用户名: 密码: 验证码:
氧化物纳米材料的磁性以及多铁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料指的是某种物质中的颗粒有50%以上处于1-100纳米范围之内或者是其三维尺度中至少有一维处于纳米尺度范围的超精细材料。由于纳米尺寸的物质具有与宏观物质迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因此纳米材料具有不同于普通材料的力、热、光、电、磁、机械等性能,同时引起了科研工作者的强烈兴趣,具有很高的研究价值,目前而言,只有纳米粉末实现了工业化生产(如碳酸钙、白炭黑、氧化锌等),其它纳米材料基本上还处于实验室研究阶段。
     多铁材料指的是一类不仅同时体现出两种或多种“铁”性(如铁磁性/反铁磁性、铁电性/反铁电性、铁弹性等),而且这几种“铁”性可以互相调控的材料。多铁材料一直以来受到广泛的关注,因为这类材料在很多方面具有很大的潜在应用价值,如自旋量子器件,信息存取器,传感器等。目前铁弹性研究的较少,大家主要研究的是材料的铁电性和铁磁性,以及两者之间的互相调控。一般来说铁磁性跟铁电性在同一物质中是互斥的,但近几年,人们已经发现了很多的具有双铁性质的化合物、薄膜、铁电铁磁混合体等,但是多铁材料在应用方面还具有很大的局限性,例如有不少物质的多铁效应需要很低的温度,抑或是需要外加很高的电/磁场才能导致比较明显的磁电效应。
     由于纳米材料经常体现出与普通材料不同的性质,我们最近几年也致力于研究纳米材料中的磁性、电性以及多铁性质,以期发现具有实际应用价值的纳米材料。我们主要的研究对象是纳米氧化物以及钙钛矿结构化合物,经过实验数据分析和一定的理论计算,我们在纳米材料中发现了不同于块体的电/磁性质,并在纳米结构的TiO2,SrTiO3,La2Ti2O7,Pr2Ti2O7等中观测到磁电耦合效应。
     本论文的工作主要得到如下结论:
     1.纯的纳米ZnO具有较弱的铁磁性,Sm对ZnO的掺杂材料SmxZn1-xO,经过实验测量,铁磁性较纯ZnO有所提高。当Sm的掺杂量x小于0.6时,在XRD图像上只有ZnO衍射峰可以观察到;当x大于0.6时,会出现杂质Sm203的特征衍射峰,因此,我们研究了x=0,0.2,0.4,0.6这四种情况下SmxZn1-xO的铁磁性。我们发现随着Sm掺杂量的增加,在x=0.4左右,SmxZn1-xO的饱和磁矩会出现一个最大值,当x=0.6时,SmxZn1-xO的饱和磁矩会有所减小,但仍大于纯的ZnO纳米粉末的饱和磁矩,这说明Sm的掺杂提高了ZnO的铁磁性,此外,退火温度对纯ZnO以及SmxZn1-xO的磁性也有影响,随着后退火温度的升高,饱和磁矩降低。
     2.溶胶凝胶法制备的纳米La2Ti207粉末和纳米晶块具有室温铁磁性,我们对纳米La2Ti207粉末进行真空退火,发现La2Ti207粉末的饱和磁矩有显著提高,将真空退火的粉末在空气下回火,其饱和磁矩有所下降,但仍高于初始粉末的磁矩。纳米La2Ti207粉末大约在700℃开始结晶,我们在不同温度下(大于700℃)对粉末进行退火,发现随着退火温度的升高,La2Ti207粉末饱和磁矩有明显的下降,另外,我们对比了La2Ti207粉末跟纳米晶块的饱和磁矩,发现纳米晶块在短时间退火时(1000℃退火1小时)仍有弱的铁磁性,当时间足够长(1000℃退火1.5小时)时或者退火温度升高(1100℃退火1小时),La2Ti207纳米晶块的铁磁性消失,呈现抗磁性。我们还发现在合适的退火温度和时间控制下,La2Ti207纳米晶块可以呈现出铁磁性和铁电性的共存,同时能在相对较低的磁场中观测到比较显著的磁介电常数效应,说明磁性和电性在La2Ti207纳米晶块中有一定程度的耦合。
     3.类比于纳米La2Ti207材料,我们还对纳米Pr2Ti207材料的结构、磁性、介电常数、铁电性以及多铁性进行了研究。我们制作的Pr2Ti207纳米晶块也具有室温铁磁性,同时具有较高的铁电居里温度(约570K),在室温下也能观测到类似于La2Ti207的磁介电效应。而且我们还发现经过事先的外加直流电极化后,Pr2Ti207纳米晶材料的饱和磁矩也有显著的增加,更加说明了磁性和电性在Pr2Ti207中产生了耦合效应。由于居里温度较高,我们觉得Pr2Ti207纳米材料在应用上有比较大的前景。
     4. SrTiO3和CaTiO3块体本身是先兆铁电体,随着温度的下降至极低温度,这二者的介电常数理论上是单调增加的。但是我们在用溶胶凝胶法制作的纳米SrTiO3和CaTiO3材料中,却意外的观测到了介电异常现象,甚至在室温下测量到了SrTiO3纳米晶块的电滞回线。而对于CaTiO3纳米晶块,介电常数的峰值出现在室温以下,因此在室温下没有观测到电滞回线。我们推断这些现象来自于晶粒尺寸效应或者说是纳米应力,很可能是这种应力破坏了SrTiO3和CaTiO3本身的量子顺电态。同时我们也对纳米SrTiO3和CaTiO3的磁性进行了研究,实验数据显示纳米SrTiO3和CaTiO3的磁性很可能来自于阳离子的缺位,我们后期进行的第一性计算也证明了我们的猜想。
     5.根据前期工作的经验,我们也对Ti02纳米材料的结构和磁性进行了一系列的研究,发现Ti02纳米材料具有弱的室温铁磁性,来源很可能是氧缺陷,同时我们也用PLD镀膜法,制作了金红石Ti02薄膜,然后对其结构、磁性等性能的研究工作进行了一定的开展。我们用PLD在钛酸锶衬底上制备的Ti02纳米薄膜具有室温铁磁性,而且经过事先的直流电极板极化,我们发现薄膜的饱和磁矩会提高,说明在Ti02纳米薄膜中,电性跟磁性有一定程度的耦合。
     总之,通过对一系列的纳米材料的研究,我们发现纳米材料无论在磁性还是在电性方面都会跟块体材料有较大的不同,而且,我们在一些纳米晶块中还发现了磁介电效应和电致磁效应,为探索新的多铁性功能材料提供了理论依据和指导。
Nano-scale material is a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for50%or more of the particles in the number size distribution, one or more external dimensions is in the size range1nm-100nm. As nano-scale materials possess surface effect, small size effect, macroscopic quantum tunneling effect and quantum confinement effect, which are entirely different from those of macroscopic materials, the mechanical, thermal, optical and magnetic properties of nano-scale materials are distinct from those of common materials and of high research value, provoking the strong interest of researchers. As yet, industrial production has only been realized in nano-powders, such as calcium carbonate, siliceous reinforcing agent and zinc oxide, etc., and other nano-scale materials are still in the laboratory stage.
     Multiferroic materials are materials that exhibit more than one primary ferroic order parameter simultaneously, such as ferromagnetism/anti-ferromagnetism, ferroelectricity/anti-ferroelectricity and ferroelasticity, etc., which can be adjusted and controlled by one another. With potential applications in various fields, such as spin quantum devices, data accessors and detectors, etc., multiferroic materials have always been a hot spot in research. Presently, compared with mainstream research on ferromagnetism and ferroelectricity, as well as the mutual modulation and control in between, research on ferroelasticity is comparatively less. Normally, ferromagnetism and ferroelectricity are mutually exclusive in one material. In recent years, however, researchers have found many compounds, films and mixtures which possess the property of ferromagnetism and ferroelectricity simultaneously. Applications of multiferroic materials is still rather limited. For instance, the multiferroic effects of many materials can only be observed in extremely low temperature, or relatively obvious magnetoelectric effects only present themselves when a high external electric/magnetic field is applied.
     As multiferroic materials often exhibit different properties from common materials, we are dedicated to studying the magnetic, electric and multiferroic properties of nano-scale materials in recent year, expecting to discover some with potential application values. Our major objects of study are nano-scale oxides and perofskite structure compounds. Through data analysis and theoretical calculation, we have discovered electric/magnetic properties in nano-scale material which are different from those of bulk materials, and observed magnetoelectric effect in nano-structure TiO2, SrTiO3, La2Ti2O7, Pr2Ti2O7. All these interesting phenomena may arise from vacancies, defects or stress of the nano-structure.
     The main conclusions of our work are as follows:
     1. Pure ZnO nanomaterials exhibits weak ferromagnetism (FM) while Sm doped ZnO (SmxZn1-xO) could enhance the FM. When x is less than0.6, only ZnO diffraction peaks could be observed; when x is larger than0.6, the Sm2O3peaks appear. Therefore, we investigated the ferromagnetism of SmxZn1-xO when x equals0,0.2,0.4and0.6. We found that the saturated magnetism (Ms) reached a maximum value when x equals0.4, while Ms decreased when x equals0.6but still larger than the Ms of the pure ZnO, indicating that the Sm doping indeed enhanced the FM of ZnO. On the other hand, the annealing temperature (TA) also affects the FM of pure ZnO and SmxZn1-xO nano materials that the Ms decreases with increasing TA.
     2. The La2Ti2O7nanopowders and nanocrystalline materials prepared by sol-gel method exhibited room temperature ferromagnetism (RTFM), and the vacuum annealing enhanced the FM while a subsequent annealing in air after vacuum annealing lowered the FM (which is still larger than the FM of initial powders). The crystallization temperature of La2Ti2O7powders was about700℃, and we found that the Ms of La2Ti2O7powders decreased with increasing TA. In addition, the nanocrystalline pellets still exhibited weak FM if the annealing time was short (1000℃for1h), while the FM disappeared when the annealing time was long enough (1000℃for1.5h) or the TA was high enough (1100℃for 1h). The ferromagnetism and ferroelectricity (FE) could coexist in nanocrystalline La2Ti2O7pellets if both the TA and annealing time were proper. Moreover, we found notable magnetodielectric (MD) effect in the nanocrystalline La2Ti2O7pellet, indicating the FM and FE are coupled in the La2Ti2O7sample.
     3. Similar to nanocrystalline La2Ti2O7samples, we investigated the structure, ferromagnetism, dielectric constant, ferroelectricity and multiferroic properties of Pr2Ti2O7nanomaterials. We found that the prepared Pr2Ti2O7nanocrystalline pellets also presented RTFM while the FE Curie temperature Tc was high (about570K), while the MD effect was found as well. Simultaneously, we found the FM of Pr2Ti2O7nanocrystalline materials was enhanced after polarized in DC electric field, indicating a coupling between magnetic and electric properties. We believed the Pr2Ti2O7nanocrystalline materials were valuable for application due to its high Tc.
     4. Both peroveskite SrTiO3and CaTiO3were incipient ferroelectric materials, while their dielectric constants monotonically increased as the temperature decreased to0K. However, we unexpectedly observed dielectric anomaly in SrTiO3and CaTiO3nanomaterials prepared by sol-gel method, and the room temperature ferroeletric hysteresis loops of SrTiO3nanomaterials was obtained, which was even more interesting. For CaTiO3nanomaterials, we could not get the hysteresis loop due to the temperature where the dielectric anomaly peak appeared was far below room temperature. We concluded that these interesting phenomena were caused by the size effect or strain effect which may destroy the quantum paraelectric state in SrTiO3and CaTiO3. In addition, we investigated the FM of SrTiO3and CaTiO3nanomaterials, and the results revealed that the origin of the FM was cation vacancy which was then proved by the first principle calculations.
     5. In accordance to our previous work, we also conducted some research on the structure and magnetism of nanocrystalline rutile TiO2We found the TiO2nanocrystalline materials present weak ferromagnetism which may be originate from oxygen vacancies. In the meantime, we also studied the structure and magnetic property of TiO2thin film prepared by pulse laser deposition. The TiO2thin film deposited on SrTiO3substrate by PLD showed room temperature ferromagnetism while the saturated magnetic moment increased after the film was polarized by DC pate. This phenomenon indicated that the electric and magnetic properties may, to some extent, couple in the rutile TiO2film.
     In short, through a series of research on nanomaterials, we find that nanomaterials, whether in magnetic property or electric property, is quite different from bulk materials, and we also found magnetoeletric effect and electric induced magnetic effect in some nanocrystalline materials, which may provide some contribution and reference for the exploration of new multiferroic materials.
引文
[1]S.Iijima, Nature 354 (1991),56
    [2]Gleiter H. Acta Mater.48 (2000) 1.
    [3]Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma. Nature 419 (2002) 912-915.
    [4]王永康,王立等,纳米材料科学与技术,浙江大学出版社,2002-3-1
    [5]张立德牟季美.纳米材料学[M].辽宁科学技术出版社,1994.106-140.
    [6]唐一科,刁宇翔.纳米气敏材料的研究与发展趋势[J].油气田环境保2004(2):9—11
    [7]唐一科,刁宇翔,范英.纳米气敏材料的研究与发展[J].环境技术,2004(3):12一14
    [8]M. Sternitzke, B. Derby and R.J. Brook, J. Am. Ceram. Soc.81 (1988) 41-48.
    [9]李玉增.纳米结构材料.有色与稀有金属国外动态,8(1998)1-2.
    [10]张立德,纳米材料,北京:化学工业出版社,2000
    [11]X.B. Wang, Y.Q. Liu,W.F. Qiu and D.B. Zhu, J. Mater. Chem.2002,12 (2002) 1636-1639
    [12]严东生,冯端.材料新星——纳米材料科学,长沙湖南科学技术出版社,1997.
    [13]蔺思惠,李新勇,郭跃华等.无机材料学报,1996,11(1):157
    [14]梁勇,赵新清,郑丰等.材料科学进展,1993,7(5):412
    [15]张立德纳米材料研究的新进展及在21世纪的战略地位.中国粉体技术[J], 6(2000)1-5.
    [16]余家国,赵修建,中国有色金属学报,9(1999)815-820.
    [17]A. Hagfeld and M. Gratzel, Chem Rev.95 (1995) 49.
    [18]沈海军,穆先才,纳米材料与结构,微电子技术,11(2005)506-510.
    [19]S.Q. Qiu and G.X. Chen, J. Tribology,123 (2001) 441-443,
    [20]H. Skirkh and M. Zadeh, Nano. Meter.5 (1995) 33-40
    [21]刘学建,金承钰,张俊计.无机材料学报,19(2004)379-384.
    [22]N.A. Spaldin, M. Fiebig, Science 309 (2005) 391.
    [23]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426 (2003)55.
    [24]J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299 (2003) 1719.
    [25]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67 (2003) 180401(R).
    [26]N. Abe, K. Taniguchi, S. Ohtani, H. Umetsu, T. Arima, Phys. Rev. B 80 (2009) 020402(R)
    [27]D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett.88 (2006) 212907.
    [28]N.A. Hill, J Phys. Chem. B 104 (2000) 6694.
    [29]N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429 (2004)392.
    [30]L. Sun, J.F. Hu, F. Gao, X.W. Kong, H.W. Qin, M.H. Jiang, J. Alloys Compd. 502(2010) 176-179.
    [31]Z.L Zhang, J.F. Hu, Z.J. Xu, H.W. Qin, L. Sun, F. Gao, Y.J. Zhang, Solid State Sci.13(2011) 1391-1395.
    [32]E.S. Cao, J.F. Hu, H.W. Qin, F. Ji, M.L. Zhao, M.H. Jiang, J. Alloys Compd.509 (2011)2914-1918.
    [33]K. R. Balasubramanian, K. Chang, F. A. Mohammad, L. M. Porter, P. A. Salvador, J. DiMaio, R. F. Davis, Thin Solid Films,515 (2006) 1807.
    [34]Y. Chye, T. Liu, D. Li, K. Lee, D. Lederman, and T. H. Myers, Appl. Phys. Lett. 88(2006)132903.
    [35]J. Dho, C. W. Leung, J. L. MacManus-Driscoll, M. G. Blamire, J. Cryst. Growth 267(2004)548.
    [36]N. Fujimura, T. Ishida, T. Yoshimura, and T. Ito, Appl. Phys. Lett.69 (1996) 1011.
    [37]Y. Cuia, C. Wang, B. Cao, Solid State Commun.133 (2005) 641.
    [38]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Beak, C. B. Eom abd R. Ramesh, Nature Materials 5 (2006) 823.
    [39]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Science 299 (2003) 1719.
    [40]R. R. Das, D. M. Kim, S. H. Baek, C. B. Eoma, F. Zavaliche, S. Y. Yang, R. Ramesh, Y. B. Chen, X. Q. Pan, X. Ke, M. S. Rzchowski, S. K. Streiffer, Appl. Phys. Lett.88 (2006) 242904.
    [41]S. W. Lee, and C. S. Kim, J. Magn. Magn. Mater.304, (2006) 772.
    [42]X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett.86 (2005) 062903.
    [43]J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, D. Viehland, Appl. Phys. Lett.84 (2004) 5261.
    [44]A. M. Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, C. N. R. Rao, Solid State Commun.122 (2002) 49. [69]A. Sharan, I. An, C. Chen, R. W. Collins, J. Lettieri, Y. Jia, D. G. Schlom, and V. Gopalan, Appl. Phys. Lett.83 (2003)5169.
    [45]J. Y. Son, BogG. Kim, C. H. Kim, and J. H. Cho, Appl. Phys. Lett.84, (2004) 4971.
    [46]A. F. M. Santos, A. K. Cheetham, W. Tian, X. Pan, Y. Jia, N. J. Murphy, J. Lettieri and D. G. Schlom, Appl. Phys. Lett.84 (2004) 91.
    [47]M. Murakami, S. Fujino, S. H. Lim, C. J. Long, L. G. Salamanca Riba, M. Wuttig, and I. Takeuchi, Appl. Phys. Lett.88 (2006) 152902.
    [48]D. H. Kim, H. N. Lee, M. Varela, and H. M. Christen, Appl. Phys. Lett.89 (2006) 162904.
    [49]刘珍,粱伟,许并社,市野濑英喜,材料科学与工艺,8(2000)103-108.
    [50]巩雄,张桂兰,汤国庆,等,化学进展,9(1997)349-354.
    [51]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Sci-ence 287 (2000) 12019.
    [52]N. H. Hong, J. Magn. Magn. Mater.303 (2006) 338.
    [53]M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature (London) 430 (2004) 630.
    [54]N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73 (2006) 132404.
    [55]S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, D. A. Arena, K. Ziemer, C. Vittoria, and Vincent G. Harris, J. Phys.:Condens. Matter 18 (2006) L355
    [56]N. H. Hong, J. Sakai, and V. Brize, J. Phys.:Condens. Matter 19 (2007) 036219.
    [57]A.F. Devonshire, Phil. Mag Suppl.3 (1954) 85.
    [58]H. Uwe, T. Sakudo, Phys. Rev. B 13 (1976) 271.
    [59]H.-C. Li, W. Si, R.-L. Wang, Y. Xuan, B.T. Liu, X.X. Xi, Mater. Sci. Eng. B 56 (1998)218.
    [60]N.A. Pertsev, A.K. Tagantsev, N. Setter, Phys. Rev. B 61 (2000) R825-65. (2002) 219901(E).
    [61]C. Das Pemmaraju and S. Sanvito, Phys. Rev. Lett.94 (2005) 217205.
    [62]J.F. Hu, Z.L. Zhang, M. Zhao, H.W. Qin, M.H. Jiang, Appl. Phys. Lett.93 (2008) 192503.
    [63]F. Gao, J.F. Hu, C.L. Yang, Y.J. Zheng, H.W. Qin, L. Sun, X.W. Kong, M.H. Jiang, Solid State Commun.149 (2009) 855.
    [64]S.H. Chun, S.J. Potashnik, K.C. Ku, P. Schiffer and N. Samarth, Phys. Rev. B 66 (2002)100408.
    [65]E. Johnston-Halperin, D. Lofgreen, R.K. Kawakami, D.K. Young, L. Coldren, A.C. Gossard and D.D. Awschalom, Phys. Rev. B 65 (2002) 041306.
    [66]Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291 (2001)854.
    [67]J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72 (2005) 024450.
    [68]A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74 (2006) 161306.
    [69]I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett.89 (2002) 216403.
    [70]Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S.-W. Cheong, Phys. Rev. Lett.100(2008)047601.
    [71]LA. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett.97 (2006) 227204.
    [72]K. Okumura, T. Ishikura, M. Soda, T. Asaka, H. Nakamura, Y. Wakabayashi, and T. Kimura, Appl. Phys. Lett.98 (2011) 212504.
    [1]M. Ali, Ch.Y. Wang, C.C. ROhlig, V. Cimalla, T. Stauden, O, Ambache, Sens. Actuators B 129 (2008) 467-472.
    [2]M. Maeda and T. Watanabe, Surf. Caot. Technol.201 (2007) 9309.
    [3]C.L. Perkins, S.H. Lee, X. Li, S.E. Asher, T.J. Courts, J. Appl. Phys.97 (2005) 1.
    [4]S.W. Tao, X.Q. Liu and X.F. Chu, Sens. Actuators B 61 (1999) 33-38.
    [5]吴东辉,李丹,杨娟,功能材料,33(2002)39-40.
    [6]H. Sesigur, E. Acma, O. Addemir, et al, Mater. Res. Bull.31 (1996) 1573-1579.
    [7]X. Liu, B. Cheng, H.W. Qin, P. Song, S.X. Huang, R. Zhang, J.F. Hu, M.H. Jiang, J. Phys. Chem. Solid.68 (2007) 511-515.
    [8]沈兴海,高宏成,科学通报,11(1995)6-9.
    [9]工海增,庞文琴,功能材料,24(1993)289-295.
    [10]傅中,郝学士,吴正翠,化学物理学报,12(1999)219.
    [11]D. Li, D.H. Wu, X. Wang, et al. Mater. Res. Bull.26 (2001) 2437-2442.
    [12]王成云,苏庆德,钱逸泰,化学研究与应用,13(2001)402-405.
    [13]S. Yu, T. Fujino, M. Yoshimura, J. Magn. Magn. Mater.256 (2003) 420-424.
    [14]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001 p137.
    [15]L. Sun, J.F. Hu, F. Gao, X.W. Kong, H.W. Qin, M.H. Jiang, J. Alloys Compd. 502(2010) 176-179.
    [16]王永康,王立等,纳米材料科学与技术,浙江大学出版社,2002-3-1
    [17]李勇,马书懿,李锡森,蔡利霞,甘肃科技,25(2009)72-73.
    [18]L. Sun, J.F. Hu, M.L. Zhao, H.W. Qin, Solid State Commun.151 (2011) 1109-1111.
    [1]L. Koudelka and J. Horak, J. Mater. Sci.29 (1994) 1497-1499.
    [2]李凤生等,超细粉体技术。北京:国防工业出版社,2000,2-5.
    [3]A. Chittofrati, E.J. Mati, Colloids and Surfaces,48 (1990) 65-67.
    [4]辛显双,周百斌,肖芝燕,徐学勤,吕树臣,化学研究与应用,15(2003)601-606.
    [5]陈运详译.ZnO薄膜的性能和应用.压电与声光,13(1991)63.
    [6]贾晓林,张海军,谭伟,材料导报,17(2003)207.
    [7]祖庸,李晓娥,樊安,刘超峰,西北大学学报,31(2001)232-234.
    [8]刘超锋,祖庸,陈晓东,化工新型材料,23(1995)13—15.
    [9]J.F. Hu, H.W. Qin, T.F. Xue, E.S. Cao, D.T. Li, Appl. Phys. Lett.93 (2008) 022510.
    [10]K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39 (2000) L555.
    [11]K. Ueda, H. Tabat, and T. Kawai, Appl. Phys. Lett.79 (2001) 988.
    [12]Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett. 78(2001)3824.
    [13]J. H. Kim, H. Kim, D. Kim, Y. E. Ihm, and W. K. Choo, J. Appl. Phys.92 (2002) 6066.
    [14]D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, J. Am. Chem. Soc.125 (2003) 13205.
    [15]B. Martinez, F. Sandiumenge, LI. Balcells, J. Foutcuberta, F. Sibieude, and C. Monty, J. Appl. Phys.97 (2005) 10D311.
    [16]M. Bouloudenine, N. Viart, S. Colis, and A. Dinia,Chem. Phys. Lett.397 (2004) 73.
    [17]J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater.4 (2005) 173.
    [18]J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, L. S. Dorneles, P. Sta-menov, and J. G. Lunney, J. Magn. Magn. Mater.290 (2005) 1405.
    [19]G. Lawes, A. S. Risbud, A. P. Ramirez, and R. Seshadri, Phys. Rev. B 71 (2005) 045201.
    [20]M. Bouloudenine, N. Viart, S. Colis, J. Kortus, and A. Dinia, Appl. Phys.Lett.87 (2005)052501.
    [21]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287 (2000) 1019.
    [22]M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Nature 430 (2004) 630.
    [23]N.H. Hong, J. Sakai, N. Poirot, V. Brize, Phys. Rev. B 73 (2006) 132404.
    [24]S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, K. Ziemer, C. Vittoria, V.G. Harris, J. Magn. Magn. Mater.309 (2007) 171.
    [25]A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74 (2006)161306.
    [26]N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72 (2005) 045336.
    [27]J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys Rev. B 72 (2005) 024450.
    [28]N.H. Hong, J. Sakai, N.T. Huong, A. Ruyter, V. Brize, Appl. Phys. Lett.89 (2006) 252504.
    [29]J.F. Hu, Z.L. Zhang, M. Zhao, H.W. Qin, M.H. Jiang, Appl. Phys. Lett.93 (2008) 192503.
    [30]N. A. Spaldin, Phys. Rev. B 69 (2004) 125201.
    [37]N. H. Hong, V. Brize, and J. Sakai, Appl. Phys. Lett.86 (2005) 082505.
    [38]D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, J. Am. Chem. Soc.125 (2003) 13205.
    [39]P. V. Radovanovic and D. R. Gamelin, Phys. Rev. Lett.91 (2003) 157202.
    [1]S. Marzullo, E.N. Bunting, J. Am. Ceram. Soc.41 (1958) 40.
    [2]P.A. Fuierer, R.E. Newnham, J. Am. Ceram. Soc.74 (1991) 2876.
    [3]R.V.K. Mangalam, Ray Nirat, Umesh V. Waghmare, A. Sundaresan, C.N.R. Rao, Solid State Commun.149 (2009) 1.
    [4]M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Nature 430 (2004) 630.
    [5]N.H. Hong, J. Sakai, N. Poirot, V. Brize, Phys. Rev. B 73 (2006) 132404.
    [6]S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, K. Ziemer, C. Vittoria, V.G. Harris, J. Magn. Magn. Mater.309 (2007) 171.
    [7]A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74(2006) 161306.
    [8]N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72 (2005) 045336.
    [9]J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Domeles, Phys. Rev. B 72 (2005) 024450.
    [10]N.H. Hong, J. Sakai, N.T. Huong, A. Ruyter, V. Brize, Appl. Phys. Lett.89 (2006) 252504.
    [11]J.F. Hu, Z.L. Zhang, M. Zhao, H.W. Qin, M.H. Jiang, Appl. Phys. Lett.93 (2008) 192503.
    [12]C.D. Penmaraju, S. Sanvito, Phys. Rev. Lett.94 (2005) 217205.
    [13]A.M. Stoneham, Theory of Defects in Solids, Oxford University Press, Oxford, 1975.
    [14]F. Gao, J.F. Hu, C.L. Yang, Y.J. Zheng, H.W. Qin, L. Sun, X.W. Kong, M.H. Jiang, Solid State Commun.149 (2009) 855.
    [15]H.R. Kirchmayr, C.A. Poldy, J. Magn. Magn. Mater.8 (1978) 1.
    [16]D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett.88 (2006) 212907.
    [17]S. Nanamatsu, M. Kimura, K. Doi, S. Matsushita, N. Yamada, Ferroelectrics 8 (1974)511.
    [18]M. Kimura, S. Nanamatsu, T. Kawamura, S. Matsushita, Jpn. J. Appl. Phys.13 (1974) 147.)
    [19]A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto, A.V. Sorokin, S.G.Yudin, A. Zlatkin, Nature 391 (1998) 874.
    [20]W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li, J. Phys.Condens. Matter 5 (1993) 2619.
    [21]E.D. Mishina, K.A. Vorotilov, V.A. Vasiliev, A.S. Sigov, N. Ota, S. Nakabayashi, J.Exp. Theor. Phys.122 (2002) 582
    [22]G. Geneste, E. Bousquet, J. Junquera, P. Ghosez, Appl. Phys. Lett.88 (2006)112906.
    [23]J. Hao, Z. Xu, R. Chu, W. Li, G. Li, Q. Yin, J. Alloys Compd.484 (2009) 233.
    [24]J. Wu, J. Wang, J. Appl. Phys.105 (2009) 124107.
    [25]R. Font, O. Raymond, E. Martinez, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 105(2009) 114110.
    [26]J.K. Yamamoto,A.S. Bhalla, J. Appl. Phys.70 (1991) 4469.
    [27]S. Marzullo, E.N. Bunting, J. Am. Ceram. Soc.41 (1958) 40.
    [28]N.A. Spaldin, M. Fiebig, Science 309 (2005) 391.
    [29]N.A. Hill, J Phys. Chem. B 104 (2000) 6694.
    [30]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426 (2003) 55.
    [31]N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429 (2004) 392.
    [32]J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299 (2003) 1719.
    [33]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67 (2003) 180401(R).
    [34]N. Abe, K. Taniguchi, S. Ohtani, H. Umetsu, T. Arima, Phys. Rev. B 80 (2009) 020402(R).
    [35]J. Wen, G. Xu, G. Gu, S.M. Shapiro, Phys. Rev. B 80 (2009) 020403(R).
    [36]M.P. Singh, W. Prellier, Ch. Simon, B. Raveau, Appl. Phys. Lett.87 (2005) 022505.
    [37]R. Ranjith, Asish K. Kundu, M. Filippi, B. Kundys, W. Prellier, B. Raveau, J. Laverdiere, M.P. Singh, S. Jandl, Appl. Phys. Lett.92 (2008) 062909.
    [38]Q.H. Jiang, F.T. Liu, C.-W. Nan, YH. Lin, M.J. Reece, H.X. Yan, H.P. Ning, Z.J. Shen, Appl. Phys. Lett.95 (2009) 012909.
    [39]R. Seshadri, N.A. Hill, Chem. Mater.13 (2001) 2892.
    [40]N. Hur, S. Park, P.A. Sharma, S. Guha, S.-W. Cheong, Phys. Rev. Lett.93 (2004) 017207.
    [41]C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103(2008)031101.
    [42]H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303 (2004) 661.
    [1]K. Michael and W. Roland J. Am. Ceram. Soc.77 (1955) 6199.
    [2]L. Sun, J.F. Hu, F. Gao, X.W. Kong, H.W. Qin, M.H. Jiang, J. Alloys. Compd. 502(2010)176-179.
    [3]K. Krishnankutty and K.R. Dayas, Bull. Mater. Sci.31 (2008) 907.
    [4]E.M. Kuznetsova, L.A. Reznichenko, O.N. Razumovskaya, L.A. Shikina and A.N. Klevtsov, Tech. Phys. Lett.26 (2000) 767-770.
    [5]Z.P. Gao, H.X. Yan, H.P. Ning and M.J. Reece, Adv. Appl. Ceram. In press (2012)
    [6]M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Nature 430 (2004) 630.
    [7]N.H. Hong, J. Sakai, N. Poirot, V. Brize, Phys. Rev. B 73 (2006) 132404.
    [8]N.H. Hong, N. Poirot, J. Sakai, Phys. Rev. B 77 (2008) 033205.
    [9]A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74(2006)161306.
    [10]J.F. Hu, Z.L. Zhang, M. Zhao, H.W. Qin, M.H. Jiang, Appl. Phys. Lett.93 (2008) 192503.
    [11]J.I. Beltran, C. Monty, LI. Balcells, C. Martinez-Boubeta, Solid State Commun. 149(2009)1654.
    [12]N. Kumar, D. Sanyal, A. Sundaresan, Chem. Phys. Lett.477 (2009) 360.
    [13]J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys. Rev.B 72(2005)024450
    [14]F. Gao, J.F. Hu, C.L. Yang, Y.J. Zheng, H.W. Qin, L. Sun, X.W. Kong, Solid State Commun.149(2009) 855-858.
    [15]W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li, J. Phys.Condens. Matter 5 (1993) 2619.
    [16]Z.L. Zhang, J.F. Hu, Z.J. Xu, H.W. Qin, L. Sun, F. Gao, Y.J. Zhang, M.H. Jiang, Solid State Sci.13 (2011) 1391-1395.
    [17]N.A. Spaldin, M. Fiebig, Science 309 (2005) 391.
    [18]N.A. Hill, J Phys. Chem. B 104 (2000) 6694.
    [19]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426 (2003) 55.
    [20]N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429 (2004) 392.
    [21]J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299 (2003) 1719.
    [22]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67 (2003) 180401(R).
    [23]N. Abe, K. Taniguchi, S. Ohtani, H. Umetsu, T. Arima, Phys. Rev. B 80 (2009) 020402(R).
    [24]J. Wen, G. Xu, G. Gu, S.M. Shapiro, Phys. Rev. B 80 (2009) 020403(R).
    [25]D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett.88 (2006) 212907.
    [26]M.P. Singh, W. Prellier, Ch. Simon, B. Raveau, Appl. Phys. Lett.87 (2005) 022505.
    [27]R. Ranjith, Asish K. Kundu, M. Filippi, B. Kundys, W. Prellier, B. Raveau, J. Laverdiere, M.P. Singh, S. Jandl, Appl. Phys. Lett.92 (2008) 062909.
    [28]Q.H. Jiang, F.T. Liu, C.-W. Nan, Y.H. Lin, M.J. Reece, H.X. Yan, H.P. Ning, Z.J. Shen, Appl. Phys. Lett.95 (2009) 012909.
    [29]R. Seshadri, N.A. Hill, Chem. Mater.13 (2001) 2892.
    [30]N. Hur, S. Park, P.A. Sharma, S. Guha, S.-W. Cheong, Phys. Rev. Lett.93 (2004) 017207.
    [31]C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103(2008)031101.
    [32]H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303 (2004) 661.
    [33]E.S. Cao, J.F. Hu, H.W. Qin, F. Ji, M.L. Zhao, M.H. Jiang, J. Alloys Compd.509 (2011)2914-2918
    [1]K.A. Muller, H. Burkard, Phys. Rev. B 19 (1979) 3593.
    [2]W. Zhong, D.V anderbilt, Phys. Rev. B 53 (1996) 5047.
    [3]V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht, R. Kunze, Solid State Commun.110 (1999) 611.
    [4]J.G. Bednorz, K.A. Muller, Phys. Rev. Lett.52 (1984) 2289.
    [5]A. Chen, Z. Yu, J. Scott, A. Loidl, R. Guo, A.S. Bhalla, L.E. Cross, J. Phys. Chem. Solids 61(2000)191.
    [6]M. Itoh, R. Wang, Y. Inaguma,T. Yamaguchi,Y-J. Shan, T. Nakamura, Phys. Rev. Lett.82(1999)3540.
    [7]A.F. Devonshire, Phil. Mag Suppl.3 (1954) 85.
    [8]H. Uwe, T. Sakudo, Phys. Rev. B 13 (1976) 271.
    [9]H.-C. Li, W. Si, R.-L. Wang, Y. Xuan, B.T. Liu, X.X. Xi, Mater. Sci. Eng. B 56 (1998)218.
    [10]N.A. Pertsev, A.K. Tagantsev, N. Setter, Phys. Rev. B 61 (2000) R825-65.(2002) 219901 (E).
    [11]J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levyand, D.G. Schlom, Nature 430 (2004) 758.
    [12]M.D. Biegalski, Y. Jia, D.G. Schlom, S. Trolier-McKinstry, Appl. Phys. Lett. 88(2006) 192907.
    [13]B.Gilbert, F. Huang, H. Zhang, G.A. Waychunas, J.F. Banfield, Science 305 (2004)651.
    [14]T.B. Hur,Y.H. Hwang, H.K. Kim, I.J. Lee, J Appl. Phys.99 (2006) 064308.
    [15]G. Apai, J.F. Hamilton, J. Stohr, A. Thompson, Phys. Rev. Lett.43 (1979) 165.
    [16]L. Sun, J.F. Hu, F. Gao, X.W. Kong, H.W. Qin, M.H. Jiang, J. Alloys Comp.502 (2010)176-179.
    [17]R. Ranjith, Asish K. Kundu, M. Filippi, B. Kundys, W. Prellier, B, Raveau, J. Laverdiere, M.P. Singh, S. Jandl, Appl. Phys. Lett.92 (2008) 062909.
    [18]N. Hur, S. Park, P.A. Sharma, S. Guha, S.-W. Cheong, Phys. Rev. Lett.93 (2004) 017207.
    [19]G.K.Williamson,W.H.Hall,ActaMetallurgiac 1 (1953)22.
    [20]J.F. Hu, Z.L. Zhang, M. Zhao, H.W. Qin, M.H. Jiang, Appl. Phys. Lett.93 (2008) 192503.
    [21]F. Gao, J.F. Hu, C.L. Yang, Y.J. Zheng, H.W. Qin, L. Sun, X.W. Kong, M.H. Jiang, Solid State Commun.149 (2009) 855.
    [22]Y.J. Zhang, J.F. Hu, E.S. Cao, L. Sun, H.W. Qin, J. Magn. Magn. Mater.324 (2012)1770-1775.
    [23]J.F. Scott, J. Phys.:Condens. Matter 20 (2008) 021001.
    [24]A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui and A. J. Burger, J. Appl. Phys.97 (2005) 093903.
    [25]J-S. Lee, B.S. Kang and Q. X. Jia, Appl. Phys. Lett.91 (2007) 142901.
    [26]S. Habouti, C. Solterbeck and M. Es-Souni, Appl. Phys. Lett 88 (2006) 262903.
    [27]G.L. Yuan, Y. Yang and W.O. Siu, Appl. Phys. Lett.91 (2007) 122907.
    [28]W.N. Su, D.H. Wang, Q.Q. Cao, Z.D. Han, J. Yin, J.R. Zhangand Y.W. Du, Appl. Phys. Lett.91 (2007) 092905.
    [29]J.Y. Park, J.H. Park, Y.K. Jeong and H.M. Jang, Appl. Phys. Lett.91 (2007) 152903.
    [30]S. Bose and S.B. Krupanidhi, Appl. Phys. Lett.90 (2007) 212902.
    [31]X.L. Zhong, J.B. Wang, M. Liao, G.J. Huang, S.H. Xie, Y.C. Zhou, Y. Qiao and J.P. He, Appl. Phys. Lett.90 (2007) 152903.
    [32]J.B. Babu, M. He, D.F. Zhang, X.L. Chen and R. Dhanasekaran, Appl. Phys. Lett. 90(2007) 102901.
    [33]H. Paik, H. Hwang, K. No, S. Kwon and D.P. Cann, Appl. Phys. Lett.90 (2007) 042908.
    [34]S.R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy and A.O. Adeyeye, Appl. Phys. Lett.90 (2007) 022901.
    [35]J. Hemberger, P. Lunkenheimer, R. Fichtl, H.A. Krug-von Nidda, V. Tsurkan and A. Loidl, Nature 434 (2005) 364.
    [36]C.-J.Eklund,C.J.Fennie,K.M.Rabe,Phys.Rev.B 79 (2009) 220101(R).
    [37]G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558.
    [38]G. Kresse, J. Joubert, Phys. Rev. B 54 (1996) 11169.
    [39]S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57 (1998) 1505.
    [1]U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grtazel, Nature 395,583 (1998).
    [2]A.L. Linsebigler, G.Q. Lu and J.T. Yates, Chem. Rev.95,735 (1995).)
    [3]牛新书,许亚杰,化工环保,22(2002)203-208.
    [4]伊荔松,沈辉,,材料导报,12(2000)23-25.
    [5]马晓敏,工怡中,环境污染治理技术与设备,3(2002)15-19.
    [6]黄汉生,化工新型材料,27(1997)28-30.
    [7]尹荔松,沈辉,材料导报,14(2000)23-25.
    [8]S. Chen, M. G. Mason, H. J. Gysling, G. R. Paz-Pujalt, T. N. Blanton, T. Castro, K. M. Chen, C. P. Fictorie, W. L. Gladfelter, A. Franciosi, P. I. Cohen, and J. F. Evans, J. Vac. Sci. Technol. A 11 (1993) 2419.
    [9]W. Sugiyama, A. Yamazaki, H. Shigetani, J. Tanaka, and T. Mitsuhashi, Jpn. J. Appl. Phys., Part 136 (1997) 7358.
    [10]Y. Matsumoto, M. Murakami, Z. W. Jin, A. Nakayama, T. Yamaguchi, T. Ohmori, E. Suzuki, S. Nomura, M. Kawasaki, and H. Koinuma, Proc. SPIE,19 (2000)3941.
    [11]M. Murakami, Y. Matsumoto, K. Nakajima, T. Makino, Y. Segawa, T. Chikyow, P. Ahmet, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett.78 (2001)2664.
    [12]N. H. Hong, J. Sakai, N. Poirot, and V. Brize,Phys. Rev. B 73 (2006)132404.
    [13]E.S. Cao, J.F. Hu, H.W. Qin, F. Ji, M.L. Zhao, M.H. Jiang, J. Alloys Compd. 509(2011)2914-2918.
    [14]D. Chiba, M. Yamanouchi, F. Matsukura, H. Ohno, Science 301 (2003) 943.
    [15]D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, H. Ohno, Nature 455(2008)515.
    [16]T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A.A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, Y. Suzuki, Nat. Nan-otechnol.4 (2009) 158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700