
    [13]MB Heaney. Measurement and interpretation of nonuniversal critical exponents in disordered conductor-insulator composites [J]. Phys. Rev. B:Condens. Matter.1995,52 (17):12477-12480
    [14]SM Aharoni. Electrical resistivity of a composite of conducting particles in an insulating matrix [J]. J. Appl. Phys.1972,43 (5):2463-2465
    [15]J Janze. On the critical conductive filler loading in antistatic compositas [J]. J. Appl. Phys. 1975,46 (2):966-969
    [16]K Miyasaka, K Watanabe, E Jojima, et al. Electrical conductivity of carbon-polymer composites as a function of carbon content [J]. J. Mater. Sci.1982,17 (6):1610-1616.
    [17]M Sumita, S Asai, N Miyadera, et al. Electrical conductivity of carbon black filled ethylene-vinyl acetate copolymer as a function of vinyl acetate content [J]. Colloid Polym. Sci.1986,264 (3):212-217
    [18]B Wessling. Electrical conductivit electrical conductivity in heterogeneous polymer systerms. v(1):Furyher experimental evidence for a phase transition at the critical volume concentration [J]. Polym. Eng. Sci.1991,31 (16):1200-1206
    [19]RD Sherman, LM Middleman, SM Jacobs. Electron transport process in conductor-filled polymers[J]. Polym. Eng. Sci.1983,23 (1):36-46
    [20]MH Policy, BB Boonstra. Carbon black for higllly conductive rubber [J]. Rubber chem. technol.1957,30(2):170-175
    [21]汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程.1996,12(2):1-7
    [22]邓毅.导电炭黑在塑料中的应用[J].中国塑料,2001,15(4):7-9
    [23]姚明明,欧阳国盛,吴道虎等.高分子半导电材料的研制[J].橡胶工业.1999,46(2):86-88
    [24]杜仕国,李文钊.复合型导电高分子[J].现代化工.1998,18(8):12-15
    [25]张柏生,陈小凤. Ni-LDPE复合材料的研究[J].现代塑料加工应用.1994,6(4):5-8
    [26]GS Bemmtt, RJ Farris, SA Thompson. mine-terminated poly(aryl ether ketone)-epoxy/amine resin systems as tough high performance materials [J]. Polymer. 1991,32(9):1633-1641
    [27]罗延龄,赵振兴. LLDPE/EVA/CB导电复合材料辐射交联效应研究[J].功能材料与器件学报.2002,8(1):81-86
    [28]焦剑,蓝立文,陈立新等.环氧树脂的增韧[J].化工新型材.2000,(5):8-10
    [29]JC Huang. Carbon black filled conducting polymers and polymer blends [J]. Appl. Polym. Tech.2002,21 (4):299-313
    [30]YH Hou, MQ Zhang, MZ Rong, et al. Improvement of conductive network quality in carbon black-filled polymer blends [J]. J. Appl. Polym. Sci.2002,84 (14):2768-2775
    [31]王曾辉,高晋生.碳素材料[M].上海:华东化工学院出版社.1991,449-516
    [32]JF Aucher, T Kalin, Y Sakuma. CEH Marketing Research Report. Carbon Black, Chemical Economic Handbook [R]. SRI International, Menlo Park, Calif., Jan.2002
    [33]BE Warren. X-Ray diffraction in random layer lattices [J]. Phys. Rev.1941,59 (9): 693-698
    [34]王道宏,徐亦飞,张继炎.炭黑的物化性质及表征[J].化学工业与工程.2002,19(1):76-82
    [35]李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社.1998,155-212
    [36]D Rivin. Use of lithium aluminum hydride in the study of surface chemistry of carbon black [J]. Rubber Chem. Technol.1971,44 (2):307
    [37]HJ Stern. Rubber:Natural and Synthetic [M]. Maclaren, Second Edition,1967
    [38]王果庭.胶体稳定性[M].北京:科学出版社.1990,26-43
    [39]陈宗淇,戴闽光.胶体化学[M].北京:高等教育出版社.1984,246-314
    [40]F Zhang, GG Long, PR Jemian, J Ilavsky, VT Milam, JA Lewis. Quantitative measurement of nanoparticle halo formation around colloidal microspheres in binary mixtures [J]. Langmuir.2008,24 (13):6504-6508
    [41]J Zhu, M Yudasaka, M Zhang, S Iijima. Dispersing Carbon Nanotubes in Water:A Noncovalent and Nonorganic Way [J]. J. Phys. Chem. B.2004,108:11317-11320
    [42]F Gubbels, R Jerome, E Vanlatherm, et al. Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends [J]. Chem. Mater.1998,10:1227-1235
    [43]JY Feng, CM Chan. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers [J]. Polymer.2000,41: 4559-4565
    [44]GZ Wu, T Miura, S Asai, et al. Carbon black-loading induced phase fluctuations in PVDF/PMMA miscible blends:dynamic percolation measurement [J]. Polymer.2001,42: 3271-3279
    [45]JB Donnet. Structure and reactivity of carbons:from carbon black to carbon composite [J]. Carbon.1982,20 (4):266
    [46]N Tsubokawa. Functionalization of carbon black by surface grafting of polymers [J]. Prog. Polym. Sci.1992,17 (3):417-470
    [47]K Fujiki, N Tsubokawa, Y Sone. Radical grafting from carbon black:graft polymerization of vinyl monomers initiated by azo groups introduced onto carbon black surface [J]. Polym J.1990,22 (8):661-670
    [48]N Tsubokawa, K Fujiki, Y Sone. Radical grafting from carbon black:graft polymerization of vinyl monomers initiated by peroxyester groups introduced onto carbon black surface [J]. Polym J.1988,20 (3):213-220
    [49]N Tsubokawa, A Yamada, Y Sone. Grafting of polyesters on carbon black V. Preparation of polyester-grafted carbon black with a higher grafting ratio by the copolymerization of epoxide with cyclic acid anhydrides using COOK groups on carbon black as the initiator [J]. Polym J.1984,16 (4):333-340
    [50]N Tsubokawa, Y Jian, A Yamada, Y Sone. Cationic grafting from carbon black [J]. Polym. Bull.1986,16 (4):249-256
    [51]N Tsubokawa, I Asano, Y Sone. Cationic ring-opening polymerization of 2-substituted-2-oxazolines initiated by carbon black surface [J]. Polym. Bull.1987,18 (5): 377-384
    [52]N Tsubokawa, Y Nagano, Y Sone. Grafting of poly-β-alanine from carbon black [J]. Polym. Bull.1983,10 (9-10):404-410
    [53]K Ohkita, N Tsubokawa, E Saitoh. The competitive reactions of initiator fragments and growing polymer chains against the surface of carbon black [J]. Carbon.1978,16 (1): 41-45
    [54]N Tsubokawa, A Funaki, Y Hada, Y Sone. Grafting of polyesters onto carbon black [J]. Polym. Bull.1982,7(11-12):589-596
    [55]N Tsubokawa, K Kobayashi, Y Sone. Grafting onto carbon black by the reaction of reactive carbon black having acyl chloride group with several polymers [J]. Polym. Bull. 1987,17(1):87-93
    [56]N Tsubokawa, M Hosoya, J Kurumada. Grafting reaction of surface carboxyl groups on carbon black with polymers having terminal hydroxyl or amino groups using N, N'-dicyclohexylcarbodiimide as a condensing agent[J]. Reactive and Functional Polymers.1995,27 (1):75-81
    [57]N Tsubokawa, T Satoh, M Murota, S Sato, H Shimizu. Grafting of hyperbranched poly (amidoamine) onto carbon black surfaces using dendrimer synthesis methodlogy [J]. Polym. Advan. Technol.2001,12 (10):596-602
    [58]D Peter. Ultrasound in materials chemistry [J]. J. Mater. Chem.1996,6 (10):1605-1618
    [59]TJ Mason, JP Lorimer. Applied sonochemistry:Uses of power ultrsound in chemistry and processing [M]. Wiley-VCH Press. Germany.2002
    [60]TJ Mason. Ultrasound in synthetic organic chemistry [J]. Chem. Soc. Rev.1997,26 (6): 443-451
    [61]BS Bhatkhande, SD Samant. Ultrasound assisted PTC catalyzed saponification of vegetable oils using aqueous alkali [J]. Ultrason. Sonochem.1998,5 (1):7-12
    [62]MM Mdleleni, T Hyeon, KS Suslick. Sonochemical synthesis of nanostructured molybdenum sulfide [J]. J. Am. Chem. Soc.1998,120 (24):6189-6190
    [63]JG Li, XD Sun. Synthesis and sintering behavior of a nanocrystalline a-alunima powder [J]. Acta. Mater.2000,48 (12):3103-3112
    [64]王建龙,柳萍,施汉昌等.声化学在水污染控制中的应用现状[J].化学通报.1997,7:35-38
    [65]P Oleg, K Gna, M Yitzhak. New method for nanofabrication of structures analogous to "core-shell" vesicles [J]. Adv. Mater.1999,11 (15):1289-1292
    [66]王娜,李保庆.超声催化反应的研究现状和发展趋势[J].化学通报.1999,5:6-32
    [67]JO Stoffer, OC Sitton, Y Kim. Polymeric materials science engineering [J]. Proceedings of the ACS Division of Polymeric Materials Science and Engineering.1992,67:242-243
    [68]JO Stoffer, OC Sitton. Ultrasonic polymerization process [P]. UP.5466722.1995
    [69]HC Chou, WY Lin, JO Stoffer. Polymeric materials science engineering [J]. Proceedings of the ACS Division of Polymeric Materials Science and Engineering.1995,72:363
    [70]HC Chou, JO Stoffer. Ultrasonically initiated free radical-catalyzed emulsion polymerization of methyl methacrylate (ⅰ) [J]. J. Appl. Poly. Sci.1999,72 (6):797-825
    [71]HC Chou, JO Stoffer. Ultrasonically initiated free radical-catalyzed emulsion polymerization of methyl methacrylate (Ⅱ):Radical generation process studies and kinetic data interpretation [J]. J. Appl. Poly. Sci.1999,72 (6):827-834
    [72]S Biggs, F Gfieser. Preparation of polystyrene latex with ultrasonic initiation [J]. Macromolecules.1995,28 (14):4877-4882
    [73]SK Ooi, S Biggs. Ultrasonic initiation of polystyrene latex synthesis [J]. Ultrason. Sonochem.2000,71 (3):125-133
    [74]G Cooper, F Griese, S Biggs. Butyl acrylate/vinyl acetate copolymer latex synthesis using ultrasound as an initiator [J]. J. Coll. Interface. Sci.1996,184 (1):52-63
    [75]HS Xia, Q Wang, YQ. Liao. Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate [J]. Ultrason. Sonochem.2002,9 (3):151-158
    [76]Q Wang, HS Xia, YQ Liao. Ultrasonically initiated emulsion polymerization of n-butyl acrylate [J]. Polym. Inter.2001,50(11):1252-1259
    [77]吴缨,葛修涛.常温常压下苯乙烯和二笨甲酮的催化加氢反应考察[J].中国科学技术大学学报.2000,30(4):500-505
    [78]覃兆海,陈馥衡,谢毓元.超声波在有机合成中的应用[J].化学进展.1998,10(1):63-73
    [79]CB Gu, DU Wang, XQ Wang. Bulk polymerization of methyl methacrylate initiated by high intensity ultrasonic irradiation and ESR study [J]. J. Appl. Poly. Sci.2002,86 (7): 731-1735
    [80]JF Huang, QY Li, YB Bao, CF Wu. Water dispersible carbon black prepared through ultrasonically assisted radical polymerization [J]. e-Polymers.2009, no.088
    [81]EW Flosdorf, LA Chambers. The chemical action of audible sound [J]. J. Am. Chem. Soc. 1933,55 (7):3051-3052
    [82]CB Wu, PJ Sheth, JF Johnson. Ultrasonic degradation of poly(methyl methacrylate) [J]. Polymer.1977,18 (8):822-824
    [83]冯若,李化茂.声化学及其应用[M].安徽科学技术出版社.1992
    [84]QY Li, GZ Wu, YL Ma, CF Wu. Grafting modification of carbon black by trapping macroradicals formed by sonochemical degradation [J]. Carbon.2007, (45):2411-2416
    [85]GB Sukhorulov, E Donath, H Lichtenfeld. Layer-by-layer self assembly of polyelectrolytes on colloidal particles [J]. Colloids Surf., A.1998,137 (1):253-266
    [86]J Sagiv. Organized monolayers by adsorption.1.Formation and structure of oleophobic mixed monolayers on solid surfaces [J]. J. Am. Chem. Soc.1980,102 (1):92-98
    [87]G. Decher. Fuzzy nanoassemblies:Toward layered polymeric multicomposites [J]. Science.1997,277(5330):1232-1237
    [88]夏则智.谈我国激光鼓与显影剂(碳粉)的研制[J].电子计算机与外部设备.1998,22(3):10-13
    [89]凡伟.墨粉性能及制造[J].办公设备技术信息.2004,(3):21-30
    [90]F Tiarks, K Landfester, M Antonietti. Encapsulation of carbon black by miniemulsion polymerization [J]. Macromol. Chem. Phys.2001,202 (1):51-60
    [91]YK Ha, HS Song, HJ Lee, JH Kim. Preparation of core particles for toner application by membrane emulsification [J]. Colloid Surface A.1999,162 (1-3):289-293
    [92]J Hasegawa, N Yanagida, M Tamura. Toner prepared by the direct polymerization method in comparison with the pulverization method [J]. Colloid Surface A.1999,153 (1-3): 215-220
    [93]Q Li, N Yu, Z Qiu, X Zhou, C Wu. Preparation of modified carbon black with nano-scale size and enhanced stability in organic solvent by solid state method [J]. Colloids and Surfaces A.2008,317(1-3):87-92
    [94]J Huang, F Shen, X Li, X Zhou, B Li, R Xu, C Wu. Chemical modification of carbon black by a simple non-liquid-phase approach [J]. Journal of Colloid and Interface Science. 2008,328(1):92-97
    [95]YS Kim, KS Liao. CJ. Jan, DE. Bergbreiter, JC. Grunlan. Conductive thin films on functionalized polyethylene particles[J]. Chem. Mater.2006,18(13):2997-3004
    [96]MD Walton, YS Kim, CJ Jan, et al. Deposition and patterning of conductive carbon black thin films [J]. Synth. Met.2007,157 (16):632-639
    [97]JC Grunlan, WW Gerberich, LF Francis. Lowering the percolation threshold of conductive composites using particulate polymer microstructure [J]. J. Appl. Polym. Sci. 2001,80 (4):692-705
    [98]LF Francis, JC Grunlan, JK Sun, WW Gerberich. Conductive coatings and composites from latex-based dispersions [J]. Colloid Surfaces A.2007,311 (1-3):48-54
    [99]QY Li, GZ Wu, XL Zhang, CF Wu. Preparation of Poly (n-butyl acrylates)Encapsulated Carbon Black via Ultrasonic Irradiation Initiating Emulsion Polymerization [J]. Polym. J. 2006,38(12):1245-1250
    [100]HP Kuo, MY. Chuang, CC Lin. Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit [J]. Powder Technol.2008, 192(1):116-121
    [101]J Huang, Q Li, Y Bao, C Wu. Preparation of raspberry-like polystyrene/carbon black composite microsphere via π-π interactions [J]. Colloid Polym. Sci.2009,287 (1):37-43
    [102]X Yan, J Yao, G Lu, X Li, J Zhang, K Han, B Yang. Fabrication of Non-Close-Packed Arrays of Colloidal Spheres by Soft Lithography [J]. J. Am. Chem. Soc.2005,127 (21): 7688-7689
    [103]R Xu, C Wu, H Xu. Particle size and zeta potential of carbon black in liquid media [J]. Carbon.2007,45 (14):2806-2809
    [104]S Soul, R Chandra, SK Dhawan. Conducting polyaniline composite for ESD and EMI at 101 GHz [J]. Polymer 2000,41:9305
    [105]DDL Chung. Electromagnetic interference shielding effectiveness of carbon materials [J]. Carbon.2001,39 (2):279-285
    [106]C Wei, LM Dai, A Roy, TB Tolle. Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites [J]. J. Am. Chem. Soc.2006,128 (5): 1412-1413
    [107]JC Grunlan, AR Mehrabi, MV Bannon, JL Bahr. Water-Based Single-Walled-Nanotube-Filled Polymer Composite with an Exceptionally Low Percolation Threshold [J]. Adv. Mater.2004,16 (2):150-153
    [108]A Nakamura, M Lji. Enhancement of thermal diffusivity of poly(1-lactic acid) composites with a net-like structure of carbon fibers [J]. J. Mater. Sci.2009,44 (17):4572-4576
    [109]MY Zhang, WT Jia, XF Chen. Influences of crystallization histories on PTC/NTC effects of PVDF/CB composites [J]. J. Appl. Polym. Sci.1996,62 (5):743-747
    [110]TA Ezquerra. MT Connor, S Roy, M Kulescza, J Fernandes-Nascimento, FJ Balta'-Calleja. Alternating-current electrical properties of graphite, carbon-black and carbon-fiber polymeric composites [J]. Compos. Sci. Technol.2001,61 (6):903-909
    [1111 X Hao, G Gai, Y Yang, Y Zhang, C Nan. Development of the conductive polymer matrix composite with low concentration of the conductive filler [J]. Mater. Chem. Phys.2008, 109(1):15-19
    [112]傅轶,周建波,刘述梅,赵建青.高抗冲抗静电聚碳酸酯复合材料的研制[J].2008, 36(9):61-64
    [113]XJ Zhou, QY Li, CF Wu. Grafting of maleic anhydride onto carbon black surface via ultrasonic irradiation [J]. Appl. Organomet. Chem.2008,22 (2):78-81
    [114]XJ Zhou, QY Li, CF Wu. Preparation of Poly(sodium 4-styrenesulfonate) Grafted Carbon Black via Ultrasonic Irradiation Initiated Radical Polymerization [J]. Acta. Polym. Sinica. 2008,1 (4):366-370
    [115]P Bertrand, A Jonas, A Laschewsky, e al. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces:suitable materials, structure and properties [J]. Macromol. Rapid. Commun.2000,21(7):319-348
    [116]李建波,许群.层-层自组装技术的发展与应用[J].世界科技研究与发展.2007,29(3):31-38
    [117]M Levy, M Szwaz. Methyl affinities of aromatic hydrocarbons [J]. J. Chem. Phys.1954: 22(9):1621-1622
    [118]HD Bao, ZX Guo, J Yu. Effect of electrically inert particulate filler on electrical resistivity of polymer/multi-walled carbon nanotube composites [J]. Polymer.2008,49 (17):3826-3831
    [119]W Zhang, RS Blackburn, AA Dehghani-Sanij. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites [J]. Scr. Mater.2007,56 (7):581-584
    [120]M Kotaki, K Wang, ML Toh, L Chen, SY Wong, CB He. Electrically conductive epoxy/clay/vapor grown carbon fiber hybrids [J]. Macromolecules.2006,39 (3):908-911
    [121]K Pal, DJ Kang, ZX Zhang, JK Kim. Synergistic effects of zirconia-coated carbon nanotube on crystalline structure of polyvinylidene fluoride nanocomposites:electrical properties and flame-retardant behavior [J]. Langumir 2010,26 (5):3609-3614
    [122]Z Fan, C Zheng, T Wei, Y Zhang, G Luo. Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites [J]. Polym. Eng. Sci.2009,49 (10): 2041-2045
    [123]L Liu, JC Grunlan. Clay assisted dispersion of carbon nanotube in conductive epoxy nanocomposites [J]. Adv. Funct. Mater.2007,17(14):2343-2348
    [124]JF Feller, S Bruzaud, Y Grohens. Influence of clay nanofiller on electrical and rheological properties of conductive polymer composite [J]. Mater. Lett.2004,58 (5):739-745
    [125]吴驰飞,曹元一,曹德明等.一种阻尼型环氧树脂材料及其制备方法[P].中国专利,CN101538399,2009
    [126]R Wycisk, R Polzniak, AJ Pasternak. Conductive polymer materials with low filler content [J]. J. Electrstat.2002,56(1):55-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700