用户名: 密码: 验证码:
硫酸盐还原菌腐蚀的影响因素及其防治方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫酸盐还原菌(SRB)是导致微生物腐蚀最为普遍的菌种,其引起的腐蚀约占所有腐蚀总量的10%左右。研究硫酸盐还原菌腐蚀的影响因素及其防治方法已经成为当前的热点课题之一。
     本文将实地取来的两种环境介质富集培养,获得硫酸盐还原菌菌种。利用最大可能计数法(MPN法)进行计数,低温冷藏保存菌种。通过简单染色法和格兰氏染色法进行细菌形貌鉴定,证明了从淡海水和海泥中提纯出的细菌都属于格兰氏阴性菌。
     在研究硫酸盐还原菌腐蚀影响因素的实验中,将提纯的菌种进行三试管分批培养,实验结果显示,在环境pH值小于5.0和大于9.5时,或者高矿化度条件下(大于30g/L),硫酸盐还原菌不能存活。
     在研究硫酸盐还原菌腐蚀防治方法的实验中,首先考察了溶解氧对于SRB腐蚀的作用。用间歇通入氧气和氮气的方法进行SRB对A3钢的腐蚀实验,得到如下结果:严格厌氧条件下A3钢的SRB腐蚀速率与连续的厌氧-有氧交替变换条件下的SRB腐蚀速率相差并不明显。目前油田系统中使用的短时曝气法的有效性有待商榷。
     在探讨超声波对SRB的杀灭作用时,将SRB置于不同时间和功率的超声条件下进行腐蚀实验。结果显示,在作用时间比较长(10min和20min)的条件下,较大功率的超声波(320W)对SRB具有明显的杀灭作用,同时这种作用随着超声波作用时间的减少和功率的降低而减弱。
     为了确定SRB的抗药性的产生原因和解决方法,进行了SRB对杀菌剂抗药性的实验。实验结果证明,SRB对1227杀菌剂的抗药性不是因为细菌本身的突变产生的,而是由于其对药物的适应产生,没有很强的稳定性和遗传性。同时SRB对1227和甲硝唑两种杀菌剂没有交叉抗药性。
Sulfate-Reducing Bacteria (SRB) may corrode metals seriously. So the study on preventing metal from SRB corrosion is becoming more and more important.
    In this paper, Sulfate-Reducing Bacteria (SRB), which gain from sea and mud near Dandong Power Company, is purified with solid mediums, conserved at low temperature and counted in Most Possible Number method. The bacterium is identified to belong to G' in both simple staining method and Gram's staining method
    In order to open out the relationship between cultivating pH, mineralization degree and SRB reproduction, the cultivating method of Three Test Tube is used. The result shows that SRB can reproduce while pH is during 5.0-9.5 and mineralization degree is during 7.5-30g/L.
    The effects of SRB in different oxygen environments on corrosion of A3 steel are studied through static cultivating experiments. The result shows that the corroded velocity of A3 steel by SRB in anaerobic environment is almost same as that in continual anaerobic-aerobic environment.
    The effects of power ultrasound on corroded velocity of A3 steel by SRB are studied through static cultivating experiments. The result shows that the corroded velocity of A3 steel by SRB in the intense power (320W) ultrasound enviroments for long time (10 minutes and 20 minutes) is obviously less than that in the non-ultrasound environment. While the corroded velocity of A3 steel by SRB in feebleness power (180W) ultrasound enviroments for short time (2 minutes and 5 minutes) is almost same as that in the non- ultrasound environment.
    Finally, the effects of bactericide on Sulfate-Reducing Bacteria are studied. The result shows that why SRB has drug- resistivity is due to its adaptability to bactericide. The drug- resistivity is neither steady nor cross-link with the bactericide of metronidazole.
引文
[1].张学元等.油气工业中细菌的腐蚀和防护[J].石油与天然气化工,1999,28:53-56
    [2]. Wagner P, Little B. Impact of Alloying on Microbiologically Influenced Corrosion-A Review [J]. Materials Performance, 1993, 8 (6) : 65-68
    [3].余敦义等.硫酸盐还原菌生长规律的研究现状与热点[J].中国腐蚀与防护学报,1996,16(1):64-68
    [4]. George J, Licina. Passivity Break down of Mild Steel in Sea Water in the Presence of SRB [J]. Materials Performance, 1989, 20 (3): 7-11
    [5]. Hadley R.F. Microbiological Anaerobic Corrosion of Steel Pipeline [J]. Oil and Gas Jour, 1939, 38(19): 92-96
    [6]. Minchin L.T. Cathodic Characteristics of Mild Steel in Suspension of Sulfate-Reducing Bacteria [J]. Coke and Gas, 1956, 18(12): 495-504
    [7]. Kulman F.E. Microbiological Corrosion of Steel Pipe by Biogenic Sulfide Films Exposed to Air [J].Corrosion, 1953, 9(1): 11-18
    [8]. Butlin K. R, Vemon W.H. J. andWhiskin L.C. Investigation on Underground Corrosion [A], Wat, Sanit. Engr, 1952.468-472
    [9]. Iverson W.P. Advance Reasearch in Corrosion Science and Technology [J]. International Biodeterioration, 1972, 5(2): 1-42
    [10]. Puekorius. Recommended Practice for Biological Analysis of Water Flood Injection Waters [A]. API. 1959.327-329
    [11]. Cormbie D.J, Moody G.J and Thomas J.D. Corrosion of Iron by Sulfate-Reducing Bacteria under Seawater [J]. Chem and Industry, 1980, 21(6): 520-524
    [12].刘靖等.硫酸盐还原菌腐蚀研究进展[J].材料保护,2001,34(4):8-13
    [13]. Fleming H.C. Economical and Technical Overview in Micorobiological Science [A]. Springer Verlag, Berlin: Heidel 1996.65-70
    [14]. Pogate J. R. Voltammetric Microeletrodes for Biocorrosion Studies [J]. Corrosion Science Section, 1998, 10 (8) : 814-822
    [15].吕人豪.硫酸盐还原菌对油田钢管腐蚀的影响因素研究[J].材料保护,1990,23(1-2):26-29
    [16]. King R.A., Miller J.D. Corrosion of Mild Steel in Cultures of Sulfate-Reducing Bacteria after Oxygen Stress and Growth in Sulfate-Free Oxygen Sulfate Gradients [J]. FEMS Microbiol Ecol, 1985, 31:39-45
    [17].张小里,刘海洪等.硫酸盐还原菌生长规律的研究[J].西北大学学报(自然科学版),1999,
    
    29(5):397-402
    [18].俞敦义等.硫酸盐还原菌对油田套管腐蚀的研究[J],石油学报,1996,17(1):154-158
    [19]. Moosavi A.N, Pirroe R.S, Hamlton W.A. Effect of Sulfate-Reducing Bacteria Activity on Performance of Scarified Anodes [J].Corrosion, 1998,10(25):413-428
    [20]. Hardy J.A, Bown J.L. The Corrosion of Mild Steel by Biogenic Sulfide Films Exposed to Air [J]. Corrosion, 1984,12(40):650-658
    [21]. Von Rege H, Sand. W. Simulation of Mild Steel by Biogenic Sulfide Films Exposed to Air [J]. Werkstoffe und Korrosion, 1996,9 (47):486-494
    [22].张小里,陈志昕.环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报,2000,8(20):224-229
    [23]. King R.A. Corrosion of Mild Steel in Cultures of Sulfate-Reducing Bacteria after Oxygen Stress [J]. FEMS Microbiol Ecol, 1985, 31:39-45
    [24]. Lee W, Characklis W.G. Corrosion of Mild Steel under Anaerobic Biofilm [J]. Corrosion, 1993,3 (49) : 186-198
    [25]. Remy Marchal, Bernard Chaussepied, Michel Warzywoda. The Effect of Ferrous Ion on Growth of a Corroding Sulfate-Reducing Bacterium [J]. International Biodeterioration, 2001, 47:186-198
    [26]. Iverson W. P. Microbial Corrosion of Metals in Great Oxygen Stress [J].Adv Appl Microbiol, 1987, 32:1-36
    [27]. Eugene Cloete T, Volker S, Brozel. Practical Aspects of Biofouling Control in Industrial Water Systems [J]. International Biodeterioration and Biodegradation, 1992, 29:299-341
    [28].刘建华等.A3钢在厌氧环境中的微生物腐蚀电化学特性研究[J].材料保护,2000,33(11):32-33
    [29]. Salvarezza R.C, Vidella H.A. Passivity Breakdown of Mild Steel in Sea Water in the Presence of SRB [J]. Corrosion, 1980, 36(10):550-554
    [30]. Von Wolzogen Kukr C.A, Van Vlugt L.S, De Grafi-teering, Van Gietijzerals. Elactrobiochemich Process Manscrobe Gronden Water [J]. Corrosion, 1984, 18(6): 147-156
    [31]. Booth G.H, Tiller A.K. Cathodic Characteristics of Mild Steel in Suspensions of Sulphate-Reducing Bacteria [J].Corrosion Science, 1968, 8:583-600
    [32]. Starkey R.L. The General Physiology of the Sulfate-Reducing Bacteria in Relation to Corrosion [J], Producers Honthly, 1958, 22(2):12-16
    
    
    [33]. Ringas g, Robinson F.P. Corrosion of Stainless Steel by Sulfate-Reducing Bacteria Total Immersion Test Result [J]. Corrosion, 1988,9 (44) : 671-678
    [34].马振瀛.航空器材及燃料系统的微生物腐蚀[J].工业微生物,1997,2(11):37-40
    [35]. Pope D.H, Alan Morris Ⅲ. Some Experiments with Microbiologically influenced Corrosion of Pipelines [J]. Materials Performance, 1995, 5(2): 23-28
    [36]. Pope D.H, Duquette D.J. Effect of Sulfate-Reducing Bacteria Activity on Performance of Scarified Anodes [J].Materials Performance, 1984, 4(8):14-25
    [37]. Wagner P, Little B. Impact of alloying on Microbiologically Influenced Corosion—A Review [J]. Materials Performance, 1993, 9(5): 65-79
    [38]. Vaidya R.U. Corrosion of Mild Steel under Anaerobic Biofilm [J] .Corrosion, 1997, 53(2), 136-148
    [39].陈兴尧,刘建华.一九九六年中国材料研讨会论文集,北京:化学工业出版社,1997.514-518
    [40].赖春晓.金属材料的微生物腐蚀研究进展[J].腐蚀与防护,1989,11(3):4-10
    [41]. Hcneii M.B. Cathodic Characleristics of Mild Steel in Suspection of Sulfate-Reducing Bacteria [J].Corrosion, 1991, 47(9)74-91
    [42]. Gouda V, Banat I, Riad W. Polarization of Iron in Sulfate-Reducing Bacteria Environments [J]. Corrosion, 1993, 49(9):63-75
    [43].唐和清.特殊材料在石油工业中的腐蚀研究[J].腐蚀与防护,1990,11(6):279-285
    [44].刘光洲,钱建华,马焱等.BIO合金的硫酸盐还原菌腐蚀研究[J].电化学,2002,8(2):194-200
    [45]. Shutz R.W. A Case for Titanium Resistance to Microbiologically Influenced Corrosion [J]. Materials Performance, 1991, 30(1):58-67
    [46]. Mcneil M.B, Odom A.L. Predicction of Sulphiding Corrosion of Alloys Induced by Consortia Containing Sulfate Reducing Bacteria [J].Corrosion Testing, 1992, 6:58-74
    [47]. Sand W, Bock E. Mikrobielle Zersturong keramischer Werkstoffe [J].Werkst Korros, 1990,41:64-70
    [48].张秉坚,陈劲松.石材的腐蚀机理和破坏因素[J].石材,1999,1(1):14-20
    [49].刘靖,候宝利,郑家燊等.硫酸盐还原菌腐蚀研究进展[J].材料保护.2001,34(8):8-11
    [50].俞大钹.微生物学[M].北京:科学出版社,1985.253-254
    [51].唐和清.微生物腐蚀中游离氧的作用[J].材料保护.1992,4 (25):23-26
    [52].吕人豪.工业循环冷却水中微生物腐蚀及其控制[A].1979年腐蚀与防护学术报告论文集(海水、工业水、微生物部分).北京:科学出版社,1982.358-359
    [53].张学元,王凤平,杜元龙等.油气工业中细菌的腐蚀和预防[J].石油与天然气化工,1999,
    
    28(1):53-56
    [54].黄翠芬.医学细菌分子生物学进展[M].北京:科学出版社,1984.98-103
    [55].关建宁,汪海波.杀菌剂DMHSEA在油井注水中杀菌效果评价[J].工业水处理,2001,21(2):7-8
    [56].潘碌亭,肖锦.天然高分子改性异喹啉季铵盐对SRB杀菌性能及机理的研究[J].工业用水与废水,2001,32(2):20-22
    [57]. Videla H.A. Biologically Induced Corrosion[A]. Houston NACE, 1986, 2:162-178
    [58].朱绒霞,那静彦.综述硫酸盐还原菌腐蚀的防护措施[J].石油化工腐蚀与防护,1999,(3):50-54
    [59]. Sandbeck K.A, Hitzman D. Proceeding of the Fifth International Conference on MERO and Related Biotechnology for Solving Environmental Problems, Bryant: US Dept of Energy, 1995.311-322
    [60]. Gevertz D, Jenneman G. E, Zimmerman S. Proceeding of the Fifth International Conference on MERO and Related Biotechnology for Solving Environmental Problems, Bryant: US Dept of Energy, 1995.295-302
    [61].朱绒霞,李增理.工业材料的微生物腐蚀[J].腐蚀与防护,1999,20(10):435-437
    [62]. Lu Jen-hao, Schwartz A. Verhalten von Mikroorganismmen Gegenuber einigen Plasten in Abhangigkeit vom Mittem Molekulargewicht[J]. Allgemeine Mikrobiologie, 1961, 7 (1): 176-177
    [63]. Lu Jen-hao, Schwartz A. Zum Verhalten von Bakterien-Gemischen genenuber Polathylen verschiedenen Mitterm Molekulargewichts. Kunststoffe, 1961, 51 (6): 317-319
    [64]. Ronald W, Schutz. Corrosion of Mild Steel under Anaerobic Biofilm[J]. Corrosion, 1993, 3: 186-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700