用户名: 密码: 验证码:
壳聚糖对金属钯的吸附机理研究及在电磁屏蔽用导电织物制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术的快速发展,人们生产和生活中使用的电子产品和设备越来越多,各种电子器件都不同程度的产生电磁波辐射,电磁波辐射不仅造成电子产品之间的相互干扰,而且还污染人类生存的空间,危害人类的健康。由于优良的导电性和特殊的结构,表面镀覆各种金属的导电织物可用来屏蔽电磁波辐射和干扰,并且在一些特殊工作环境,可以避免衣物上的静电带来很多严重后果。
     在传统织物化学镀处理的过程中,为保证织物上化学镀金属层的均匀性以及与织物纤维的结合牢固度,除对化学镀液和敏化、活化溶液本身有较为严格的要求外,织物敏化前还需进行有效的除油和粗化等工序。在本论文中提出了新的导电织物化学镀的前处理方案,采用生态环保的壳聚糖与织物发生物理和化学作用,然后根据壳聚糖吸附重金属的特性将贵金属钯鳌合吸附在织物表面,主要是利用钯盐在壳聚糖上带有的—NH2、—OH的配位结合或静电吸引,从而获得无需Sn2+参与的牢固的活化层,完成一般意义上的活化过程。经活化处理的织物一旦引入化学镀Ni-P溶液中,表面吸附的Pd2+很快被镀液中的还原剂还原成金属钯,并在织物表面原位沉积。这种方法改变了织物与金属之间仅靠物理沉积作用结合的模式,使得镀层结合力更为牢固,导电性更为均匀,另外在减少贵金属钯的用量,减少制备工序,降低成本中也起到了一定的作用。本论文对导电织物的表面电阻、电磁屏蔽效能、壳聚糖对钯离子的吸附机理以及镀层与织物纤维的结合力和抗腐蚀能力等性能进行了重点研究。
     在整个制备过程中前处理对非金属基体材料化学镀是一个关键,因为非金属材料表面没有催化活性,若不进行前处理将无法实现化学镀,而且,前处理工艺一环扣一环,每个环节效果如何往往难以单独进行判断,需要借助于后续的甚至是通过化学镀效果和镀层性能测试才能推测出其效果。因此,对织物进行的前处理是否有效是化学镀的关键,也是研究的重点。
     首先对实验所用的壳聚糖进行了理论上的筛选,选用分子量在70000左右、脱乙酰度在90%以上的壳聚糖作为实验材料。在多种无机酸中选择比较适合的作为壳聚糖的溶剂,使壳聚糖溶液具有优良的成膜性,并且为提高壳聚糖整理液的稳定性和与织物的结合力,在其中加入交联剂。
     采用壳聚糖对涤纶、锦纶、棉和羊毛四种织物进行壳聚糖前处理工艺研究,通过正交实验得出壳聚糖前处理最佳工艺,对于涤纶织物,在壳聚糖浓度4 g/L、醋酸浓度2%、甲醛浓度10 mL/L、浸渍时间10min、轧车压力3 kg/cm2时,壳聚糖整理工艺效果较好,织物电磁屏蔽效能优异。之后分别讨论了几个单因素(如CTS浓度、交联剂浓度、醋酸浓度等)对织物表面方阻值和织物增重率的影响。在活化过程中分析并讨论了溶液pH值和PdCl2浓度对织物表面方阻和对钯离子吸附率的影响。得出壳聚糖对钯离子吸附的最佳条件:PdCl2为45mg/L,pH=2.5,吸附温度60℃和吸附时间40 min。对于锦纶,其化学镀前活化处理的最佳工艺:CTS浓度12 g/L、温度60℃、甲醛浓度12 mL/L、处理时间20 min、醋酸浓度为1%、氯化钯浓度45 mg/L。活化处理时间40min、活化处理温度60℃。棉织物适合的工艺条件:壳聚糖浓度7.5 g/L、柠檬酸浓度2.0 g/L、次亚磷酸钠浓度0.5 g/L温度20℃、时间30 min。最佳活化工艺为:PdCl2浓度为30 mg/L,在pH值为5-6,温度为55℃的条件下处理30 min。羊毛织物壳聚糖前处理的工艺条件:壳聚糖12 g/L,柠檬酸4.5 g/L,次亚磷酸钠1.0 g/L,温度60℃,处理时间10 min。最佳活化工艺为:PdCl2为50 mg/LpH=3,吸附温度60℃和吸附时间40 min。
     经最佳活化工艺条件处理后对织物进行了XRD、SEM、SPM和FT-IR表征。活化后织物的XRD图谱表明,在织物表面形成了薄且均匀的钯活化层;SPM、SEM的图像观察佐证了这一结论;通过红外光谱测试,谱图出现的特征峰主要显示织物本身的材质。这说明在织物表面沉积的CTS量较少、钯粒子粒径较小,但已能成功引发之后的化学镀。从热重分析TGA来看,活化处理对织物的热性能织影响较小,化学镀处理后使得织物的耐热性能有略微降低。此外,对化学镀后的织物进行了耐磨性、耐腐蚀性和金属镀层结合牢度等测试。结果表明,经过此方法处理得到的电磁屏蔽材料,通过镀层结合力实验发现镀层与基材具有良好的结合牢度和耐磨性能。化学镀整理后,各类织物除了有导电性外,还有非常优异的紫外防护和抗静电性。经计算化学镀后织物的电磁屏蔽效能在10 MHz-20 GHz的范围内均能达到30 dB以上,这相当于屏蔽掉了96.0%以上的电磁波,完全可以满足民用电磁防护用品的要求。
     接着,本论文通过一些基础性的研究工作为壳聚糖应用于织物上后的活化工艺机理提供了重要的理论基础。吸附实验在CTS前处理后的活化过程中进行,其内容包括:壳聚糖吸附性能的评价,通过平衡吸附实验,计算平衡吸附量,绘制吸附等温线,绘制动力学曲线,对吸附交换容量和吸附速率进行比较评价。应用Langmuir和Freundlich模型对等温平衡吸附数据进行拟合,并通过计算△S、ΔH、ΔG等热力学参数对吸附过程进行热力学分析,对吸附动力学的数据进行拟合。最后探讨壳聚糖对钯离子的配位吸附机理,为选用壳聚糖吸附贵金属在化学镀前处理中的应用提供理论指导。
     涤纶上壳聚糖对Pd2+的吸附动力学表明CTS对Pd2+吸附反应比较符合二级反应动力学特征,二级速率常数为0.1743 min-1,吸附在经过40 min左右时达到平衡。由此推之此吸附是化学吸附。此外经计算,该吸附反应的表观活化能Ea为18.84 kJ·mol-1,佐证了此吸附为化学吸附。通过Langmuir和Freundlich模型对吸附机理进行模拟,结果表明CTS对Pd2+的吸附在活化液初始浓度为10-50 mg/L范围内更符合Langmuir等温方程式。说明该吸附是单分子层吸附,间接反应出配位吸附是主要吸附过程。热力学结果表明,钯离子在壳聚糖颗粒上的吸附过程是自发过程(ΔG<0),伴随放热(ΔH<0),熵变为正值(△S>0)为化学吸附。
     最后,本论文以壳聚糖为修饰对象制备了几种壳聚糖衍生物。根据壳聚糖及其衍生物与金属离子配位的研究发现其与金属离子有较好的配位作用。通过引入羧甲基、氨基的方式制备了NOCC和BGC,采用戊二醛和壳聚糖交联的方式制备了GCC,并且采用过硫酸钾为引发剂,制备了壳聚糖与丙烯腈的接枝共聚物CCN。采用FT-IR和13CNMR进行表征。将这四种壳聚糖衍生物在化学镀前处理中进行应用,研究其在提高贵金属吸附性能和降低织物表面电阻值的作用。SEM等表明采用壳聚糖衍生物处理的化学镀织物镀层结构较致密和均匀,金属颗粒较小。同样对经壳聚糖衍生物前处理的织物的电磁屏蔽效能与壳聚糖前处理的相比较,发现屏蔽效能在整个频率范围内都能提高2dB左右(SE>99.9%),所以研究使用壳聚糖衍生物在导电织物化学前处理是对化学镀前处理的有效补充,也是值得进一步探索的方向。
     本文主要在以下几个方面进行了创新:
     1.在传统织物化学镀处理的过程中,为保证织物上化学镀金属层的均匀性以及与织物纤维的结合牢固度,通常采用“粗化-敏化-活化”三步法进行前处理。在本论文中提出了新的导电织物化学镀的前处理工序,首次采用生态环保的壳聚糖对织物进行前处理,根据壳聚糖吸附重金属的特性将贵金属钯牢牢吸附在织物表面,从而获得无需粗化、敏化过程,即可成功引发化学镀Ni-P,获得具有优良导电性、电磁屏蔽效能高、使用寿命长的电磁屏蔽用导电织物。过程简单环保,金属镀层更为牢固、致密。
     2.尝试将化学镀镍磷技术应用于制备导电棉织物和羊毛织物,赋予天然纤维织物良好的导电性和抗静电等性能。而之前在导电织物的制备研究主要集中于涤纶等合成纤维,随着人们自身防护意识的逐渐增强,防电磁辐射织物有机会从特殊领域走向民用市场。因此有必要进一步提高此类织物的舒适性,拓宽导电基材的范围以促进防辐射服装消费。
     3.早期的一些研究工作主要集中在壳聚糖作为固体吸附剂的应用方面,对于壳聚糖对钯离子吸附的理论研究报道较少,尤其将壳聚糖应用到织物上后对钯离子的吸附性质未见报道。因此本论文通过一些基础性的研究工作为壳聚糖应用于织物上后的配位吸附提供了重要的理论基础。对于吸附机理的理论研究有利于降低贵金属钯的消耗量,节约生产成本。
As the rapid increase of electronic devices and communication instruments, electromagnetic interference (EMI) has been a problem for the lifetime and efficiency of the instruments. Due to the good conductivity and special shape, conductive fabrics coated with copper or nickel can be utilized for shielding electromagnetic radiation and interference. Many researches have focused on optimizing pretreatment conditions, continuous efforts should also devoted to improve the conductivity as well as EMI SE by producing an even and satisfactory metal deposition on the textiles.
     In this study, we took advantages of electroless Ni-P plating to fabricate conductive fabrics for EMI shielding with Chitosan (CTS) pretreatment and Palladium ions activation. This technique has advantages, such as coherent metal deposition, excellent conductivity, shielding effectiness and applicability to non-conductors with a brilliant appearance. Electroless plating (autocatalytic plating) of non-conducting materials must catalytically activate the substrate surface before metal deposit onto themselves. The surface being catalyzed (sensitization and activation) was generally applied to make sure the metal particle could be deposited on it. Chitosan, the N-deacetylated derivative of chitin and selectively absorbs transition metal ions due to the presence of amino groups and hydroxyl groups. Using the metal-adsorbing properties of CTS as an alternative method to prepare conductive fabrics, we successfully immobilized a palladium (Pd) catalyst for electroless metal plating. In this study, we choose CTS with molecular weight about 70,000 and deacetylated degree over 90%. The acid solvents and cross-linker were also selected to obtain the better membrane-forming property on fiber surface.
     The traditional process for preparing conductive fabrics is etching, sensitization, activation and electroless plating. Compared with the common way, the new process put forward in this study is CTS pretreatment, activation and electroless plating. Pretreatment is a determinant step in metallization by the electroless plating process. This step allows us to establish strong chemical bonds between the substrate and metallic film. Therefore, the important objective of this study is to introduce CTS and strongly absorbs Pd (Ⅱ) ions. The processes of pretreatment for polyester (PET), polyamide (PA), cotton and wool fabrics before electroless plating were investigated. The properties of conductive fabrics such as surface resistance, shielding effectiveness and adhesion of metal deposit to fabrics were investigated deeply. As a critical step in chemical plating of making electromagnetic shielding fabric, a variety of parameters of CTS pretreatment to obtain the anchoring effect on fabrics were investigated. For PET fibers: the best CTS pretreatment condition of PET fabrics is CTS 4 g/L, HAc 2%, HCHO 10mL/L and 10 min with a padding pressure 3 kg/cm2. The amino (-NH2) and hydroxyl (-OH) groups of CTS are the main reason for its ability to absorb metal ions through several mechanisms including electrostatic attraction or chelation, depending on the pH of the solution. The most proper activation process for PET fibers is PdCl2 50 mg/L, pH 2.5,60℃and 40 min. At this condition, the lowest surface resistance and best weight gain of PET fabrics are obtained after common electroless Ni-P plating. For PA fibers: the best CTS pretreatment condition is CTS 12 g/L, HAc 1%, HCHO 10mL/L and 30 min;activation process for PA fibers is PdCl2 45 mg/L, pH 2.5,60℃and 40 min.As for cotton and wool fibers, citric acid (CA) was used as the cross-linker and NaH2PO2 H2Oas catalyst in the CTS pretreatment. The best condition for cotton fibers is: CTS 7.5 g/L, CA 2.0 g/L, NaH2PO2 H2O 0.5 g/L,20℃and 30 min; activation process is PdCl2 40 mg/L, pH 5-6,60℃and 50 min. For wool fibers is:CTS 12 g/L, CA4.5 g/L, NaH2PO2·H2O 1.0 g/L,60℃and 10 min; activation process is PdCl2 50 mg/L, pH 3,60℃and 40 min.
     Conductive fabrics were prepared and characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, thermal analysis (thermogravimetric (TG)) and so on. SEM shows that CTS-Pd is found on the surface of fabrics and effectively activated the electroless plating. FT-IR shows the adsorption of Pd (Ⅱ) ions on CTS is mainly controlled by physical adsorption. The results of TG A indicate that the metal layer on the fabric catalyzed the thermal degradation. The thermal ability is slightly influenced after the metal plating. According to the Schelkunoff theory, better conductivity leads to higher shielding effectiveness. The shielding effectiveness (SE) of the treated fabrics is more than 30 dB range from 100 MHz to 20 GHz. The properties of electroless plating fabrics were evaluated by various standard testing methods in terms of both physical and chemistry performances. Apart from conductitity, the fabrics stands out several benefits like ultraviolet protection and anti-static.
     Although CTS-supported Pd plays an important role as a catalyst in electroless metal plating on non-conducting surfaces, the metal-chelating mechanism on the textile surface had not been previously determined. The adsorption capability and kinetics of the adsorption of Pd (Ⅱ) on PET fabric treated with CTS have been studied in this study. Batch adsorption experiments were carried out in which the experimental parameters such as the initial metal ion concentration, adsorption time and temperature were varied. Langmuir and Freundlich isotherm models were employed to analyze the experimental data. The best approximation to the experimental data was given by Langmuir isotherm and the maximum adsorption capacity was found to be 1.241mg/gfor Pd (II) ions on CTS. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order kinetic models. The data correlated well with pseudo-second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. The thermodynamic parameters like Gibbs free energy (△G°), enthalpy (△H°) and entropy (△S°) were also evaluated by applying the Van't Hoff equation. The results indicated the exothermic nature of the adsorption process. This study offers a general model for study of the kinetics of reactions between chitosan and metal ions on the base of PET fabric.
     Novel CTS derivatives were synthesized to increase metal ions chelation and metal adsorption capability. Introduction of carboxymethyl groups to CTS was accomplished to prepare NOCC, and dicyandiamide was used as raw materials to prepare BGC. CTS (in solid state) was mixed with glutaraldehyde solution to prepare CTS cross-linking derivative GCC and the grafting of acrylonitrile with CTS was also made as CCN. The structure of products were confirmed by FT-IR and13C NMR spectra. The four CTS derivatives were applied to pretreatment with the aim to increase the density of sorption sites, to broaden the pH value range for metal sorption and increase the sorption capacity. In addition, these noval derivatives'Pd adsorption properties were evaluated in the activation process and the results indicated that different derivatives had their advantages. From SEM characterization, the metal plated surface was more even and exhibited almost complete coverage of the fiber surface. Furthermore, EMI SE of the fabrics produced by CTS derivatives is raised about 2 dB over the whole range of frequency, which means shielding off 99.9% electromagnetic radiation.
     Therefore, the objective of this study is to develop the high quality of EMI shielding textile materials for protective clothing with improved performance and durability. The technology is friendly to environment, easy to operate and control, of lower production cost, and has strong resistance to risk, which can be applied commercially.
     The innovations in these investigations are as followed: (1) Electroless plating on fabrics is normally carried out by multistep process which included: etching, sensitization, activation and electroless plating. In order to gain high adhensive metallic coating, the textiles should be etched by KMnO4 or H2SO4. Even then, the metallic layer is intrinsically absorbed by weak van der Waals force, which means physical absorption. To overcome this problem, we have developed an effective method proposed by electroless Ni-P plating with PdCl2 solution and a chelating agent chitosan (CTS). The CTS pretreatment can reduce etching and sensitization steps and control the adsorption by utilizing interactions between CTS and Pd (Ⅱ) ions.
     (2) A great deal of work has been carried out on synthetic fibers, especially polyester. Comparatively less attention has been paid to natural fibers, such as cotton and wool. In this study, we are aiming to produce cotton and wool conductive textiles for apparel and technical end-uses. The overall results indicated the treatment on natural fibers could provide an effective conductivity and anti-static property. The encouraging results reported in this study open new perspectives for future application of electromagnetic shielding fabrics and the conductive fabrics for smart clothing.
     (3) The adsorption capability and kinetics of the adsorption of Pd (Ⅱ) ions on fabrics reacted with chitosan has been studied. Fabric was used as the substrate, and surface treatment with CTS was carried out before the uptake of Pd (Ⅱ) ions was studied. This fundamental research will be useful for further applications of chemical plating pretreatment on textiles, which is an important step to produce electromagnetic interference (EMI) shielding fabric.
引文
[1]万刚,李荣德.电磁屏蔽材料的进展.屏蔽技术与屏蔽材料,2003,(1):40-42
    [2]王乐军,丁兆涛,吕翠莲等.防辐射织物与服装的开发.产业用纺织品,2002,20(10):12-14
    [3]马洪才,张梅.电磁屏蔽材料的技术探讨.山东纺织科技,2003,(3):52-54
    [4]张碧田,李国勋,翟俊瑛等.电磁屏蔽织物的制备和应用.环境工程,1995,13(3):38-39
    [5]吕德龙.电磁屏蔽技术.新技术与新工艺,1996,(1):8-9
    [6]黄福祥,金吉琰,范嗣元等.电磁屏蔽材料.材料导报,1997,11(3):18-21
    [7]Huang,Chi-Yuan;Mo,Wen-Wei;Roan,Ming-Lih.The influence of heat treatment on electroless-nickel coated fibre(ENCF)on the mechanical properties and EMI shielding of ENCF reinforced ABS polymeric composites.Surface and Coatings Technology, 2004,184:123-132
    [8]李勇.电磁辐射与电磁屏蔽涂料的应用.化学与粘合,2000,(4):189-191.
    [9]王晨,顾家琳,康飞宇.吸波材料理论设计的研究进展.材料导报,2009,23(3):6-10
    [10]汝强,胡社军,胡显奇等.电磁屏蔽理论及屏蔽材料的制备.包装工程,2004,25(15):21-24
    [11]刘顺华,郭辉进.电磁屏蔽与吸波材料.功能材料与器件学报,2002,8(3):214-218
    [12]余凤斌,夏祥华,耿秋菊等.电磁屏蔽织物的制备及性能表征.电镀与涂饰,2007,27(6):34-38
    [13]杜仕国,高欣宝.电磁屏蔽导电复合材料.兵器材料科学与工程,1999,22(6):61-67
    [14]赵福辰.电磁屏蔽材料的发展现状.材料开发与应用,2001,16(5):29-34
    [15]展义臻,王炜,赵雪,倪国英.高效宽频电磁屏蔽织物的开发.印染,2008,22:32-35
    [16]谭松庭,章明秋,曾汉民等.屏蔽EMI用导电高分子复合材料.材料工程,1998,(5):6-9
    [17]凯瑟B.E著,肖华庭等译.电磁兼容原理.北京:电子工业出版社,1985
    [18]潘颖,朱平,董朝红.电磁防护纺织品的研究开发.染整技术,2007,29(3):4-8
    [19]韦斯顿著,杨自佑,王守山译.电磁兼容原理与应用.机械工业出版社,北京,2006
    [20]王锦成.电磁屏蔽材料的屏蔽原理及研究现状.化工新型材料,2002,30(7):16-19
    [21]贺娟,王花娥,薛元,易洪雷,电磁波辐射屏蔽织物的研究发展现状,山东纺织科技,2008,4:44-47
    [22]商善思.电磁波屏蔽织物的产生与发展.现代纺织技术,2002,4(10):49-50
    [23]商善思.屏波织物及其应用.安全与电磁兼容,2002,(2):43-45
    [24]詹建朝,张辉,沈兰萍.不同增重率化学镀银电磁屏蔽织物的研究.表面技术,2006,35(3):25-27
    [25]陈烨璞,商少明,吕仕元等.镀镍电磁屏蔽织物的研制.产业用纺织品,1996,14(6):11-16
    [26]胡智文,傅雅琴,陈文兴.化学镀镍涤纶抗静电纤维研究.纺织学报,2000,21(5):309-313
    [27]陈海相,陈文兴.镍活化织物表面的化学镀镍研究.电镀与精饰,2004,26(5):6-10
    [28]华载文,王忠霞,华东.电磁波屏蔽织物的研究.纺织科学研究,2001,(2):5-8
    [29]李卫明,李文国,刘彬云.环保型化学镀铜新技术.印制电路信息,2004,(12):31-35
    [30]王桂香,李宁,李娟等.以次亚磷酸钠为还原剂的塑料直接镀铜.精细化工,2006,23(1):70-74
    [31]D.H.Cheng.W.Y.Xu,Z. Y.Zhang etal.Electroless copper plating using hypophosphite as reducing agent.Metal Finishing.1997,95(1):34-37
    [31]J.Li,P.A.Kohl.The acceleration of nonformaldehyde electroless copper plating.J.Electrochem.Soc.,2002,149(12):631-636
    [32]J.Li,P.A.Kohl.The deposition characteristics of accelerated nonformaldehyde electroless copper plating.J.Electrochem.Soc.,2003,150(8):558-562
    [33]E.G.Han,K.W.Oh,E.A.Kim.J.Korean Soc.Clothing and Textiles.1999,23(5):694
    [34]E.G.Han,E.A.Kim,K.W.Oh.Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics. Synthetic Metals,2001,123:469-476
    [35]陈震兵,陈小立.涤纶织物化学镀Ni-Cu-P的反应动力学方程.纺织高校基础科学学报,2001,14(2):102-106
    [36]商善思.化学镀铜-镍复合镀层织物.产业用纺织品,2002,(8):44-45
    [37]傅雅琴,胡智文,陈文兴等.涤纶织物银催化铜镍复合镀的研究.合成纤维,2000,29(3):32-35
    [38]刘绍芝.电磁屏蔽织物及其制作方法(专利).CN 1236839A
    [39]邹建平.抗电磁波辐射屏蔽织物的制作方法(专利).CN 1345996A.
    [40]陈文兴,姚炎庆,余志成.涤纶织物化学镀铜镍合金研究.浙江丝绸工学院学报,1998,15(4):265-270
    [41]刘绍芝.一种电磁屏蔽织物及其制备方法(专利).CN 99214877.4
    [42]肖惠,郭兴锋,王锡山.磁控溅射对锦纶拉伸性能的影响及镀膜形貌观察,2010,31(5):59-62
    [43]朱友水,王红卫.真丝纤维氢气等离子体金属化.丝绸,2005(5):21-23
    [44]贾华明,齐鲁.防辐射纤维及其织物的研究进展.合成纤维工业,2005,28(5):30-33
    [45]黄大庆,丁鹤雁,刘俊能.碳纳米管/导电聚苯胺纳米复合纤维的合成与表征.功能材料,2003,34(2):164-168
    [46]潘玮,黄素萍,恭静华,等.聚苯胺/涤纶导电纤维的制备及其织物抗静电性能研究.合成纤维,2002(1):30-32
    [47]方娜,PANI/PET及PPY/PA66复合导电织物制备及性能研究,东华大学硕士论文,2009
    [48]周菊先,石伟民,涂正华等.织物表面金属化研究,印染,1993,19(2):5-8
    [49]朱明娟,吕仕元,减振降噪铅化织物复合材料的研究,南通工学院学报,1999(1):37-42
    [50]东华大学王炜.一种电磁屏蔽纺织品及其制备方法(专利).CN 1587494A
    [51长沙力元新材料股份有限公司陶维正.一种镍铜复合金属织物及其制备方法(专利).CN1558017A
    [52]胡发祥,董奎勇.功能性纺织品开发应用新进展(下).纺织导报,2003,(4):78- 80
    [53]丁世敬,赵跃智,葛德彪.电磁屏蔽材料研究进展,材料导报,22,2008(4):30-33
    [54]Yuen C W M, J iang S Q, Kan C W, et al. Application ofelect roless nickel plating in textile design.Textile Asia,2006,12:32-33
    [55]Levorov C. Advanced applications of metalized fiber for electrostatic discharge and radiation shielding Journal of Coated Fabrics,1991,20 (1):153-155
    [56]杨保中.化学镀纳米铜膜的工艺参数和表面形貌及沉积原理研究.吉林大学,2005
    [57]龚凡,唐雪娇,韩长秀,张宝贵.非金属基体化学镀镍在电磁屏蔽方面的研究现状,天津化工,2006(4):4-5
    [58]姜晓霞.沈伟.化学镀理论及实践.北京:国防工业出版社,2000
    [59]冯义威,化学镀涤纶织物的研究现状,纺织科技进展,2010,1:24-27
    [60]赵俊,吕广庶.涤纶织物化学镀镍前处理粗化工艺的研究.电镀与涂饰,2005,25(5):16-19
    [61]叶栩青等.化学镀Ni、Cu-P合金工艺研究.腐蚀与防护,2000,(3):126-128.
    [62]詹建朝,张辉,沈兰萍.涤纶织物化学镀镍的研究.上海纺织科技,2006,34(6):15-18
    [63]甘雪萍,仵亚婷,胡文彬,汤义武.导电涤纶织物的制备及其性能研究.材料工程,2007,8:12-16
    [64]Yoshiki H, Hashimoto K, Fujishima A. Reaction Mechanism of ElectrolessMetal Deposition Using ZnO Thin Film(I):Process of Catalyst Formation. J Electrochem Soc,1995,142(2):428-432
    [65]KOOIMORGEN,RUDOLPH J A,HAPPAUGE.Novel precious metal sensitizaing solutions.U. S:3672938,1972-06-27
    [66]谷新,王周成,林昌健.陶瓷表面化学镀的前处理工艺新进展.材料保护,2003,36(9):1-3
    [67]SHIPL EY,MICHAEL G, SHERBORN. Catalyst solution for electroless deposition of metal on substrate.U.S:3874882,1975-04-20
    [68]SHIPL EY M G,WILL IAM A,CONAN J.Catalyst solution for electroless deposition of metal on substrate.U.S:3904792,1975-09-09
    [69]OKABAYASHI K.Sensitizing activator composition for chemical plating.U.S:4933010,1990-06-13
    [70]IACOVANGELO C D. CHARL ES D. Activation of refractory metal surfaces for electroless plating.U.S:4746375,1988-05-24
    [71]余志成,汪澜,陈海相等.胶体钯的制备及在屏蔽织物上的应用.纺织学报,2003.24(4):87-89
    [72]董根岭,周完贞.TY-1型无锡(Ⅱ)胶体钯活化液的研制和应用.电镀与精饰,1993,15(3):25-26
    [73]Yang G H,Kang E T,NEon K G. Electroless deposition of copper and nickel on poly(tetrafluorocthylene)films modified by singleand double surface graft copolymenzation.Applied Surface Science,2001,178:165-177
    [74]Hilmar Esron,Robert Seebock,Marlene Charbonnier,Maurice Romand.Surface activation of polyimide with dielectric barrier discharge for electroless metel deposition.Surface and Coatings Tecnology,1997,97:372-377
    [75]张京迪,刘峥,董善许等.化学镀涤纶织物的硅烷偶联剂处理,印染,2010,19:6-9
    [76]Naoji K,Nobuhide T,Takayuki S,Kaori T.A simple Preparation of half N-acetylated chitosan Highly soluble in water and aqueous organic solvents.Cathohydrate Research,2000,324:268-274
    [77]Hayes E R,Davies D H,Munvoe V G,Organic acid solvent systems for chitosan. Proc.Int.Conf.Chitin/Chitosan 1th,1977,103-106
    [78]Xing R, Liu S, Guo Z, Yu H, Zhong Z, JI X, Li P. Relevance of molecular weight of Chitosan-2-hydroxypropyl trimethyl ammonium chloride and their antioxidant activities. European Journal of Medicinal Chemistry,2008,43:336-340
    [79]Vincent T, Guibal E. Chitsan-supported palladium catalyst.1. Synthesis procedure. Ind.Eng. Chem. Res.,2002,41(21):5158-5164
    [80]张俊,夏春谷.高分子负载型双金属催化剂催化苯乙烯及其衍生物的氢酯基化反应.分子催化,2000,14(5):341-344
    [81]张一烽,曾宪标,沈之荃.壳聚糖负载稀土催化剂催化甲基丙烯酸甲酯聚合.高等学校化学学报,1997,18(7):1202-1206
    [82]陈水平,汪玉庭.壳聚糖多孔微球负载PdCl2选择性催化氢化氯代硝基苯的研究.功能高分子学报,2003,16(1):6212
    [83]刘蒲,王发,李利民等,壳聚糖钯(0)配合物催化Heck芳基化反应研究.有机化学,2004,24(1):59-62
    [84]Yuen C W M.Ku S K A, Kan C W, Choi P S R.Enhancing textile ink-jetprinting with chitosan,Coloration Technology,2007,123 (4):267-270
    [85]Julia M R, Paseual E, Erra R,Influence of the molecular mass of chitosan on shrink-resistance And dyeing Properties of chitosan treated wool.Coloration Technology,2000,116(2):62-67
    [86]Lim S-H, Hudson S H. APPlication of a fibre-reactive chitosan derivative to cotton fabrics as a Zero-salt dyeing auxiliary.Coloration Technology,2004, 120(3):108-111
    [87]Oktem T.Surface treatment of cotton fabrics with chitosan.ColorationTechnology, 2003,119(4):241-246
    [88]Muzzarelli R A A. Chitin. Pergamon press. New York,1977,134
    [89]Martha Ly Arrascue, Holger Maldonado Garcia, Olga Horna, Eric Guibal, Gold sorption on chitosan derivatives,Hydrometallurgy,2003,71:191-200
    [90]李海丰,王光辉,汪玉庭等.β-环糊精接枝壳聚糖对酸性红R的吸附研究,环境科学与技术,2009,32(10):1-4
    [91]唐兰模,符迈群,张萍等.用壳聚糖除去溶液中微量铬的研究,化学世界,2001,2:59-631
    [92]徐丽娜,徐鸿飞,周凯常等,自组装吸附钯的化学镀前活化研究,物理化学报,2002,18(3):284-288
    [1]俞丹,何瑾馨,马跃辉,王炜.新型电磁屏蔽纺织品化学镀前处理活化膜的制备及表征.印染助剂,2009,26(2):24-27
    [2]秦秋香,郭祀远.壳聚糖的成膜性及其工业应用进展,现代食品科技,2006,23(4):93-96
    [3]J.Molina,A.I.del Rio,J.Bonastre,F.Cases. Chemical and electrochemical polymeirisation of pyrrole on polyester textiles in presence of phosphotungstic acid, European polymer journal,2008,44:2087-2098
    [4]Emmanuel Gasana,Philippe Westbroke, Jean Hakuzimama, Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces, Surface & Coating Technology,2006,21:3547-3551
    [5]陈亮,以次亚磷酸钠为还原剂的化学镀铜工艺研究,上海交通大学硕士论文,2008
    [6]E.Renbutsu,S.Okabe,Y.Omura et al, Palladium adsorbing properties of UV-curable chitosan derivatives and surface analysis of chitosan-containing paint, International journal of Biological Macromolecules,2008,43:62-68
    [7]顾国锋,胡航.化学镀电磁辐射防护织物的屏蔽效能分析,广西物理,2005,6(1):38-40
    [8]方娜.PANI/PET和PPY/PA66导电织物的制备及研究,东华大学硕士学位论文,2009
    [9]C.W.M.Yuen,S.Q.Jiang,C.W.Kan et al,Influence of surface treatment on the electroless nickel plating of textile fabric,Applied Surface Science,253(2007):5270-5257
    [10]姚子昂,韩宝芹,刘万顺等.不同分子量壳聚糖膜性质的研究,中国生物医学工程学报,2002,21(3):256-262
    [11]甘雪萍,仵亚婷,胡文彬,汤义武.导电涤纶织物的制备及其性能研究,材料工程,2007,8:12-16
    [12]强志斌,陈寅生,郭华文等.壳聚糖膜的制备及膜性能,东华大学学报(自然科学版),2007,33(2):212-215
    [13]姚静,邓炳耀,卢娜,高卫东.壳聚糖在纺织品功能整理中的应用,纺织导报, 2005,11:76-78
    [14]孙昌梅,曲荣君,王春华等.基于壳聚糖及其衍生物的金属离子吸附剂的研究进展,离子交换与吸附,2004,20(2):184-192
    [15]Eric Guibal, Interactions of metal ions with chitosan-based sorbents:a review, Separation and Purification Technology,2004,38:43-74
    [16]胡玉群,徐秀娟,周文龙.聚乳酸和涤纶纤维的鉴别方法,纺织学报,2006,27(5):16-18
    [17]Song-Se Yi, Dong-Ho Lee, Eunyoung Sin and Yoon-Sik Lee. Chitosan-supported palladium(O) catalyst for microware-prompted Suzuki cross-coupling reaction in water. Tetrahedron Letters,2007,48:6771-6775
    [18]Dongwei Wei,Weiping Qian,Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent,Collids and SurfacesB:Biointerfaces,2008,62(1):136-142
    [19]徐琳.ATR/FTIR在界面领域的应用研究.南京理工大学博士学位论文,2004.
    [1]马洪才,张梅.电磁屏蔽材料的技术探讨,山东纺织科技,2003,3:52-53
    [2]高必勇.棉金属丝防辐射面料的印染工艺.印染,2010,9:28-29
    [3]鲍红权,刘强华等.化学镀金属导电玻璃纤维制备与性能研究,玻璃纤维,1997,4:2-5
    [4]金永良.金属纤维的性能特点及其产品开发,棉纺织技术,2003,31(5):28-29
    [5]徐晶,徐先林.电磁辐射防护织物发展现状,纺织科技进展,2009,3:25-33
    [6]Gregorio Crini,Pierre-Marie Badot.Application of chitosan, a natural aminopolysaccharide,for dye removal from aqueous solutions by adsorption processes using batch studies:A review of recent literature,Prog. Polym. Sci.,2008,33:399-447
    [7]Esther Pascual,Maria Rosa Julia.The role of chitosan in wool finishing,Journal of Biotechnology,2001,89:289-296
    [8]肖高,施亦东,尹永志,陈衍夏.壳聚糖对棉织物生态功能整理的工艺研究,纺织科技进展,2010,1:16-18
    [9]孙斌,刘超锋.不同织物化学镀镍镀层形貌对比研究,表面技术,37,2008,6:10-11
    [10]常德华,宫宁瑞,刘继华,李惠生,王继勋.辐射对棉纤维素结晶度的影响,北京理工大学学报,1997,17(5):579-583
    [11]黄涛.金属钯纳米颗粒的形貌控制合成,中南民族大学,硕士学位论文,2008
    [12]杨防祖,杨斌,黄剑廷,吴丽琼,黄令,周绍民.次磷酸钠化学镀铜镍合金的研究,电镀与涂饰,2006,25(7):1-4
    [13]K.Firoz Babu,R.Senthikumar,M.Noel et al, Polypyrrole microstructure deposited by chemical and electrochemical methods on cotton fabrics, Synthetic Metals, 2009,159:1353-1358
    [14]Dragan Jocic, Susana Vilchez, Tatjana Topalovic et al,Chitosan/acid dye interaction in wool dyeing system, Carbohydrate Polymers,2005,60:51-59
    [15]王兰兰,张辉,张昭环,徐军.壳聚糖整理羊毛织物透湿性能研究,西安工程大学学报,2008,22(1):20-23
    [16]S.Vilchez,A.M.Manich,P.Jovancic et al,Chitosan contribution on wool treatments with enzyme,Carbohydrate Polymers,2008,71:515-523
    [17]侯秀良.山羊绒纤维结构与热学性能研究,东华大学博士学位论文,2002
    [18]余雪满,沈兰萍,李清政.壳聚糖用于毛织物抗静电整理的研究,毛纺科技,2008,6:18-21
    [19]王兰兰,张辉,张斌阁.壳聚糖对羊毛织物抗折皱和起毛起球性能的影响,现代纺织技术,2008,10:10-12
    [20]季莉,施亦东,任元元,童薇.采用壳聚糖对羊毛进行防毡缩整理探讨,纺织科技进展,2004,5:27-28
    [1]Eric Guibal. Interactions of metal ions with chitosan-based sorbents:a review, Separation and Purification Technology,2004,38:43-74
    [2]M. N. V. Ravi Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chitosan Chemistry and Pharmaceutical Perspectives, Chem. Rev.,2004,104 (12),6017-6084
    [3]胡宗智,游敏,林少馄等.壳聚糖在膜分离上的应用,三峡大学学报,2003,25(5):460-463
    [4]Zotkin M A, Vikhoreva G A,Smotrina T V,et al.Thermal modification and study of the structure of chitosan films,Fibre Chemistry,2004,36(1):16-20
    [5]张慧,李宁,戴友芝.重金属污染的生物修复技术,化工进展,2004,23(5):562-565
    [6]Dhiraj Sud, Garima Mahajan, M.P. Kaur.Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions -A review, Bioresource Technology,2008,99:6017-6027
    [7]Chen X.Improvement of the reduction capacity of activated carbon fiber.Carbon, 2003,41:126
    [8]张辉.化学吸附的量子力学绘景.科学出版社,北京,2004
    [9]徐寿昌.有机化学.高等教育出版社,北京,1993
    [10]何炳林,黄文强.离子交换与吸附,上海科技出版社,1995,3:64-65
    [11]V.K. Gupta, Suhas. Application of low-cost adsorbents for dye removal-A review, Journal of Environmental Management,2009,90:2313-2342
    [12]Montserrat Ruiz,Ana Maria Sastre, Eric Guibal. Palladium sorption on glutaraldehyde-crosslinked chitosan, Reactive & Functional Polymers,2000,45: 155-173
    [13]丁萍,黄可龙,李桂银.壳聚糖衍生物对Zn(Ⅱ)的吸附动力学及机理研究,化学通报,2006,7:503-507
    [14]彭少伟,林宏图,李思东等.球型C02+印迹壳聚糖树脂的吸附特性及动力学研究,广州化工,2006,34(6):1-3
    [15]丁纯梅,刘群,曹智一等.壳聚糖对水中铅的吸附性能及动力学研究,环境与健康杂志,2007,24(11):880-882
    [16]Ping Ding,Ke-Long Huang,Gui-Yin Li,Wen-Wen Zeng.Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn (Ⅱ),Hazardous Materials,2007,146:58-64
    [17]A. Ramesh,H. Hasegawa,W. Sugimoto,T. Maki, K. Ueda.Adsorption of gold (III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin,Bioresource Technology,2008,99:3801-3809
    [18]Kensuke Fujiwara, Attinti Ramesh, Teruya Maki, Hiroshi Hasegawa, Kazumasa Ueda. Adsorption of platinum(IV),palladium(II) and gold(III) from aqueous solutions onto 1-lysine modified crosslinked chitosan resin,Hazardous Materials,2007,146:39-50
    [19]康春莉,苏春彦,董德明等.自然水体生物膜胞外多糖吸附铅和镉的研究,吉林大学学报(理学版),2005,43(1):121-125
    [20]M.C. Ncibia, B. Mahjouba, A.M. Ben Hamissa, R. Ben Mansourc, M. Seffena, Biosorption of textile metal-complexed dye from aqueous medium using Posidonia oceanica (L.) leaf sheaths:Mathematical modeling, Desalination,2009,24(3):109-121
    [21]M.S. Chiou, H.Y. Li, Equilibrium and kinetic modelling of adsorption of reactive dye on crosslinked chitosan beads, J. Hazard. Mater. B,2002,93:233-248
    [22]曲保中,朱炳林,周伟红主编.新大学化学.科学出版社,北京,2007
    [23]傅献彩,沈文霞,姚天扬.物理化学,高等教育出版社,北京,1990
    [24]Ngah W S W,Ghani S Ab,Kamari A.Adsorption behaviour of Fe(II)and Fe(Ⅲ)ions in aqueous solution on chitosan and cross-linked chitosan beads.Bopresource Technology,2005,96:443-450
    [25]Aksu Z.,Yener J, Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge,Process Biochemistry,1998,33:649-655
    [26]刘成佐,周利民,黄群武,刘峙嵘.硫脲改性壳聚糖微球对Pt4+和Pd2+的吸附特性Ⅱ,吸附热力学和脱附,石油化工,2009,38(6):635-639
    [27]孙兰萍,许晖,赵大庆,张斌.壳聚糖铁(Ⅲ)配合物的合成剂结构表征,中国农学,2007,23(1):53-57
    [28]何炳林,黄文强.离子交换与吸附树脂,上海科技教育出版社,上海,1995
    [29]庄国顺,陈松,艾宏涛.固液界面吸附活化能的测定及其原理,化学学报,1984,42(10):1085-1089
    [30]毕全.壳聚糖对低浓度铜离子的吸附研究,南京理工大学,硕士学位论文
    [31]Gurusamy Annadurai,LaiYiLing,Jiunn-Fwu Lee,Adsorption of reactive dye from an aqueous solution by chitosan:isotherm,kinetic and thermodynamic analysis, Journal of Hazardous Materials,2008,152:337-346
    [32]Montserrat Ruiz,Ana Maria Sastre,Eric Guibal,Palladium sorption on glutaraldehyde-crosslinked chitosan,Reactive&Functional Polymers,2000,45: 155-173
    [1]高必勇.棉金属丝防辐射面料的印染工艺,印染,2010,9:28-29
    [2]程明军,吴雄英,张宁等.抗电磁辐射织物屏蔽效能的测试方法,印染,2003,9:31-34.
    [3]詹建朝,张辉,沈兰萍.不同增重率的化学镀镍电磁屏蔽织物的研究,产业用纺织品,2006,191(8):26-29
    [4]潘颖,朱平,董朝红.电磁防护纺织品的研究开发,染整技术,2007,29(3):4-8
    [5]解谷声.涤纶织物用壳聚糖作抗静电整理,辽宁丝绸,2002,3:37-40
    [6]许兰杰,郭昕.提高织物防静电性能的途径和方法,四川丝绸,2007,3:27-29
    [7]王菊生,孙铠主编.染整工艺原理第一册,中国纺织出版社,北京,1997
    [8]伏广伟,贺显伟.导电纤维与纺织品及其抗静电性能测试,纺织导报,2007,6:112-114
    [9]L. Dall'Acquaa, C. Tonina, R. Peilaa, F. Ferrerob, M. Catellanic, Performances and properties of intrinsic conductive cellulose-polypyrrole textiles, Synthetic Metals 146(2004)213-221
    [10]许先福,潘振克,黄正忠.电磁屏蔽材料的种类及应用.安全与电磁兼容,2000,(3):19-24
    [11]王锦成.电磁屏蔽材料的屏蔽原理及研究现状.化工新型材料,2002,30(7):16-19
    [12]姚穆.纺织材料学,中国纺织出版社,北京,1990
    [13]陈英.影响织物防紫外性能的因素,北京服装学院学报(自然科学版),2001,21(2):30-33
    [14]王锦成等.纳米材料在化学纤维中的应用,印染,2004,7:45-48
    [15]Rongjun Qu,Chngmei Sun,Fang Ma.Removal and recovery of Hg(Ⅱ) from aqueous solution using chitosan-coated cotton fibers, Journal of Hazardous Materials,2010,1:16-18
    [16]甘雪萍,电磁屏蔽用导电涤纶织物制备新技术及其产业化应用研究,上海交通大学博士学位论文,2007 verification of using chitosan and its derivatives as adsorbents for selected heavy metals,Journal of Environmental Management,2010,91:798-806
    [13]乔真真,赵雪,何瑾馨.壳聚糖双胍衍生物的合成及在羊毛上的应用,毛纺科技,2009,37(12):1-5
    [14]刘峥,蒋先民.壳聚糖与丙烯腈接枝共聚物的制备及固定化淀粉酶研究,离子交换与吸附,2001,17(3):256-262
    [15]周天,唐文琼,沈青.壳聚糖改性技术的新进展Ⅰ.烷基化、酰化以及接枝化改性,高分子通报,2008,11:54-65
    [16]吴刚,沈玉华,谢建安等.N,O-羧甲基壳聚糖的合成和性质研究,化学物理学报,2003,16(6):499-503
    [17]Sugimoto M,Morimoto M,Sashiwa H,Saimoto H,Shigemasa Y,Prepration and Characterization of water-soluble chitin and chitosan derivatives, Carbohydrte Polymers,1998,36:49-59
    [18]Hjerde R J N,Varum K M,Grasdalen H,Tokuras,Smidsrod O,Chemieal composition of O— (carboxymethyl) —chitins in relation to lysozyme degradation rates,Carbohydrate Polymers,1997,34:131-139
    [19]Marguerite Rinaudo, Chitin and chitosan: Properties and applications, Prog. Polym. Sci.,2006,31:603-632
    [20]S. Vilchez, A.M. Manich, P. Jovancic, P. Erra, Chitosan contribution on wool treatments with enzyme, Carbohydrate Polymers 71 (2008) 515-523
    [21]Athena Webster,Merrill D,Halling and David M.Grant,Metal complexation of chitosan and its glutaraldehyde cross-linked derivatives, Carbohydrate Research, 2007,342:1189-1201
    [22]贺娟,王花娥,薛元,易洪雷.电磁波辐射屏蔽织物的研究发展现状,山东纺织科技,2008,3:44-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700