用户名: 密码: 验证码:
微乳法合成纳米ZnCO_3、ZnO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究纳米碳酸锌和纳米氧化锌的制备、表征和性能。用微乳法合成了纳米碳酸锌和纳米氧化锌,对二者的形貌、大小、粒度分布等进行了表征;测定了纳米碳酸锌热分解反应动力学参数;研究纳米氧化锌在紫外-可见光区域的吸收性能,得到了比较好的结果。
     我们选择由CTAB/正丁醇/正辛烷/盐溶液组成的微乳体系,首先用马尔文粒度测定仪对含硝酸锌和碳酸铵的W/O型微乳液反胶束中液滴的大小进行了表征。测定结果表明,微乳液中液滴大小均匀,分布很窄,直径分别在6.2~12.4nm和4.9~7.7nm之间,非常适合作纳米反应器宋制备纳米粒子。分别改变表面活性剂和反应物的浓度,制备出了1号、2号和3号纳米碳酸锌。用透射电子显微镜观察1号、2号和3号纳米碳酸锌粒子,可以看到粒子形状为椭球形,大小均匀,分散性好,没有明显的团聚现象,粒径分别在20~40nm、6~10nm、5~8nm之间;并且用微粒度测定仪测得了粉体的粒度分布图,表明纳米碳酸锌粒子的分布很窄。由实验测定结果经过计算得到纳米碳酸锌分解反应的活化能为110kJ.mol~(-1),相应的反应级数为0.9级。
     将制得的纳米碳酸锌在一定温度下分解就得到了纳米氧化锌。所制得的产物经X-射线衍射结果证实,与六方氧化锌的JCPDS卡符合很好;运用透射电子显微镜对所制得的氧化锌的粒径进行了表征,发现氧化锌分散性很好,少团聚,粒度分布均匀,粒径在5~40nm之间;粒度分布测定结果表明,纳米氧化锌粒子的分布很窄。实验事实表明:在制备纳米粒子方面,微乳法有其独特的优点。
     本论文最后对纳米氧化锌的紫外-可见光吸收性能进行了研究。实验结果表明:纳米氧化锌具有特殊的光学性能,即在可见光区有良好的透光率,在紫外区表现出强的宽带吸收,特别对长波紫外线有很强的吸收能力。利用纳米氧化锌在紫外区有强的宽带吸收的特性,可单独使用纳米氧化锌作为防晒剂成分就能高效吸收紫外线保护皮肤。
This thesis studied on the preparation, characterization and capability of nanosized zinc carbonate and zinc oxide. Using microemulsion method, we synthesized nanosized zinc carbonate and zinc oxide, which were characterized for the morphology, size and particle size distribution etc. The kinetic parameters of thermal decomposition reaction of nanosized zinc carbonate were determined, while the absorptivity of ultraviolet and visible light of nanosized zinc oxide in aqueous solution was studied.
    The microemulsion system has been chosen that consisted of CTAB/butanol/ octane/saline solution. The influences of the concentration of the surfactant and reactant on the diameter of nanoparticles were studied and the kinetic parameters of thermal decomposition reaction were determined. It can be shown from experimental results, the diameter of the droplet in the W/O microemulsion which have dissolved reactant zinc nitrate and sal volatile is between 4.9 nm and 7.7 nm, 6.2 nm and 12.4 nm, respectively. Nanosized zinc carbonate prepared by the method of microemulsion has shown good dispersion, narrow distribution and light agglomeration. The particle size of nanosized zinc carbonate is between 5 nm and 40 nm, and its kinetic parameters of thermal decomposition reaction-activation energy E and reaction order n are 110 kJ.mol-1 and 0.9, respectively.
    Nanosized zinc oxide was obtained by decomposing nanosized zinc carbonate that had been prepared. XRD showed that the data of the product accorded with those of JCPDS card of hexagonal zinc oxide. TEM showed that the prepared zinc oxide particles with diameter in the range of 5 ?40 nm had good dispersion, light agglomeration and uniform distribution. It was showed from the determinable results of the size distribution that nanosized zinc oxide had narrow distribution. The experimental facts indicated that the microemulsion method has its particular merits in the aspect of preparing nanosized particles.
    This thesis finally studied on the absorptivity of ultraviolet and visible light of nanosized zinc oxide in aqueous solution. The experimental results showed that nanosized zinc oxide has the particular optical performance, namely it has good transparency in visible light zone, and exhibits strong wide band absorption in ultraviolet zone, especially has very strong the capability of absorption to UVA with 360 ~ 380 nm. Using the
    
    
    
    
    characteristic of strong wide band absorption of nanosized zinc oxide in ultraviolet zone, it can be alone employed as the component of sun-screening agent to protect the skin by efficiently absorbing the ultraviolet ray.
引文
[1] Milan-Johann Schwuger, Katrin Stickdom, Reinhard Schomcker. Microemulsions in Technical Processes. Chem. Rev., 1995, 95, 849~864.
    [2] C. Tojo, M. C. Blanco, F. Rivadulla, and M. A. López-Quintela. Kinetics of the Formation of Particles in Microemulsions. Langmuir, 1997, 13, 1970~1977.
    
    
    [3] M. Arturo López-Quintela and José Rivas. Chemical Reactions in Microemulsions :A Powerful Method to Obtain Ultrafine Particles. J. Colloid Interface Sci., 1993, 158, 446~451.
    [4] Yongcheng Li and C.-W. Park. Particle Size Distribution in the Synthesis of Nanoparticles Using Microemulsions. Langmuir, 1999, 15, 952~956.
    [5] M. Dvolaitzky, M. Guyot, et al. A Structural Description of Liquid Particle Dispersions: Ultra-centrifugation and Small Angle Neutron Scattering Studies of Microemulsions. J. Chem. Phys., 1978, 69(7), 3279~3288.
    [6] Rei-Nan Hwan, Clarence A. Miller, and Tomlinson Fort, JR. Determination of Microemulsion Phase Continuity and Drop Size by Ultracentrifugation. J. Colloid Interface Sci., 1979, 68(2), 221~234.
    [7] 施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用.功能材料,1998,29(2),136~139.
    [8] 尹荔松,沈辉.微乳技术制备纳米微粒的研究进展.功能材料,2001,32(6),580~582.
    [9] 沈兴海,王文清,王爽,等.P507(K)-醇-正庚烷—水四组分微乳液体系的结构参数.物理化学学报,1994,10(7),585~590.
    [10] 侯震山,李之平.聚乙二醇在Triton X-114/正辛烷/正丁醇/水反相微乳液中的增溶研究.化学学报,2000,58(3),262~266.
    [11] 崔正刚,殷福珊编.微乳化技术及应用.中国轻工业出版社,1999.
    [12] 王笃金,吴瑾光,徐光宪.反胶团或微乳液法制备超细颗粒的研究进展.化学通报,1995,9,1~5.
    [13] 尹荔松,沈辉.微乳技术制备纳米微粒的研究进展.功能材料,2001,32(6),580~582.
    [14] 郑树亮,黑恩成编著.应用胶体化学.华东理工大学出版社,1996.
    [15] Pileni M. P., Lisiecki I. Nanometer Metallic Copper Particle Synthesis in Reverse Micelles. Colloids and Surfaces, 1993, 80(1), 63~68.
    [16] Lang J., Lalem N., Zana R. Droplet Size and Dynamics in Water-in-Oil Microemulsions. Colloids and Surfaces, 1992, 68(3), 199~206.
    [17] 沈兴海,王文清,高宏成.稀释法求微乳液体系的结构参数.北京大学学报(自然科学版),1994,30(2),147~153.
    [18] 沈钟,王国庭编著.胶体与表面化学.化学工业出版社,1997.
    [19] 朱砂瑶,赵振国编著.界面化学基础.化学工业出版社,1996.
    [20] 姜兆华,孙德智,邵光杰主编.应用表面化学与技术.哈尔滨工业大学出版社,2000.
    
    
    [21] P. Lianos and J. K. Thomas. Small CdS Particles in Inverted Micelles. J. Colloid Interface Sci., 1987, 117(2), 505~512.
    [22] 张岩,邹炳锁,肖良质.微乳胶法制备单分散 Fe_2O_3超微粒子及其表征.吉林大学自然科学学报,1990,4.115~116.
    [23] C. Petit, P. Lixon, and M. P. Pileni. Synthesis of Cadmium Sulfide in Situ in Reverse Micelles. 2. Influence of the Interface on the Growth of the Particles. J. Phys. Chem., 1990, 94, 1598~1603.
    [24] Matson Dean W., Fulton John L., Smith Richard D. Formation of Fine Particles in Supercritical Fluid Micelle Systems. Mater. Lett., 1987, 6(1-2), 31~33.
    [25] Lufimpadio N., Nagy J. B., Derouane E. G. Preparation of Colloidal Iron Boride Particles in the CTAB-n-Hexanol-Water Reversed Micellar System. Surfactants Solution, 1984, 3, 1483~1497.
    [26] 沈兴海,高宏成.纳米微粒的微乳液制备法.化学通报,1995,11,6~9.
    [27] Motte L., Petit C., Boulanger L., et al. Synthesis of Cadmium Sulfide in Situ in Cadmium Bis(2-ethylhexyl) Sulfosuccinate Reverse Micelle: Polydispersity and Photochemical Reaction. Langmuir, 1992, 8(4), 1049~1053.
    [28] Pushnan AYYUB, A. N MAITRA, and D. O. SHAH. Formation of Theoretical-Density Micro-homogeneous YB_(a2)Cu_3O_(7-x) Using a Microemulsion-Mediated Process. Physica C, 1990, 168, 571~579.
    [29] Santosh K. Haram, Anand R. Mahadeshwar, and Sharad G. Dixit. Synthesis and Characterization of Copper Sulfide Nanoparticles in Triton-X 100 Water-in-Oil Microemulsions. J. Phys. Chem., 1996, 100, 5868~5873.
    [30] 施利毅,胡莹玉,张剑平,等.微乳液反应法合成二氧化钛超细粒子.功能材料,1999,30(5),495~497.
    [31] 梁桂勇,翟学良.微乳液法制备纳米银粒子.功能材料,1999,30(5),484~485.
    [32] Boutonnet Magali, Kizling Jerzy, Stenius Per, et al. The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions. Colloids and Surfaces, 1982, 5(3), 209~225.
    [33] 颜肖慈,余林颇,罗春霞,等.纳米氧化锌微乳液法的研制和表征.十堰职业技术学院学报,2002,15(2),67~68.
    [34] 潘庆宜,徐甲强,刘宏民,等.微乳法纳米SnO_2材料的合成、结构与气敏性能.无机材料学报,1999,14(1),83~89.
    [35] Myung-Han Lee, Seong-Geun Oh, and Sung-Chul Yi. Preparation of Eu-Doped Y_2O_3 Luminescent Nanoparticles in Nonionic Reverse Microemulsions. J. Colloid Interface Sci., 2000, 226(1), 65~70.
    
    
    [36] J. A. López pérez and M. A. López Quintela, et al. Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method. J. Phys. Chem. B, 1997, 101(41), 8045~8047.
    [37] F. Debuigne, L. Jeunieau, M. Wiame, and J. B. Nagy. Synthesis of Organic Nanoparticles in Different W/O Microemulsions. Langmuir, 2000, 16, 7605~7611.
    [38] Santosh K. Haram, Anand R. Mahadeshwar, and Sharad G. Dixit. Synthesis and Characterization of Copper Sulfide Nanoparticles in Triton-X 100 Water-in-Oil Microemulsions. J. Phys. Chem., 1996, 100, 5868~5873.
    [39] V. Marcianò, A. Minore, and V. Turco Liveri. A Simple Method to Prepare Solid Nanoparticles of Water-Soluble Salts Using Water-in-Oil Microemulsions. Colloid Polym. Sci. 2000, 278, 250~252.
    [40] C. Petit and M. P. Pileni. Synthesis of Cadmium Sulfide in Situ in Reverse Micelles and in Hydrocarbon Gels. J. Phys. Chem., 1988, 92, 2282~2286.
    [41] Karayigitoglu Cigdem, Tara Murthy, John Vijay T., et al. Modifications of CdS Nanoparticle Characteristics Through Synthesis in Reversed Micelles and Exposure to Enhanced Gas Pressures and Reduced Temperatures. Colloids and Surfaces A, 1994, 82(2), 151~162.
    [42] Henglein A, in "Topics in Current Chemistry" Vol. 143, Springer: Berlin, 1988, 113.
    [43] Kazue Kurihara, Jerzy Kizling, Per Stenius, and Janos H. Fendler. Laser and Pulse Radiolytically Induced Colloidal Gold Formation in Water and in Water-in-Oil Microemulsions. J. Am. Chem. Soc., 1983, 105, 2574~2579.
    [44] P. Barnickel, A. Wokaun, W. Sager, and H.-F. Eicke. Size Tailoring of Silver Colloids by Reduction in W/O Microemulsions. J. Colloid Interface Sci., 1992, 148(1), 80~90.
    [45] 刘超锋,祖庸,陈晓东,等.纳米氧化锌的制备与研究.化工新型材料,1995,11,13~15.
    [46] 雷闫盈,卫志贤,祖庸,等.年产20t纳米ZnO中试研究及生产.功能材料,2001,32(4),410~412.
    [47] 李汶军,施尔畏,王布国,等.水热法制备氧化锌粉体.无机材料学报,1998,13(1),27~32.
    [48] Eric A. Meulenkamp. Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B, 1998, 102(29), 5566~5572.
    [49] S. Hingorani, V. Pillai, P. Kumar, M .S Multani and D. O. Shah. Microemulsion Mediated Synthesis of Zinc-Oxide Nanoparticles for Varistor Studies. Mat. Res. Bull., 1993, 28, 1303~1310.
    [50] M. Singhal, V. Chhabra, P. Kang, and D. O. Shah. Synthesis of ZnO Nanoparticles for Varistor Application Using Zn-Substituted Aerosol OT Microemulsion. Mat. Res. Bull., 1997, 32(2), 239~247.
    
    
    [51] 徐甲强,潘庆谊,孙雨安,等.纳米氧化锌的乳液合成、结构表征与气敏性能.无机化学学报,1998,14(3),355~359.
    [52] 崔若梅,张文礼,徐中理,等.纳米氧化锌的制备与表征.化学世界,1999,12,630~633.
    [53] 崔若梅,庞海龙,张文礼,等.微乳液中制备ZnO、CuO超微粒子.西北师范大学学报(自然科学版),2000,36(4),46~49.
    [54] 韩周祥,王建林.ZnO纳米晶的表征.郑州轻工业学院学报(自然科学版),2002,17(1),31~33.
    [55] 马正先,韩跃新,郑龙熙,等.纳米氧化锌的制备与应用研究进展.矿产保护与利用,2002,1,37~43.
    [56] 祖庸,雷闫盈,王训,等.纳米氧化锌的奇妙用途.化工新型材料,1999,3,14~16.
    [57] 王玉棉,侯新刚,王大辉,等.纳米氧化锌的制备技术及应用.有色金属(冶炼部分),2002,3,39~41.
    [58] 詹国平,黄可龙,刘素琴.纳米级氧化锌的制备技术与研究进展.化工新型材料,2001,29(7),15~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700