用户名: 密码: 验证码:
沉淀法制备纳米氧化铝粉体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用直接沉淀法、均匀沉淀法和前驱体热解法等三种方法制备了纳米氧化铝粉体。在直接沉淀法制备纳米氧化铝粉体的研制过程中,采用了价格相对较为低廉的氯化铝为原料,以氨水为沉淀剂,对反应物的浓度、溶液的pH值、陈化时间等工艺参数进行了研究。结果表明,采用该种方法得到的颗粒尺寸大,粒度分布范围宽,粉体性能不够理想。在均匀沉淀法制备纳米氧化铝粉体的研制过程中,以氯化铝和硝酸铝为原料,六次甲基四胺为沉淀剂,对反应物的浓度、反应物配比、反应温度和反应时间等工艺参数进行了研究。结果表明,以硝酸铝为原料、反应物浓度为2.0mol/L、50℃×30min水浴加热后能制得透明稳定的氢氧化铝凝胶,凝胶经冷冻干燥并于1150℃×60min煅烧后能制得粒度为80~120nm、呈无规则形状的纳米α-Al_2O_3颗粒。该方法制备纳米氧化铝粉体具有工艺简单、成本低、纯度高、能够大量生产、设备制造简单和工艺流程短等优点,是一种具有极大潜力的纳米粉体制备方法。在前驱体热解法制备纳米氧化铝粉体的研制过程中,研究了以硫酸铝铵和碳酸氢铵为原料,采用化学沉淀法制备尺寸均一、颗粒细小、分散的碳酸铝铵沉淀先驱体的工艺。研究表明,反应物的混合方式、滴定速度、反应物配比以及反应体系的pH值等因素对前驱体的形成有非常大的影响。对两种不同的前驱体产物分别采用超临界干燥和冷冻干燥,并在不同的温度下煅烧,用XRD、DTA—TG、TEM、BET等测试方法对粉体性能进行了表征。结果表明,将0.2mol/L的硫酸铝铵溶液以2~3ml/min的速度滴加到2.0mol/L的碳酸氢铵溶液中,控制反应体系的pH值为8.5~10.0,碳酸氢铵对硫酸铝铵的配比过剩系数为1.20~1.40,可获得性能良好的前驱体碳酸铝铵沉淀(NH_4AlO(OH)HCO_3)。前驱体经超临界干燥、1200℃×60min煅烧后能得到团聚程度小、长度为100~200nm、宽度为5~10nm的呈纤维状的纳米α-Al_2O_3粉体。
Adopting three methods (direct precipitation method,homogeneous precipitataion method and precursor pyrogenation method), nano-Al2O3 powder has been prepared in the present paper. In the process of preparing nano-Al2O3 powder by direct precipitation method, relatively cheap AlCl3 was used as raw material, NH3 H2O as precipitator, the process parameters including concentration of reactants,pH values of solutions and aging time were studied. Experimental results show that powder size, size distribution of granularity and the properties of nano-Al2O3 powder prepared in this way were not very well.
    In the process of preparing nano-Al2O3 powder by homogeneous precipitataion method, using AlCl3 and Al(NO3)3 as raw materials, hexametny lenetetramie as precipitator, process parameters including concentration of reactants, proportion of reactants, reaction temperature and reaction time were studied.
    It was indicated that steady and transparent A1(OH)3 geltum can be produced by using A1(NO3)3 as raw material under the condition of reactants concentration of 2.0mol/L and reaction temperature of 50 C in a water bath for 30mins, then 80~120nm and irregular sized nano- -Al2O3 powder can be prepared through calcining geltum at 1150C for 1h. This is a potential way to prepare nano-powder because of its characteristics such as relative simple technology, high purity, high efficiency and relative simple facilities requirement.
    In the process of preparing nano-Al2O3 powder by chemistry precipitation method, the technology of uniform sized NH4A1O(OH)HCO3 precursory preparation was studied. Research shows that technical factors including mixing mode of reactants , titration speed , proportion of reactants and pH value of solutions etc have a great influence on the formation of precursor. Adopting supercritical drying and feeze drying technology, these two kinds of precursor were pretreated, sintered at different temperature. XRD,DTA?TG,TEM,BET techniques were used to characterize the nano-Al2O3 powder, the results show that drop NH4A10(OH)HCO3 solution whose concentration is 0.2mol/L into NEUHCO3 solution whose concentration is 2 mol/L with the speed of 2 ~3ml/min, controlling the solution pH value is about 8.5 ~ 10.0, and the excess-ratio of matching NH4HCO3 to NH4Al(SO4) 2 is about 1.20~1.40, can get good-nature precursor of NH4AlO(OH)HCO3. through supercritical dried, 1200 C 60 min calcined, low agglomeration fiber-like nano- -Al2O3 power with the length of 100~200nm and the wideth of 5~ 10nm can be prepared.
引文
[1] 张立德.纳米材料与纳米结构[M].北京:化学工业出版社,2000
    [2] 陈改荣.纳米材料的特性及进展[J].平原大学学报.2000,17(4):41~43
    [3] 高新,李稳宏,王锋等.纳米材料的性能及其应用领域[J].石化技术与应用.2002,20(3):199~201
    [4] 张万忠,李万雄.纳米材料研究综述[J].湖北农学院学报.2003,23(5):397~400
    [5] 玉金,王九思,田玲.纳米材料的基本特性及发展和应用概况[J].甘肃教育学院学报(自然科学版),2003,17(3):54~56
    [6] 田明原,施尔畏,郭景坤.纳米陶瓷与纳米粉末[J].无机材料学报.1998,13(2):129~137
    [7] 陈大明.纳米陶瓷复合材料的制备与性能[J].材料导报.1997,11(5):67~71
    [8] Tatsuki O, Atsushi N. Tensile creep behavior of alumina/sillicon carbide nanocomposite [J]. J Am Ceram Soc, 1994, 77(12): 3259~3262
    [9] 余虹.纳米材料及其应用前景[J].杭州化工.2002,32(4):17~19
    [10] Bogdanchikova N E, Fuentes S,Avalos-Borja M, et al. Structural properties of Pd catalysts supported on La_2O_3 prepared by sol-gel method [J]. Applied Catalysis B: Environmental. 1998, 17(3): 221~231
    [11] 耿新玲,袁伟.纳米氧化铝的制备与应用进展[J].河北化工.2002,3:1~4
    [12] Josephl Katz, Chen-hung Hung. Ceramic Oxide Powders And The Formation Thereof [P]. US, 5628337. 1993
    [13] Formenti M, Huillet F, Meraudeau P. Preparation in A Hydrogen-oxygen flame of Ultrafine Metal Oxide Particles [J]. Journal of Colloid Interface Science. 1972, 39(1): 79~89.
    [14] Chen Y J, Glumar N G, Skandan G. High Rate Production of Nonagglomerated Nanoparticle by Flame Synthesis [M]. Chem Phys Nanostruct Relat Non-equlilb Mater[syrup]. 1997: 143~148
    [15] Borsella E, botli S. Lasers-driver Synthesis of Nanocryslline Alumina Powders from Gas-phase Precursors [J]. Apply Phys Lett. 1993, 63(10): 1345~1347
    [16] 仲田清和,小野守章,小营茂羲.超微粒子制造方法[P].日本公开特许公报.昭1988,101:63~95
    [17] 唐海红,焦淑红,杨红菊等.纳米氧化铝的制备及应用[J].中国粉体技术.2002,8(6):37~39
    [18] 杨南如,余桂郁.溶胶-凝胶法简介[J].硅酸盐通报.1993,12(3):56~63
    [19] Felde B, et al. Synthesis of Ultrafine Alumina Powder by Sol-gel Techniques [J]. Adv Sci Technol, 1999, 14:49~56
    [20] 陈忠,杨松青,蒋汉瀛.溶胶-凝胶法制备超细高纯氧化铝[J].无机盐工业.1997,4:10~12
    [21] 甘礼华,岳天仪,李光明等.微乳液法制备γ-Al_2O_3超细粉及其表征[J].同济大学学报.1996,24(2):194~197
    [22] 吴义权,张玉峰,黄校先.低温制备纳米α-Al_2O_3粉体[J].无机材料学报.2001,16(2):349~352
    
    
    [23] 张艾飞,刘吉平.沉淀法制备纳米氧化铝粉体的新工艺.无机盐工业.2003,35(2):27~28
    [24] 施剑林,高建华,阮美玲.均相沉淀法制备球形氢氧化铝颗粒及其热分解行为.无机材料学报.1992,7(2):161~167
    [25] 李东红,周海东,简本成等.溶胶-相转移法制备纳米氧化铝的研究[J].轻金属.2001,10:9~11
    [26] J.Karthikeyan, C.C.Bemdt, J,Tikkanen, et.al. Plasma spray synthesis of nanomateril powders and deposits [J]. Materials science and engineering. A, 1997, 238:275~286
    [27] 唐浩林,潘牧,赵修建.溶胶等离子喷射合成法制备α-Al_2O_3纳米材料[J].陶瓷学报.2002,23(1):22~25
    [28] 程志林,晁自胜,万惠霖.发泡法合成纳米氧化铝[J].应用化学.2002,19(11):1032~1036
    [29] 李懋强.湿化学法合成陶瓷粉料的原理和方法[J].硅酸盐学报.1994,22(1):89~94
    [30] 许可敬,杨新春,田贵山等.采用引入晶种的水热合成法制备α-Al_2O_3纳米粉[J].硅酸盐学报.2001,29(6):576~579
    [31] 李荣兴,谢刚,张雄飞.电化学方法制备纳米氧化铝[J].科学技术与工程,2003,3(5):438~440
    [32] Paulus Wolfgang (DE), H Auml Ussling Lukas (DE). High surface area alumina solid [P]. US 6238701, 2001-05-29
    [33] 殷声.燃烧合成[M].北京:冶金工业出版社,1999.120~185
    [34] 翟秀静,符岩,暴永生等.燃烧合成技术制备α-Al_2O_3纳米粉[J].东北大学学报(自然科学版).2002,23(9):851~853
    [35] Okitsu K, Mizukoshi Y, Bandow H, et al. Synthesis of palladium nanoparticles with interstitial carbon by sonochemical reduction oftetrachloropalladate(Ⅱ) in aqueous solution [J]. J Phs Chem B, 1997, 101: 5470~5472
    [36] 李春喜,王子镐.超声波在制备纳米材料中的应用[J].化学通报,2001,64(5):268~271 .
    [37] Mdleleni M M, Hyeon T, Suslick K S. Sonochemical synthesis of nanostructureed molybdenum sulfide [J]. J AM Chem Soc. 1998, 120:6189~6190
    [38] Savrun E, Toy C. The effect of sonication for precipitation of hydrated aluminum sulphate in aqueous Al_2(SO_4)_3-urea system [J]. J Mar Sci Lett, 1997, 16:1164~1166
    [39] 王雅娟,李春喜,王子镐.超声波-化学沉淀法制备纳米氧化铝粒子[J].北京化工大学学报.2002,29(4):8~10,13
    [40] 陈志刚,陈彩风,刘苏.超声场中湿法制备Al_2O_3纳米粉工艺研究[J].硅酸盐学报.2003,31(2):213~217
    [41] 陈建峰,邹海魁,刘润静等.超重力反应沉淀法合成纳米材料及其应用[J].现代化工,2001,21(9):9~12
    [42] 安胜利.稳定氧化锆超细粉末的团聚现象[J].包头钢铁学院学报.1992,11(2):14~19
    [43] 李凤生等.超细粉技术[M].北京:国防工业出版社.2000,7
    [44] 丛丽娜.粉体团聚对氧化铝陶瓷烧结的影响[J].河北陶瓷.1999,27(1):26~28
    
    
    [45] 刘志强,李小斌,彭志宏等.湿化学法制备超细粉末过程中的团聚机理及消除方法[J].化学通报.1999,7:54~57
    [46] 濑升,尾崎义治,贺集诚一郎等.超微颗粒导论[M].武汉:武汉工业大学出版社.1991
    [47] 张芳,胡志强,蔡英骥.聚乙二醇加入量对锆钛酸铅粉体的影响[J].大连轻工业学院学报.2002,21(3):164~167
    [48] 许珂敬,许煜汾.表面活性剂在制备ZrO2微粉中的作用[J].材料研究学报.1999,13(4):434~436
    [49] 季福元.聚合物分散剂在特种陶瓷浆料制备中的应用[J].江苏陶瓷.2000,33(12):16~17
    [50] 许迪春,郝晓春,朱宜惠.湿化学法制备ZrO_2(Y_2O_3)超细粉末过程中团聚状态的控制[J].硅酸盐学报.1992,20(1):48~54
    [51] 徐明霞,方洞浦,郭瑞松等.PEG在ZrO2前驱体表面的吸附及改性作用[J].无津大学学报.1994,27(2):174~178
    [52] 胡伟伯.浮选.北京:冶金工业出版社,1989
    [53] 梁长海.维持凝胶织构的干躁理论、技术及应用[J].功能材料.1997,28(1):10~14
    [54] 梁燕波,童景山.超临界干燥工艺与干燥机理的研究[J].中国矿业大学学报.1995,24(4):97~100
    [55] 沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社.
    [56] Twari P H, Hunt A J, Lofftus K D. Ambient temperature supercritical drying of transparent silica aerogels [J]. Mater Lett. 1985, 3(9,10): 363~368
    [57] 张义民.溶胶-凝胶法制备耐热Al_2O_3气凝胶[J].河南科学.2002,20(3):239~241
    [58] 赵惠忠,计道君,汪厚植等.Al_2O_3-SiO_2纳米复合粉体材料的超临界制备及其性能[J].耐火材料.2003,37(2):69~74
    [59] 李大成,周大利,刘恒等.超微粉体的制备[J].四川有色金属.1999,4:32~39
    [60] 丁正斌,周永安.冷冻干燥工艺探讨[J].冷藏技术.1996,1:35~39
    [61] 李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1990
    [62] 加藤修三.NH_4AlO(OH)HCO_3合成[J].窖业协会志.1976,84(5):215~219
    [63] 林浩一.碳酸盐NH_4AlO(OH)HCO_3(AACH)最适作制条件[J].窖业协会志.1989,98(5):868~871
    [64] 李继光,孙旭东,张民等.碳酸铝铵热分解制备α-Al_2O_3超细粉[J].无机材料学报.1998,13(6):803~807
    [65] 林元华,张中太,黄传勇等.前驱体热解法制备高纯超细α-Al_2O_3粉体[J].硅酸盐学报.2000,28(3):268~271
    [66] Der R K.Fibrillar Colloidal Boehmite[J].I J.Am.Ceram.Soc.1961,44(12):618~624
    [67] 顾燕芳,赵晟筠,胡黎明等.液相沉淀法制备氧化铝超细粒子[J].化工冶金.1993,14(1):14~21
    [68] 陈寿椿.重要无机化学反应[M].上海:上海科技出版社,1982
    [69] 楼明.仿珍珠结构层状复合氧化铝陶瓷的性能及其增韧机理研究[硕士论文].杭州:浙江大学,1994
    
    
    [70] 祖庸,刘超锋,李晓娥.均匀沉淀法合成纳米氧化锌[J].现代化工.1997,17(9):33~35
    [71] 张明月,廖列文.均匀沉淀法制备纳米氧化物研究进展[J].化工装备技术.2002,23(4):18~20
    [72] Bailar J C. et al. Comprehensive Inorganic Chemistry[J]. Oxford. Pergamon Press. 1973: 607~618
    [73] 马青松,简科,陈朝辉等.溶胶.凝胶法合成氧化铝-氧化硅纳米粉[J].国防科技大学学报.2002,24(4):25~28
    [74] 张大海,杨辉,余瑞莲等.无机盐先驱体溶胶-凝胶法制备50%Al_2O_3-50%ZrO_2细晶复相陶瓷[J].硅酸盐学报.1997,25(5):594~597
    [75] 李月明,周健儿,顾幸勇等.溶胶-凝胶法制备Al_2O_3纳米粉.[J].中国陶瓷.2002,38(5):4~6
    [76] 英宏,赵志江,李继光等.Al(OH)_3煅烧制备α-Al_2O_3纳米粉[J].东北大学学报(自然科学版).2000,21(1):90~92
    [77] 高伟译.从铝盐中用溶凝沉淀法制备亚微Al_2O_3粉末及其特性[J].国外耐火材料.1996,30(7):40~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700