用户名: 密码: 验证码:
大气压射频Ar/H_2/SiCl_4等离子体射流实验诊断及其沉积硅薄膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压冷等离子体射流技术是近年来新兴的一种等离子体技术,其宏观低温特性及其中含有的大量活性物种使其在材料加工、生物改性、杀菌消毒等领域有广泛的应用前景。其操作简便并可在开放环境下工作的特点也使其备受青睐。本文设计了一种大气压冷等离子体射流源并对其进行参数诊断,在此基础上在薄膜沉积工作方面进行一些尝试。硅薄膜因其优异的性能而在太阳能电池、集成电路、传感领域中具有广泛应用,其制备多在真空或较高气压环境下,往往需要反应腔及真空设备。我们在采用自行设计的等离子体源,以较为安全的SiCl4为硅源,在开放环境中进行了硅薄膜沉积研究。以大气压等离子体射流发生装置的设计、等离子体参数的诊断以及薄膜的沉积为主线开展了以下工作:
     描述了自行设计制作的两种大气压等离子体射流源及其放电现象。给出了放电的照片、放电电流、电压曲线以及伏安曲线,并从理论上对放电现象的变化加以解释,为确定适合进行薄膜沉积的大气压等离子体源寻求依据。发现平行平板打孔的结构电极较适合于薄膜沉积工作。随着功率的增加,条形孔和圆形孔电极的放电模式都经历了α模式向γ模式的转变,并且在一定的功率范围内α与Y模式可以共存,5slpm的纯氩气放电这一范围是50W-70W。从放电的稳定性及可长时间宽范围工作的角度考虑,不锈钢材料的圆孔结构电极是比较理想的选择。
     对自行设计的装置产生的等离子体采用等效电路法计算了电子密度,采用发射光谱法诊断了温度。研究了一种新的利用全电路欧姆定律计算电子密度的方法,考察了两种孔型的平行平板结构电极的电子密度随外加功率、电流电压相位差、电极间距以及气体流速变化的趋势。对于单一种类气体的射频容性放电,只要满足ωpe>>ω、vm2>>ωpe2,都可以通过测量电流电压峰峰值获得电子密度。对同一个电极而言,大的外加功率、小的电极间距以及合适的流速会产生电子密度相对较高的等离子体。采用发射光谱法分别对纯氩气放电和混合气体放电进行了诊断。在纯氩气放电中,分别采用氮气和OH(A2∑→X2п)的谱带拟合了振动温度和转动温度,氩原子谱线拟合了电子激发温度,转动温度随功率的增加而增加,随气体流速的增加而降低趋势,但电子激发温度变化不大。在混合气体放电中,利用硅原子谱线强度计算了电子激发温度,研究了放电功率、气体流量等参数对其的影响。由于采用硅原子谱线计算得到的电子激发温度是解离消耗掉一部分电子后剩余电子的激发温度,可以认为其变化趋势与解离得到的硅原子总数相反。随着功率、SiCl4流量和氩气流量的增加电子激发温度均呈下降趋势。氢气分子与SiCl4分子的解离能相差不大而“抢夺”电子能量,氢气的混入导致硅原子发射强度明显减小。
     采用自行设计的大气压等离子体射流装置,以氩气、四氯化硅和氢气的混合气体为放电气体,在开放环境中分别以单晶硅、陶瓷和普通玻璃为衬底进行了硅薄膜沉积研究。对薄膜的厚度、成分、表面形貌及沉积温度等进行了表征。发现沉积出的薄膜存在氧化层,解释了氧化机理,比较了沉积时间、氢气流量对薄膜成分的影响。薄膜沉积初期衬底温度不高,此时的氧化过程主要由空气中的氧气被等离子体分解产生自由基造成,氧化过程与等离子体参数密切相关。沉积时间增加使衬底温度增加,超过150°时,SiCl4直接水解为二氧化硅,此时的氧化过程还与SiCl4流量有关。氢气流量从多方面影响薄膜生长过程:氢气流量越大,薄膜的沉积速率和氧化速度都低,Si-H键对抑制薄膜氧化有相当重要的作用。但过大的氢气流量会使放电熄灭。较小的氩气流量有利于抑制薄膜的氧化过程同时节约成本,但过小的氩气流量会影响放电及其作为射流的特性。过大的四氯化硅流量不但造成浪费,也容易使薄膜被氧化。
Atmospheric pressure cold plasma jet has many applications in various areas, such as materials modification and sterilization because of its low temperature and activity species contained. This technique is easy to handle and can work in an open environment, which makes it very popular. In this thesis we design two experimental equipments to generate atmospheric pressure cold plasma jet. diagnose plasma parameters, and attempt to use it in film deposition. The silicon film has successful use in solar cell, integrated circuit and thin film transistors. The preparation of the silicon film works at low pressure and high temperature mostly, which need vacuum equipment and complicatedly to operate. This thesis aims to experiment a novel method to deposit silicon film at open air using atmospheric pressure plasma and SiCl4 as raw materials. This thesis is divided into exordium, the device for generation of the atmospheric pressure plasma jet. the diagnostics of plasma parameter and the deposition of silicon film.
     We describe two self-designed devices for the generation of atmospheric pressure plasma jet. Some photographs of the discharge, the discharge waveform and its current-voltage curve are presented, base on which the explanation of the change of the discharge phenomena are discussed. The discharge phenomena using deferent electrodes are compared to select a good electrode structure for film deposition. The discharges translate from a-mode to y-mode for both the electrodes with rectangle holes and round holes. The two discharge modes exist together in some power range at different flow rate of discharge gas. which for 5slpm of pure Argon is 50W-70W.
     A novel method to diagnose the electron density of the atmospheric plasma jet using an equivalent circuit of the plasma discharge is studied. Based on the circuit model, the electron density can be obtained according to the Ohm's law. By using the method, the effects of the electrode shape, the gas flow rate and the discharge gap on the electron density are discussed. The electron density increases with the increase of input power and the decrease of electrodes gap. The electron density decreases as flow rate increasing for the electrodes with rectangle holes, but almost no response for the electrodes with round holes due to its smaller outlet area. By using this method the electron density in atmospheric pressure radio frequency conductive pure gas discharge can be determined. whenωpe>>ωand vm2>>ωpe2 are satisfied.
     OES has been used to diagnose the rotational and vibrational temperature in Ar discharge, and the electron excitation temperature in the Ar/SiCl4 mixture discharge. In Ar discharge as increasing the RF power the rotational temperature increases and the vibrational temperature decreases, which mean that the system trends to thermal balance. The electron excitation temperature has little change with RF power. In Ar/SiCl4 discharge the electron excitation temperature is calculated by the Si atom spectral lines. The electron excitation temperature belongs to the remained electrons.after dissociate SiCl4. The electron excitation temperature decreases with the increasing of the RF power. the SiCl4 flow rate and the Ar flow rate. The bond energy of H2 and SiCl4 are close, while partial electron energy is consumed to dissociate H2. As a result, the H2 influx weakens the discharge.
     We deposit the film with the layered structure on the substrate of monocrystalline silicon. ceramic and glass, using self-assembled radio frequency atmospheric plasma jet in open air. The discharge gas is the mixture of Ar, H2 and SiCl4 gas bubbled by Ar. The film thickness, the film content, the content profile along the depth and surface topography have been investigated by step profiler. XPS and SEM respectively. The film has been layered from pure silicon near the substrate to SiO2 close to the film surface. We analyze the mechanism of oxidation process during film deposition, and investigate the reason of layered structure of the films. At the beginning of the film deposition the substrate temperature is low and the oxidation process is attributed to the oxidative radicals, which were generated from decomposition of O2 in the air by atmospheric plasma jet. As time passed by. the substrate temperature becomes higher. When it reached the decomposition temperature of met silicate (150℃). the SiO2 produced by decomposition of met silicate was the primary film pollutant. The flow rate of SiCl4 is the key factor of oxidation rate at the high substrate temperature. The H2 flow rate is very important for Si film growth and oxidation, because it determines the plasma temperature and density. Besides, the hydrogen atom bonding to silicon atom to form Si-H group is an important reason to stop the film oxidation. Therefore although the deposited film is oxidative partially, but properly control the discharge gas flow rate and the substrate temperature should be beneficial to form pure silicon film.
引文
[1]Andreas Schutze, James Y. Jeong, Steven E. Babayan, Jaeyoung Park, Gary S. Selwyn, and Robert F. Hicks, Ieee Transactions On Plasma Science,1998,26(6):1685-1694.
    [2]A Jaworek, A T Sobczyk,E Rajch, Investigations of DC corona and back discharge characteristics in various gases, Journal of Physics:Conference Series:2008,142 (1): 012010
    [3]S. Chapman, Corona point current in wind, J. Geophys. Res.,1970,75:2165-2169.
    [4]J. A Chalmers, The effect of wind on point-discharge pulses, J. Atmos. Terr. Phys. 1965,27:1037-1038.
    [5]McKinney P. J., Davidson J. H., Leone D. M., Current distribution for barbed plate-to-plane coronas, IEEE Trans. Ind. Appl.,1992,28:1424-1431.
    [6]Davidson J. H., McKinney P. J., Linnebur P.,3-D model of electric field and space charge in the barbed plate-to-plate precipitator, IEEE Trans. Ind. Appl.,1996,32(4): 858-866.
    [7]Jaworek A., Krupa A., Corona discharge in multipoint-to-plane geometry, Inst. Phys. Conf. Ser. No.143, Bristol (1995) 289 9th Conf. ELECTROSTATICS 95, York,2-5 April 1995.
    [8]Jaworek A., Krupa A., Electrical characteristics of a corona discharge reactor of multipoint-to plane geometry, Czech. J. Phys.,1995,45:1035.
    [9]Weinberg Stanley. Corona discharge device for destruction of airborne microbes chemical toxins. US,6042637,2000.3.28. Patent number:6042637 Filing date:Sep 28,1998Issue date:Mar 28,2000.
    [10]Miyamoto. Corona discharge air Purification, a PParatus. JP, JPn. Kokai Tokkyo Koho. 11342350,1999.
    [11]Kuroki.T et al..Development of new electric air cleaner for controlling Particulates and odors, Earozoru Kenkyu.,2000,15(2),116-123.
    [12]向晓东,现代除尘理论与技术,北京:冶金工业出版社,2002.
    [13]郭治明,许德玄,孙英浩等,雾化电晕放电静电除尘的实验研究,2005,北京理工大学学报,25:145-148.
    [14]杜长明,严建华,李晓东等,利用滑动弧放电脱除烟气中多环芳烃和碳黑颗粒,中国电机工程学报,2006,26(1):77-81.
    [15]Tokunaga 0., Suzuki. Radiation chemical actions in NOx and SO2 removal from flue gas. Radiat. Phys. Chem.1990,24(1):145-165
    [16]Oda T., Takash T. i, Nakano H. et al., Decomposition of fluorocarbon gaseous contaminants by surface discharge-induced plasma chemical processing, IEEE Tran. On Ind. Appl.1993,29(4):787-792.
    [17]R H Zhang, Yamamo T.,Y Yin et al., Control of ammonia and odors in animal house by a ferroelectrics plasma reactor, IEEE Industry Applications Society Annual Meeting, 1994,1545-1549.
    [18]Yamamoto T., Ramanathan K., Lawless P. A. et al., Control of volatile organic compounds by an AC energized ferroelectric pellet reactor and a pulsed corona reactor, Industry Applications Society Annual Meeting,1989, San Diego, CA, USA, vol.2,2175-2179.
    [19]Tao Shao, Cheng Zhang, Kaihua Long, Dongdong Zhang, Jue Wang, Ping Yan, Yuanxiang Zhou, Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air, Applied Surface Science,2010,256,3888-3894.
    [20]王新新,介质阻挡放电及其应用,高电压技术,2009,35(1):1-11.
    [21]Jai Hyuk Choi, Inho Han, Hong Koo Baik et al., Analysis of sterilization effect by pulsed dielectric barrier discharge Journal of Electrostatics,2006,64(1):17-22
    [22]Thiebaut J. M., Belmonte T., Chaleix D. et al., Comparison of surface cleaning by two atmospheric pressure discharges, Surface and Coatings Technology,2003, 169-170:186-189.
    [23]Chang Heon Yi, Chang Hyun Jeong, Yong Hyuk Lee et al., Oxide surface cleaning by an atmospheric pressure plasma, Surface and Coatings Technology,2004,177-178:711-715.
    [24]Goossens O., Dekempeneer E., Vangeneugden D. et al., Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation, Surface and Coatings Technology,2001,142-144:474-481.
    [25]Roth J. R., Ku Y., Surface cleaning of metals in air with a one atmosphere uniform glow discharge plasma, in Abstracts IEEE Int. Conf. Plasma Sci., Madison, WI,1995, p.251.
    [26]Vinogradov I. P., A. Lunk, Dependence of surface tension and deposition rate of fluorocarbon polymer films on plasma parameters in a dielectric barrier discharge (DBD), Surface and Coatings Technology,2005,200(1-4):695-699.
    [27]Vinogradov I. P., Dinkelmann A., Lunk A., Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD),Surface and Coatings Technology, 2003,174-175:509-514.
    [28]Y. H. Liu, J. Li, D. P. Liu, T. C. Ma et al., Properties and deposition processes of a-C: H films from CH4/Ar dielectric barrier discharge plasmas, Surface and Coatings Technology,2006,200(20-21):5819-5822.
    [29]Dongping Liu, Shi ji Yu, Yanhong Liu et al., Deposition of diamond-like carbon films by barrier discharge plasma with 1.4 and 20 kHz power sources, Thin Solid Films, 2002,414(2):163-169.
    [30]Dongping Liu, Wei Li, Zhiqing Feng et al., Plasma enhanced CVD of fluorocarbon films by low-pressure dielectric barrier discharge Surface and Coatings Technology, Volume 203(9),25 January 2009:1231-1236.
    [31]Esena P., Riccardi C., Zanini S., Tontini M. et al., Surface modification of PET film by a DBD device at atmospheric pressure Surface and Coatings Technology,2005, 200(1-4):664-667.
    [32]C.-S. Ren, K. Wang, Q.-Y. Xie et al.,Surface modification of PE film by DBD plasma in air, Applied Surface Science,2008,255(5) Part 2:3421-3425.
    [33]R. Thyen, A.Weber, and C.-P. Klages, Deposition of SiOx thin films by corona discharge at atmospheric pressure, in Proc.12th Int. Conf. Gas Discharges Applicat., Greifswald, Germany,1997,1:144-148.
    [34]Xiawan Yang, Maryam Moravej, Gregory R. Nowling, Jane P. Chang, and Robert F. Hicks, Operating Modes of an Atmospheric Pressure Radio Frequency Plasma, Ieee Transactions On Plasma Science,2005,33(2):294-295
    [35]L. Xu, P. Liu, R.J. Zhan et al., Experimental study and sterilizing application of atmospheric pressure plasmas Thin Solid Films,2006,506-507:400-403
    [36]Cheng Cheng, Peng Liu, Lei Xu et al., Development of a new atmospheric pressure cold plasma jet generator and application in sterilization Chinese physics, 2006,15 (7):1544-1548.
    [37]Shou-Guo Wang, Hai-Jiang Li, Tian-Chun Ye et al., Basic characteristics of an atmospheric pressure rf generated plasma jet Chinese physics,2004,13(2):190-195
    [38]严建华,屠昕,马增益等,大气压直流氩等离子体射流特性研究,物理学报,2006,55(7):3451-3457.
    [39]Shou-Zhe Li, Jin-Pyo Lim b, Han S. Uhm Discharge characteristics of an atmospheric-pressure capacitively coupled radio-frequency argon plasmas, Physics Letters A,2006,360:304-308.
    [40]Yu L., Laux C.O., Packan D. M. et al., Direct-current glow discharges in atmospheric pressure air plasmas J. Appl. Phys.2002,91:2678-2686
    [41]Tsai P.P., Wadsworth L.C., Roth J.R., Surface Modification of Fabrics Using a One-Atmosphere Glow Discharge Plasma to Improve Fabric Wettability,Textile Res. J.,1997,67 (5):359-369.
    [42]G. Borcial, C. A. Anderson, N. M. D. Brown, Plasma Sources Sci. Technol.2003,12:335.
    [43]O. J. Kwon, Sh. Tang, S. W. Myung, X. Lu, H. S. Choi, Surf. Coat. Technol.2005,192:1.
    [44]Tanaka K., Inomata T., Kogoma M., Improvement in adhesive strength of fluorinated polymer films by atmospheric pressure glow plasma, Thin Solid Films,2001, 386:217-221.
    [45]Tomoyuki Kikuchi, Yasuhiro Hasegawa, Hajime Shirai, RF microplasma jet at atmospheric pressure:characterization and application to thin film processing, J. Phys. D:Appl. Phys.,2004,37:1537-1543.
    [46]Jungo Toshifuji, Takashi Katsumata, Hirofumi Takikawa et al., Cold arc-plasma jet under atmospheric pressure for surface modification, Surface and Coatings Technology,2002, 171(1-3):302-306.
    [47]Cheng Cheng, Zhang Live, Ru-Juan Zhan, Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet, Surface and Coatings Technology, 2006,200(24):6659-6665.
    [48]P. A. Basore, Proc.29th IEEE Photovoltaic Specialists Conference, New Orleans, U.S.A,2002:49.
    [49]M. J. Keevers, T. L. Young, U. Schubert, M. A. Green, Proc.22nd European,Photovoltaic Solar Energy Conference, Milan, Italy,2007:1783.
    [50]WERNER K. The flowering of flat displays[J]. IEEE Spectrum,1997,034(5):40-49.
    [51]Shengdong Zhang, Chunxiang Zhu, Johnny K.O. Sin et al, Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass, IEEE Transactions on Electron Devices,2000,47 (3):569-575.
    [52]Le Comber P G, Spear W E, Ghaith A, Amorphous-Silicon Field-Effect Device and Possible Application, Elec. Lett.1979,15 (6):179-181.
    [53]Sposili RS, Im J S. Sequential lateral solidification of thin silicon films on SiO2. Appl Phys Lett,1996,69:2864-2866.
    [54]Brotherton SD, McCulloch DJ, Clegg JB, Gowers JP. Excimer-laser-annealed poly-Si thin-film transistors. IEEE Transactions on Electron Devices,1993:40(2):407-413.
    [55]Voutsas AT. Assessment of the performance of laser-based lateralcrystallization technology via analysis and modeling of polysilicon thin-filmtransistor mobility. IEEE Transactions on Electron Devices,2003,50(6):1494-1500.
    [56]Crowder MA, Moriguchi M, Mitani Y, Voutsas AT. Parametric investigation of SLS-processed poly-silicon thin films for TFT applications. Thin Solid Films 2003; 427 (March):101-107.
    [57]Voutsas AT, Limanov A, Im JS. Effect of process parameters on the structural characteristics of laterally grown, laser-annealed polycrystalline silicon films. J Appl Phys 2003,94(12),7445-7452.
    [58]Kopystynskip. The Wide-Ranging Applications of Polysilicon Layers in Solid-State Sensors and Actuators.1989,17,69-73.
    [59]Obemeier E. Polysilicon, Layers Lead to a new generation of pressure sensors. Digest Tech Int'l Conf Sol-Sta Sens and Actu,1985:430-433.
    [60]H. Guckel, Surface micro-machined pressure transducers, Sensors and Actuators,1991, A 28:133-146.
    [61]Seto J Y, The Electric Properties of Polycrystalline Silicon Films, Journal of Appl Phys,1975,46:5247-5254
    [62]M. M. Mandurah, K. C. Saraswat, and T. I. Kamins, A model for conduction in polysilicon: Part 1-Theory, Part 2-Comparison of theory and experiment, IEEE Trans. Electron Devices,1981,28:1163-1176.
    [63]French P J, Evans AGR, Piezoresistance in polysilicon and its applications to strain gauges, Solid State Electron,1989,32:1-10.
    [64]Mosser, V. Suski J., Goss J., Obermeier E.,Piezo-resistive pressure sensors based on poly-crystalline silicon, Sensors and Actuators,1991, A28:113-132.
    [65]Alpuim P,Filonovich S A, Costa C M et al. Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. Journal of NonoCrystalline Solids,2008,354:2585.
    [66]赵晓锋,温殿忠纳米多晶硅薄膜压力传感器制作及特性, 半导体学报,2008,29(10):2038-2042.
    [67]Rath J. K., Hardeman A. J., C. H. M. van der Werf, Deposition of HWCVD poly-Si films at a high growth rate, Thin Solid Films,2003,430(1-2):67-72.
    [68]王丽春,张贵锋,侯晓多等,镀铜玻璃衬底上柱状多晶硅薄膜的制备,半导体光电,2009,30(1):75-79.
    [69]Seung-Doh Shin, Dong-Wan Kim, Dong-Ik Kim et al., Crystal growth in the low-temperature deposition of polycrystalline silicon thin film, Journal of Crystal Growth,2005, 274(3-4):347-354.
    [70]Hideki Sunayama, Kazutaka Yamada, Minoru Karasawa et al., Preparation of poly-Si films by Cat-CVD for thin film transistor, Thin Solid Films,2003,430(1-2):226-229.
    [71]Molenbroek E.C., Mahan A.H., Gallagher A., Mechanisms influencing "hot-wire" deposition of hydrogenated amorphous silicon, J. Appl. Phys.1997,82:909-1917.
    [72]S. K. Soni, Anup Phatak, R.O. Dusane, High deposition rate device quality a-Si:H films at low substrate temperature by HWCVD technique, Solar Energy Materials and Solar Cells,2010, In Press, Corrected Proof, Available online
    [73]Matsuo S., KiuchiM., Low Temperature Chemical Vapor Deposition Method Utilizing an Electron Cyclotron Resonance Plasma, Japan. J. Appl. Phys.,1983,22:L210.
    [74]Kitakawa M., Setune K., Manabe Y. et al. Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method, Japan. J. Appl. Phys.,1988,27:2026
    [75]Kobayashi K., Hayama M., Kawamoto S. et al.,Characteristics of Hydrogenated Amorphous Silicon Films Prepared by Electron Cyclotron Resonance Microwave Plasma Chemical Vapor Deposition Method and Their Application to Photodiodes, Japan. J. Appl. Phys.,1986,26:202.
    [76]M. Zhang, Y. Nakayama, S. Nonoyama et al., Relationship between film quality and deposition rate for a-Si:H by ECR plasma CVD,J. Non-Cryst. Solids,1993,164-166:63-66.
    [77]K.Sasaki, T Takada, Y. Yoshida, Silicon selective growth on partially oxidized substrate by ECR plasma CVD technique,Vacuum,2000,59(2-3):672-677.
    [78]I. Sieber, N. Wanderka, I. Kaiser et al., Electron microscopic characterization of microcrystalline silicon thin films deposited by ECR-CVD, Thin Solid Films,2002, 403-404:543-548.
    [79]冯庆浩,秦福文,吴爱民等,ECR-PECVD方法低温制备多晶硅薄膜,半导体技术,2006,31(5):342-345.
    [80]刘丰珍,朱美芳,冯勇等,等离子体-热丝CVD技术制备多晶硅薄膜,半导体学报,2003,24(5):499-503.
    [81]F.Liu, M. Zhu, J.Liu et al., Poly-crystalline silicon thin films prepared by plasma-assisted hot-wire chemical vapor deposition, Thin Solid Films, 2003,430 (1-2):182-185.
    [82]Yuqin Zhou, Bingqing Zhou, Jinhua Gu et al., Comparison of growth mechanisms of silicon thin films prepared by HWCVD with PECVD, Thin Solid Films,2008,516(5):564-567.
    [83]Vikram L. Dalal, Paul Seberger, Matt Ring et al., Properties of a-Si:H films grown using hot wire-ECR plasma techniques, Thin Solid Films,2003,430(1-2):91-94.
    [84]D. J. Choi, Y. H. Kim, D. W. Han et al., Formation of polycrystalline silicon films on glass substrates at low-temperatures by a direct negative Si ion beam deposition system, Journal of Crystal Growth,1998,191(4):718-722.
    [85]Jin-Hyo Boo, Heon Kyu Park, Kyung Hoon Nam et al., High rate deposition of poly-Si thin films at low temperature using a new designed magnetron sputtering source, Surface and Coatings Technology,2000,131(1-3):211-215.
    [86]Y. Ishikawa, Y. Yamamoto, T. Hatayama et al., Crystallographic analysis of high quality poly-Si thin films deposited by atmospheric pressure chemical vapor deposition, Solar Energy Materials and Solar Cells,2002,74(1-4):255-260.
    [87]K. Baert, P. Deschepper, H. Pattyn et al., Selective deposition of n+ doped mc-Si:H:F by RF plasma cvd on Si and Sio2 substrates, Mater. Res. Soc. Symp. Proc.,1990,164,359
    [88]S. Shimizu, T. Komaru, K. Okawa et al., Fabrication of Solar Cells Having SiH2Cl2 Based I-Layer Materials, Jpn. J. Appl. Phys.,1999,38:6617.
    [89]J. W. Lee, K. Shimizu, J. Hanna, Deposition and characterization of polycrystalline silicon thin-films by reactive thermal chemical vapour deposition at 450 degrees C,Solid State Phenomena,2003,93:281-286.
    [90]J. C. Alonsoa, T. Oshimab, A. Yamadab et al., Low-temperature epitaxial growth of undoped and n-doped silicon by photochemical vapor deposition using SiH4/SiH2Cl2/H2/PH3 mixtures, Thin Solid Films,1994,237(1-2):98-104.
    [91]D. Angermeier, R. Monna, A. Slaoui, J. C. Muller, Analysis of thin film polysilicon on graphite substrates deposited in a thermal CVD system, Journal of Crystal Growth, 1995,191 (3):386-392.
    [92]G. Beaucarne, S. Bourdais, A. Slaoui, J. Poortmans, Thin-film polysilicon solar cells on foreign substrates using direct thermal CVD:material and solar cell design, Thin Solid Films,2002,403-404:229-237.
    [93]Lin XY, Huang CJ, Lin KX et al., Low-Temperature Growth of Polycrystalline silicon Films by SiCl4/H2 RF Plasma Enhanced Chemical Vapour Deposition, Chin Phys Lett, 2003,20(10):1879-1882.
    [94]Huang R, Lin XY, Yu YPet al.,Fast Growth of Polycrystalline Film in SiCl4/H2 Plasma,Chin Phys Lett,2004,21 (6):1168-1170.
    [95]Lin XY, Lin KX, Huang CJ et al., Growth mechanism of polycrystalline silicon films from hydrogen-diluted SiCl_(4) at low temperature, J Appl Phys, 2005,98(3):034907-1-034907-4.
    [96]Rui Huang, Xuanying Lin, Wenyong Huang et al., Effect of hydrogen on the low-temperature growth of polycrystalline silicon film deposited by SiCl4/H2 Thin Solid Films, 2006,513(1-2):380-384.
    [97]Y. S. Tang,C. D. W. Wilkinson,1998,Appl Phys Lett,58(25):2898-2900.
    [98]Sakai T, Sakai A, Okano H., Thin Film Deposition by Low Energy SiCln+ Beam, Jpn J Appl Phys,1993,32:3089-3093.
    [99]Cunge G., M. Kogelschatz, N. Sadeghi, Production and loss mechanisms of SiClX etch products during silicon etching in a high density HBr/Cl2/O2 plasma, J Appl Phys 2004,96 (8):4578-4587.
    [100]Sughoan Jung, Yukihiro Fujimura, Tesuji Ito et al., Chemistry of the chlorine-terminated surface for low-temperature growth of crystal silicon films by RF plasma-enhanced chemical vapor deposition, Solar Energ. Mater. Solar Cells, 2002,74(1-4):421-427.
    [101]Hajime Shirai, Role of chlorine in the nanocrystalline silicon film formation by rf plasma-enhanced chemical vapor deposition of chlorinated materials, Thin Solid Films, 2004,457(1):90-96.
    [102]P. Danesh, St. Georgiev, U. Jahn, Glow discharge deposition of chlorinated and hydrogenated amorphous silicon films from SiCl4-SiH4 Solar Energy Materials, 1984,9(4):405-413.
    [103]Yali Li, Yoshie Ikeda, Yasutake Toyoshima et al., Synthesis of novel p-type nanocrystalline silicon from SiH2Cl2 and SiC14 by rf plasma-enhanced chemical vapor deposition, Thin Solid Films,2006,506-507:38-44.
    [104]I. P. Vinogradov, A. Dinkelmann, A. Lunk, Measurement of the absolute CF2 concentration in a dielectric barrier discharge running in argon/fluorocarbon mixtures, J. Phys. D Appl. Phys.,2004,27:3000-3007.
    [105]I. P. Vinogradov, A. Lunk, Spectroscopic Diagnostics of DBD in Ar/Fluorocarbon Mixtures-Correlation between Plasma Parameters and Properties of Deposited Polymer Films,Plasma Process. Polym.2005,2(3),201-208.
    [106]Shih-Hsien Yang, Chi-Hung Liu, Chun-Hsien Su, Hui Chen, Atmospheric-pressure plasma deposition of SiOx films for super-hydrophobic application, Thin Solid Films,2009, 517:5284-5287.
    [107]S. HigashiT, H. Kaku, H. Taniguchi, H. Murakami, S. Miyazak, Crystallization of Si films on glass substrate using thermal plasma jet, Thin Solid Films,2005,487:122-125
    [108]Jhantu KumarSaha, KojiHaruta, MinaYeo, TomohiroKoabayshi, HajimeShirai, Rapid crystallizationofamorphoussiliconutilizingavery-high-frequency microplasmajetforSithin-filmsolarcells, Solar Energy Materials & Solar Cells,2009, 93:1154-1157
    [109]M. Moravej, S. E. Babayan, G. R. Xowling, et al., Plasma enhanced chemical vapour deposition of hydrogenated amorphous silicon at atmospheric pressure, Plasma Sources Sci. Technol.,2004,13:8-14.
    [110]徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1996,p111
    [I11]J. E. Sansonetti and W. C. Martin, Handbook of Basic Atomic Spectroscopic Data, http://physics.nist.gov/PhysRefData/Handbook/Tables/argontable2.htm
    [112]Babayan S E, Ding G,Hicks R F., Plasma Chem. Plasma Process,2001,21:505.
    [113]Babayan S E, Ding G, Nowling G R, et al., Plasma Chem. Plasma Process,2002,22:255.
    [114]Pearse R W B, Gaydon A G, The Identification of Molecular Spectra (New York:Chapman and Hall) 1979
    [115]Shi J J, Kong M G. Radio-frequency dielectric-barrier glow discharges in atmospheric argon[J]. Applied Physics Letters 2007,90:111502-1-3.
    [116]Zhu W C, Wang B R, Yao Z X, Pu Y K. Discharge characteristics of an atmospheric pressure radio-frequency plasma jet[J]. J. Phys. D:Appl. Phys,2005,38:1396-1401.
    [117]Park J, Henins I, Herrmann H W, Selwyn G S, Hicks R F. Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source[J]. Journal of Applied Physics,2001,89:20-8.
    [118]J. E. Touma, E. oks, S. Alexiou et. al, Review of the advanced generalized theory for stark broadening of hydrogen lines in Plasma with tables, J. Quant. Spctrosc. Radiant. Transfer,2000,65:543-571.
    [119]M. A. Gignos, M. A. Gonzolez, V. Cardenoso, Computer simulated Balmer-alpha,-beta,-gamma stark line Profiles for non-equilibrium Plasmas diagnostics, Spectro. Acta. B,2003, 58:1489-1504.
    [120]M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Second Edition, April,2005, New York, John Wiley and Sons
    [121]Yuri P. Raizer, John E. Allen, V. I. Kisin, Gas Discharge Physics, Springer; 1st ed. 1991. Corr.2nd printing edition (February 28,2001)
    [122]XinPei Lu, Frank Leipold and Mounir Laroussi. Optical and electrical diagnostics of a non-equilibrium air plasma[J]. J.Phys. D:Appl. Phys,2003,36:2662-2666.
    [123]C O Laux, T G Spence, C H Kruger and R N Zare. Optical diagnostics of atmospheric pressure air plasmas[J]. Plasma Sources Sci. Technol,2003,12:125-138.
    [124]O Motret, C Hibert, S Pellerin and J M Pouvesle. Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge—gas temperature and molecular fraction effects[J]. J. Phys. D:Appl. Phys,2000,33:1493-1498.
    [125]M. BAZAVAN, I. I OVA. TEMPERATURE DETERMINATION OF A COLD N2 DISCHARGE PLASMA BY THE FIT OF THE EXPERIMENTAL SPECTRAWITH THE SIMULATED EMISSION SPECTRA[J]. Romanian Reports in Physics,2008,60(3):671-678.
    [126]G Faure, S M Shkolnik. Determination of rotational and vibrational temperatures in a discharge with liquid non-metallic electrodes in air at atmospheric pressure[J]. J. Phys. D:Appl. Phys.1998,31:1212-1218.
    [127]Piper L G. REVALUATION OF THE TRANSITION-MOMENT FUNCTION AND EINSTEIN COEFFICIENTS FOR THE N2(A (3)SIGMA(U+)-X (1)SIGMA(G+)) TRANSITION[J]. Journal of Chemical Physics,1993,99:3174-3181.
    [128]郝作强,张杰,俞进,张喆,仲佳勇.空气中激光等离子体通道导电性能的研究[J].物理学报,2006,55:299.
    [129]Luque J, Crosley D R 1999 LIFBASE:Database and Spectral Simulation Program (Version 2.0.53)[CP], SRI International Report MP99-009.
    [130]J. JONKERS and J. A. M. VAN DER MULLEN. THE EXCITATION TEMPERATURE IN (HELIUM) PLASMAS[J]. J. Quant. Spectrosc. Radiat. Transfer,1999,61(5):703-709.
    [131].Cooper J.1964, Plasma spectroscopy, Plasma Physics Group, Imperial College, London,43
    [132]. http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
    L133]. Martin W. C., Musgrove A., Kotochigova S., and Sansonetti J.E., Ground Levels and Ionization Energies for the Neutral Atoms, http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html
    [134]. Sansonetti J. E. and Martin W. C., Handbook of Basic Atomic Spectroscopic Data, http://physics.nist.gov/PhysRefData/Handbook
    [135]. Wang X C, Wang N H, Ding Z F, Three-Dimensional Modelling of a DC Arc in Cross-Flow, Plasma Science and Technology,2007,9(5):564-569
    [136]. Tu X, Lu S Y, Yan J H, Ma Z Y, Pan X C, Cen K F, Cheron Bruno, Temperature Measurement of DC Argon Plasma Jet, Spectroscopy and Spectral Analysis,2006,26:1785 (in Chinese)[屠昕,陆胜勇,严建华,马增益,潘新潮,岑可法,直流氩等离子体射流电子温度的测量,光谱学与光谱分析2006,26:1785]
    [137]. Yan J H, Tu X, Ma Z Y, Pan X C, Cen K F, Cheron Bruno, Characterization of DC argon plasma jet at atmospheric pressure, Acta Phys. Sin.2006,55:3451 (in Chinese)[严建华,屠昕,马增益,潘新潮,岑可法,Cheron Bruno,大气压直流氩等离子体射流工作特性研究,物理学报,2006,55:3451]
    [138]. Dong L F, Ran J X, Mao Z G, Acta Phys. Sin.,2005,54:2167(in Chinese)[董丽芳,冉俊霞,毛志国,物理学报,2005,54:2167]
    [139]Veprek S, Sarott FA, Ruckschloss M., Temperature dependence of the crystallite size and crystalline fraction of microcrystalline silicon deposited from silane by plasma CVD, J Non-Cryst Solids,1991,37:733-736

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700