用户名: 密码: 验证码:
电刷镀SiC/Ni-P复合镀层工艺及腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电刷镀技术属于特种电镀技术,是电镀技术的新发展。由于该项技术具有操作设备简单、电流密度大、镀层沉积速度快、质量好、适应性强等优点,因此在表面工程中获得了广泛的应用。复合镀层是复合材料领域中一个新的研究方向,也是表面工程技术中较为活跃的研究热点之一。因此,采用电刷镀工艺制备复合镀层具有广阔的应用前景。
    本文首先研究了制备Ni-P合金刷镀层的各项工艺参数,确定了镀液的组成,分析了影响刷镀层中P含量和镀层沉积速度的主要因素。在此基础之上,通过在镀液中加入SiC微粒和表面活性剂,并适当调整操作工艺参数,获得了SiC / Ni-P复合刷镀层。SiC微粒的粒径大小、含量及其分布是影响复合刷镀层质量的重要因素。通过金相显微镜和扫描电镜等方法观察了SiC / Ni-P复合刷镀层的显微组织和表面形貌,通过EDS、XRD等分析手段测定了复合刷镀层的成分和结构。试验结果表明:通过合理的镀液配方设计和操作工艺参数,可以获得基体镀层具有非晶态结构的、SiC微粒含量为17.8%(vol)且分布较为均匀的复合刷镀层。同时发现SiC / Ni-P复合刷镀层比Ni-P合金刷镀层表面更加平整、光滑,组织更加致密,镀层表面的微裂纹数量及其长度都明显减少,表明SiC微粒的加入能够使刷镀层的晶粒细化,并且显著降低了刷镀层的内应力。
    30个周期的中性盐雾腐蚀试验结果表明,SiC / Ni-P复合镀层比Ni-P、Ni刷镀层具有更好的耐腐蚀性能。其原因可以归结为以下三个方面:首先,由于SiC微粒的加入减轻了镀层中微裂纹的倾向,提高了镀层的致密度;其次,随着作为腐蚀过程中阳极区域的微裂纹区面积的显著减少,阴极/阳极的面积比相应增大,整个腐蚀过程将由阳极过程所控制,高的阴极/阳极面积比所导致的阳极极化使腐蚀速度明显降低;再者,腐蚀产物以及SiC微粒在比较细小的微裂纹处的形成和聚集将更容易堵塞腐蚀介质进入到镀层内部的腐蚀通道,这也起到一定的保护作用。所有上述因素均使复合刷镀层的耐腐蚀性能有所提高。
    当氧化温度在400℃~800℃之间时,复合刷镀层的抗高温氧化能力要优于Ni-P合金刷镀层;800℃、氧化100h的试验结果表明:Ni-P和SiC / Ni-P复合刷镀层的氧化动力学曲线基本呈抛物线型,显示氧化过程主要由扩散步骤控制着反
    
    应速度。就相同试验时间的氧化增重量而言,SiC / Ni-P复合刷镀层具有较好的抗高温氧化性能,这可能是由于复合镀层中高耐热性的SiC微粒在高温氧化过程中对镀层表面形成的氧化产物存在着固定和附着的作用,使氧化产物不容易发生脱落,从而提高了复合镀层的抗高温氧化能力。另外,复合镀层的表面微裂纹等缺陷数量比较少,减少了镀层中氧的传输与扩散通道,这也会相应地提高复合刷镀层的抗高温氧化能力。
Brush plating is a kind of specific method and new development of electroplating technique. It requires some simple operating equipment and high current density, offers portability, suitability, high speed and quality deposites and coatings. Therefore, the kind of technique has been widespreadly applicated in Surface Engineering. Composite coatings is a new study orientation in the filed of composite materials, is also a study hotspot in Surface Engineering technique. Therefore, the application of composite coatings obtained by brush plating technique will be used widely.
    In the paper, Ni-P alloy brush plating coatings were firstly obtained. The electrolyte composition and operating process parameters were analyzed and decided. Some main influence factors on P content and quality of Ni-P coatings were discussed. Based on these, SiC / Ni-P composite brush plating coatings were co-deposited by adding some SiC particle and surfactants into the Ni-P electrobath and rightly adjusting operating process parameters. The SiC particle size and its content and distribution state were some important factors for the quality of SiC / Ni-P composite coatings. The microstructure and surface morphology of SiC / Ni-P coatings were observed with metalloscope and SEM, its element composition and structure were investigated by EDS and XRD. These test results showed that SiC / Ni-P composite coatings with 17.8vol% and uniformity of SiC particle and amorphous structure of Ni-P alloy matrix could be prepared by appropriately modulating the solution composition and operating process parameters. Compared with the Ni-P coatings, the surface of SiC / Ni-P composite coatings was much leveler, much smoother and more homogeneous. The quantity and length of microscopic crack were evidently less than those of Ni-P alloy coatings. These results showed that SiC particle could make crystalline be refiner and reduce significantly the internal stress of SiC / Ni-P composite brush plating coatings.
     The 30 period neutral salt spray corrosion test results showed that the corrosion resistance of SiC / Ni-P composite coatings was superior to that of Ni-P and Ni brush
    plating coatings. There were several reasons as following for this. First, the trend of
    
    
    microscopic crack was reduced when SiC particle was added into the Ni-P coatings, so the compactness of SiC / Ni-P composite brush plating coatings was improved; Second, during the corrosion course the microscopic crack area as corrosion anodic was reduced, correspondly the cathode/anodic area ratio would be augmented, thus the whole corrosion course was controlled by anodic process. The anodic polarization which was caused from large ratio of cathode/anodic area reduced markedly the corrosion velocity. Finally, Some corrosion products which formed and collected in the microscopic crack zone blocked the corrosion routeways by which corrosion medium could enter into the interior of SiC / Ni-P composite coatings. All factors above mentioned improved the corrosion resistance of SiC / Ni-P composite brush plating coatings.
    When SiC / Ni-P and Ni-P brush plating coatings were oxidized from 400℃ to 800℃ for 2h, the experiment results showed that the oxidation resistance of composite coatings was superior to that of Ni-P coatings. When the two kinds of coatings were oxidized at 800℃ for 100h, the experiment results showed that their oxidation kinetics curves followed closely a parabolic oxidation law, indicating that the oxidation reaction was controlled by diffusion. During the same oxidation time as far as the weight change of oxidation product concerned, the results showed the SiC / Ni-P composite brush plating coatings had better oxidation resistance than Ni-P alloy coatings. The oxidation product might be fixed and adhesived by the SiC particle during the oxidation process. Therefore the oxidation product did not easily fall off and the oxidation resistance of SiC / Ni-P coatings were improved. In addition, the quantity of microscopic crack and other flaw on the surface of SiC / Ni-P c
引文
[1]. 方景礼,惠文华编. 刷镀技术[M]. 北京:国防工业出版社, 1987. 1~3
    [2]. 林春华,葛祥荣编. 电刷镀技术便览[M]. 北京:机械工业出版社, 1991. 4
    [3]. 徐滨士,朱绍华等. 表面工程的理论与技术[M]. 北京:国防工业出版社, 1999. 323~324
    [4]. 钱苗根,姚寿山,张少宗. 现代表面技术[M]. 北京:机械工业出版社, 1999. 60~67
    [5]. 董允,张廷森,林哓娉.现代表面工程技术[M]. 北京:机械工业出版社,2000. 174~175
    [6]. M.Rubinstein. Selective(brush) plating-A "put-on" Tool:Printed Circuit Applications[J]. Metal Finishing, 1981, 79(11):79~84
    [7]. M.Rubinstein. Selective(brush) plating-A "put-on" Tool:Decorative Applications[J]. Metal Finishing, 1983, 81(12):52~59
    [8]. M.Rubinstein. Selective(brush) plating-A "put-on" Tool:Fully Automated brush plating[J]. Metal Finishing, 1984 , 82(4):31~35
    [9]. D.L.Vanek. Selective electrofinishing[J]. Metal Finishing, 1999 , 97(1):368~380
    [10]. D.L.Vanek. Selective electrofinishing[J]. Metal Finishing, 2000 , 98(1):361~374
    [11]. D.L.Vanek. An update on brush plating[J]. Metal Finishing, 2002 , 100(7):18~20
    [12]. 徐滨士,刘世参等. 表面工程[M]. 北京:机械工业出版社, 2000.185~187
    [13]. M.Rubinstein. Selective(brush) plating-A "put-on" Tool: Recent Development Summary and Conclusion[J]. Metal Finishing, 1984, 82(6):83~85
    [14]. 丛刚,谷建. 电刷镀与其它表面技术复合的应用前景广阔[J]. 电刷镀技术, 1999(2):109~110
    [15]. 梁志杰,谢凤宽. 电刷镀技术的应用与发展[J]. 工程机械与维修, 2000, (11):73~74
    [16]. 李基森,龚秀英. 电刷镀技术及其应用[M]. 上海:上海科学技术出版社,1986
    [17]. 郭鹤桐,张三元编. 复合镀层[M]. 天津:天津大学出版社,1991. 1
    
    
    
    [18]. F. K.Sautter. Electrodeposition of dispersion-hardened Ni-Al2O3 alloys[J]. J. Electrochemical Society,1963, 110(6):557~560.
    [19]. 白晓军. 复合镀层的历史及生成机理[J] . 电镀与环保,1993,13(2):9
    [20]. Viswanthan M, K.S.G. Doss. Sediment Codeposition-A New technique for cclusion plating[J]. Metal Finishing,1972, 70(2):83~84
    [21]. N. Feldstein, T. Lanscek, D. Lindsay, et al. Electroless Composite plating[J]. Metal Finishing,1983, 81(8): 35~41
    [22]. Takaya. M, Matsunaga,M. Otaka. Trivalent Chromium Composite Coatings[J]. Plating and Surface Finishing,1987, 74(9):70~72
    [23]. 赵渠森,伍临尔. 复合材料进展[M]. 北京:科学出版社,1984
    [24]. Kwang-Lung Lin,Po-Jen Lai. Structure and Properties of Electroless Ni-P-Al2O3 Deposites[J]. Plating and Surface Finishing,1989, 76(1):48
    [25]. Guo Zhongceng,Yang Xianwan. Characteristics of Ni-P-Al2O3 Coating Materials[J].Trans.of Nonferrous Metals Society of China,1996,6(2):33
    [26]. Benea L, Bonora P L, Borello A. Composite electrodeposition to obtain nanostructured coatings[J], J. Electrochemical Society,2001,148(7):461~465.
    [27]. Bozzini B, Carallotti P L, Parisi G.. Corrosion and erosion- Corrosion of electrodeposited Ni-P-B4C composite Coatings[J]. British Corrosion Journal, 2001,(36):49
    [28]. 于升学,邵光杰. 化学镀Ni-P-PTFE镀层及其性能研究[J]. 物理测试, 2001, (1):14~17
    [29]. 程立新,杨杰辉. Ni-PTFE复合镀层的性能及其新的应用[J]. 表面技术,1997, 26(4):35~36
    [30]. 阎康平,付式锟,陈匡民. Ni-P-B4C复合镀层及其腐蚀磨损研究[J].化工机械,1993, 20(3):136~139
    [31]. Keyward E C. Study on the properties of Cobalt matrix complex coating[J]. Trans. Inst. Metal Finish,1976, 54(1):8
    [32]. L. Orlovskaja, N.Periene, M.Kurtinaitiene, et,al. Ni-SiC Composite Plated under a Modulated Current [J]. Surface and Coating Technology 1999, (111):234~239
    
    
    [33]. 王为,郭鹤桐,高建平等. 复合镀层中ZrO2微粒对Ni晶体结构的影响[J].应用化学,1997, 14(1):6~10
    [34]. Viswanthan M. Occlusion Plating to Form Nickel Cermets [J]. Metal Finishing, 1973, 71(1):38~43
    [35]. G..R.Lakshminarayanan, E.S.Chen, F.K.Sautter. The effect of oxide dissolution on the electrodepositing of dispersion-hardened Co and Ni-Al2O3 Alloys[J], J. Electrochemical Society, 1975,122(12):1589~1594.
    [36]. Mohammad Ghouse. Viswanthan M. Ramachandran.E.G. Occlusion plating of copper-silicon carbide composites[J]. Metal Finishing, 1980, 78(3): 31~35.
    [37]. Zahavi J, Hazan J. Electrodeposited nickel composites containing diamond particles[J]. Plating and Surface Finishing, 1983, 70(2):57
    [38]. Mohammad Ghouse. Wear Characteristics of Sediment Co-deposited Ni-SiC Composit Coatings[J],Metal Finishing,1984, 82(3):33.
    [39]. Lee C C, Wan C C. A Study of the Composite Electrodeposition of Copper with Alumina Power[J] . J. Electrochemical Society,1988, 135(8):1930~1933
    [40]. Xinmin Huang, Zonggang Deng. Wear resistance composite coating[J]. Plating and Surface Finishing,1993, 80(2):62~65
    [41]. Yes S H, Wan C C . A Study of SiC/Ni Composite Plating in the Watts Bath[J] . Plating and Surface Finishing,1997, 84(3):54
    [42]. Pushpavanam.M, Natajajan.S.R, Balakrisnnan. Properties of Nickel-WC Electrocomposites[J]. Plating and Surface Finishing,1997, 84(6):88
    [43]. Cheng D H,Xu W Y. Electrochemical Preparation and Mechanical Properties of Amorphous Nickel-SiC Composites [J]. Plating and Surface Finishing, 1998, 85(2):61~65
    [44]. V.V.N.Reddy, B.Ramamoorthy, P.Kesavan.Nair. A Study on the Wear Resisatance on Electroless Ni-P-Diamond Composite Coating[J]. Wear,2000, (239):111
    [45]. Thoma M. A Cobalt/Chromic Oxide Composite Coating for High-temperature Wear Resistance[J]. Plating and Surface Finishing, 1984, 71(9):51
    
    
    [46]. Leon.O.A,Staia.M.H,Hintermann.H.E. High temperature wear of an electroless Ni-P-BN Composite Coating[J]. Surface and Coating Technology,2003, (163-164):578~584
    [47]. M.Viswanathan, Mohammed Ghouse. Occlusion Plating of Nickel-Graphite Composites [J]. Metal Finishing,1979, 77(10): 67 ~ 69
    [48]. Mohammed Ghouse,M.Viswanathan ,E.G. Ramachandran. Friction and wear characteristics of electrodeposited nickel-graphite and Nickel-MoS2 composites[J]. Metal Finishing,1980, 78(8): 57~63
    [49]. R.Narayan,B.H. Narayana. Electrodeposited Chromium-Graphite Composite Coatings [J]. J. Electrochemical Society,1981, 128(8):1704~1708
    [50]. Donakowski.W.A, Morgan.J.R. Zinc/Graphite-A protential substitute for Anti-Galling Cadmium[J]. Plating and Surface Finishing,1983, 70(11):48
    [51]. Losie Wicz.B , Stepien A, Gierlotka.D. Composite layers in Ni-P System Containing TiO2 and PTFE [J]. Thin Solid Films,1999, (349):43~50
    [52]. Ovidio A.L, Staia.Mariana ,Hintermann.H.E. Influence of the heat treatment on the tribological behavior of a Ni-P-BN autocatalytic composite coating [J]. Surface and Coatings Technology, 1999, (120-121):641~645
    [53]. C.E.Vest,D.F.Bazzarre. Co-Deposited Nickel-Molybdenum Disulfide-A self-replenishning solid film lubricant [J]. Metal Finishing, 1967, 65(11): 52~58
    [54]. Hardley J S. Electroless Ni-P-PTFE Composite Coatings[J]. Metal Finishing, 1987, 85(12):51~53
    [55]. 贾奇贤,郭鹤桐等. 电镀Ni-MoS2复合镀层电催化电极的研究[J]. 电镀与精饰,1986, 8(3):3
    [56]. Suzuki Y, Wajima M, Asui D. Cathodic Polarization Behavior of Ag-Al2O3 Electrode in Silver Thiocyanate Solution Containing Al2O3 Particles[J]. J. Electrochemical Society,1986, 133(2):259~265
    [57]. Ghouse M. The Electrical contact Resistance of Silver-Plated Aluminum Alloy[J]. Plating and Surface Finishing,1984, 71(1):62~65
    
    
    
    [58]. Suzuki Y, Asui D. Adsorpption-Codeposition process of Al2O3 Particles onto Ag-Al2O3 Dispersion Films[J]. J. Electrochemical Society,1987, 134(8):1906~1910
    [59]. 朱相荣. 非晶态Ni-P化学镀的发展及应用前景[J]. 表面技术,1990, 20(1):34~39
    [60]. 惠文华. 电刷镀Ni-P 合金的研究[J]. 电刷镀技术,1990, (1):14~23
    [61]. 闵小兵.Ni-Co-P电刷镀溶液的研制[J]. 电刷镀技术,1986, (2):37~44
    [62]. 谢胜华.Ni-P 非晶态刷镀层在热锻模具上的应用研究[J]. 电刷镀技术,1988, (4):1~8
    [63]. H,Gao, H.Gu, H.Zhou. Sliding wear and fretting fatigue resistance of amorphous Ni-P coatings[J]. Wear,1991, (142):291~301
    [64]. Y.S.Ma, J.J.Liu, B.L.Zhu. The wear resistance of amorphous Ni-P-Cu brush plating layer on different substrates[J]. Wear,1993, (165):63~68
    [65]. Yan-Sheng Ma, Zheng-qiu Gu, Yin-Shun Wu. Lubricating mechanism of sulfurized olefin on Ni-P brush plating layer[J]. Wear,1995, (181-183):413~416
    [66]. Xianjun Lin, Binschi Xu, Shining Ma. Study of the tribological behavior of an Ni electron brush plating layer on a base of an Arc Sprayed coating[J]. Wear,1997, (211):151~155
    [67]. 蒋太祥,胡信国,戴长松. 非晶态Ni-P合金电刷镀溶液性能研究[J]. 材料保护,1999,32(2):9
    [68]. 梁少金,刘小兵. 非晶态Ni-P刷镀层的研究及应用[J]. 电刷镀技术,1994,(1):19~24
    [69]. 傅建华,于岗,江枫等. 刷镀Ni-P合金在生产中的应用[J]. 材料保护,1995, 28(11):28
    [70]. 匡建新,汪新衡. Ni-P-B4C复合电刷镀工艺研究[J]. 常德师范学院学报, 2001, 13(2):58 ~ 61
    [71]. 史亦农,杨晶. 电刷镀Ni-P-SiC复合镀层腐蚀磨损行为的研究[J]. 沈阳工业学院学报,1997, 16(2):25~ 30
    [72]. Zhang Xinhua, Lin Jiajun, Baoling. The tribolgicaed parfermanel if Ni/MoS2 composite brush plating in vacuam [J]. Wear,1992 , (1957):381~387
    
    
    
    [73]. 张玉峰. Ni-W-P/PTFE电刷镀多元复合材料工艺及性能研究[J]. 电镀与涂饰,2001, 20(3):1
    [74]. Mallah A T, Abbas M H, Nassar M M. Electroless nickel-phosphorus-boron alloys [J]. Metal Finishing, 1993, 91(5): 19~21.
    [75]. Matsubura.H, Yamada.A. Control of Magnetic Properties of Chemically Deposited Cobalt Nickel Phosphorus Films by Electrolysis[J]. J . Electrochemical Society, 1994, 141(9):2386~2390
    [76]. Matsuda H, Takano O. On a Rile of Zinc in Electrolessly Deposited Co-Ni-P-Zn Films High Coercivety [J]. Trans. Inst. Metal. Finish,1995, 73(4):147
    [77]. J.W.Dini. Brush plating: Recent property Data [J]. Metal Finishing, 1997, 95(6): 88~93
    [78]. 于同敏,刘贵昌,路全胜. 模具表面Ni-P-PTFE-SiC多元复合化学镀层耐磨耐蚀性研究[J]. 中国机械工程,1999,10(12):1421~1424
    [79]. C.K.Chen, M.H.Hon. The morphology and mechanical properties of TiN/Ni-P-SiC hybrid coatings[J]. Surface and Coatings Technology, 2002, (155):214~220
    [80]. Y.S.Huang,X.T.Zeng,I.Annergren, et,al. Development of Electroless Ni-P-PTFE-SiC Composite Coating[J]. Surface and Coatings Technology, 2003, (167):207~211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700