用户名: 密码: 验证码:
生物亲和性核壳纳米颗粒SERS标记物的合成及其在生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米尺度上的生物分析是当今生物和化学领域研究的前沿及发展方向,是分析科学关注的研究热点。近年来,将纳米技术应用于生物分析化学,在生物检测、纳米生物传感器、纳米生物芯片等方面显示出光明的发展前景。本文主要从事纳米颗粒SERS标记物的研究,针对纳米颗粒SERS标记物的前沿问题,从纳米颗粒SERS标记物的研究现状出发,提出了多种制备生物相容性核壳纳米颗粒SERS标记物的新型合成方法,并把这些合成出来的核壳型纳米颗粒SERS标记物应用于免疫分析和DNA检测。具体内容如下:
     1.核壳型纳米颗粒SERS标记物的合成
     我们采用两种新型的合成方法分别合成包埋了染料的Au@SiO_2和Ag@SiO_2两种核壳型纳米颗粒SERS标记物。从而既丰富了核壳型纳米颗粒SERS标记物的种类,又简化了实验过程。文献中报道的制备核壳型纳米颗粒SERS标记物的方法要求先用偶联剂即氨基或巯基硅烷化试剂处理,以使金属纳米颗粒表面具有亲玻璃性。
     (1)在第二章中,我们提出了改进的方法即不采用偶联剂处理的合成方法,这种制备方法避免了偶联剂与拉曼活性物之间的竞争,因而,常用的有机染料分子像结晶紫和罗丹明6G等都可成功地制成相应的SERS标记物,从而大大地丰富了SERS标记物的种类。我们发现,这种合成方法所需时间比文献中报道的常规方法显著减少。对于Au@SiO_2纳米颗粒SERS标记物形成过程中所涉及的硅化学,我们提出了可能的机理即正乙氧基硅烷的水解形成末端羟基,通过与吸附在纳米金颗粒上的柠檬酸根作用而导致硅壳层的形成。并且,我们通过实验验证了这个机理。
     (2)在第三章中,利用微乳液可以用作纳米反应器的特点,我们采用油包水微乳液技术合成了包埋异硫氰罗丹明染料的Ag@SiO_2核壳纳米颗粒SERS标记物。采用这种方法合成时,纳米银的形成、染料在纳米银表面上的键合和二氧化硅壳层在纳米银与染料上面的形成都是在一个微反应器中进行的。因此,采用这种方法合成时,也不需要把纳米金属进行亲玻璃性预处理。我们采用这两种新型的合成方法制备出来的Au@SiO_2和Ag@SiO_2两种核壳型纳米颗粒SERS标记物具有很强的表面增强拉曼散射信号并且具有很好的稳定性。
     2. Fe_3O_4@Ag@TiO_2纳米颗粒复合物SERS基质的合成
     在第四章中,我们制备了一种既能与常见的拉曼活性物产生SERS信号,本身
Bioanalysis on nanometer scale has been a topic of significant interest in the developments of current biological and chemical research. Recently, the integration of nanotechnology with biology and analytical chemistry has broad implications in a variety of areas including nano-biosensor and nano-biochips. This dissertation describes the research on biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering (SERS) tags including the novel synthesis methods and their applications in immunoassays and DNA detection. The details are summarized as follows:
     1. The synthesis of core-shell nanoparticle-based SERS tags
     Two novel synthesis methods have been developed in the preparation of core-shell nanoparticle-based SERS tags including Au@SiO_2 and Ag@SiO_2 based SERS tags. To enrich the kinds of the nanoparticle-based SERS tags and reduce the reaction time during the synthesis of the core-shell nanoparticle-based SERS tags have been the goal in designing these two novel synthesis methods. In the previous literature, it was necessary to pretreat the metal nanoparticles with siliane agent with the group of amino or mercapto to make their surface vitrophilic.
     (1) In chapter 2, we employed improved synthesis method without the need of coupling agent to prepare Au@SiO_2 nanoparticle-based SERS tags. This synthesis method obviates the competition between the coupling agents and the Raman reporters. Thus, common dyes such as crystal violet and rhodamine 6G can be successfully encapsulated in the Au@SiO_2 core-shell nanoparticle-based SERS tags which efficiently enriched the kinds of SERS tags. Compared to the previous methods reported in literature, the whole synthesis procedure was greatly simplified and the reaction time was significantly reduced. Furthermore, Our experiments have demonstrated the hypothesis that the glass encapsulation chemistry is based on the reaction between silanol groups hydrolyzed by TEOS and citrate anion groups adsorbed onto the gold nanoparticles leading to the formation of a silica layer through further reaction with silanol groups of other hydrolyzed TEOS.
     (2) In chapter 3, we synthesized Ag@SiO_2 core-shell nanoparticle-based SERS labels using reverse micelle technique or microemulsion being used as a nanoreactor. Using the proposed approach, different processes including the preparation of silver
引文
[1] 梁文平, 庄乾坤.分析化学的明天-学科发展前沿与挑战. 北京:科学出版社, 2003,92-96
    [2] 刘吉平, 郝向阳. 纳米科学与技术. 北京: 科学出版社,2002, 6-6
    [3] Piner R D, Zhu J, Xu F, Hong S, et al. "Dip-pen" nanolithography. Science,1999,283(5402):661-663
    [4] Hong S, Zhu J, Mirkin C A. Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science,1999,286(5439):523-525
    [5] 刘吉平,廖莉玲.无机纳米材料.北京:科学出版社,2003,1-29
    [6] Sasaki K, Shi Z Y, Kopelman R, et al. Three-dimensional pH microprobing with an optically-manipulated fluorescent particle. Chemistry Letters,1996,25(2):141
    [7] Clark H A, Barker S L R,Kopelman R. Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sensors and Actuators B, 1998, 51(1-3):12–16
    [8] Clark H A, Hoyer M, Philbert M A, et al. Optical nanosensors for chemical analysis inside single living cells. 1. fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Analytical Chemistry, 1999, 71(21): 4831-4836
    [9] Xu H, Aylott J W, Kopelman R, et al. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Analytical Chemistry, 2001, 73(17):4124-4133
    [10] Brasuel M, Kopelman R, Miller T J, et al. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Analytical Chemistry, 2001, 73(10):2221-2228
    [11] Sumner J P, Aylott J W, Monsona E, et al. A fluorescent PEBBLE nanosensor for intracellular free zinc. Analyst, 2002, 127(1):11–16
    [12] Brasuel M, Kasman I, Miller T J, et al. Ion concentrations in live cells from highly selective ion correlation fluorescent nano-sensors for sodium. Proceedings of IEEE, 2002, 1(12-14):288-292
    [13] Park E J, Brasuel M, Behrend C, et al. Ratiometric optical PEBBLE nanosensorsfor real-time magnesium ion concentrations inside viable cells. Analytical Chemistry, 2003, 75(15):3784-3791
    [14] Barker S L R, Kopelman R. Fiber-optic nitric oxide-selective biosensors and nanosensors. Analytical Chemistry, 1998, 70(5):971-976
    [15] Cordek J, Wang X, Tan W. Direct immobilization of glutamate dehydrogenase on optical fiber probes for ultrasensitive glutamate detection. Analytical Chemistry, 1999, 71(8):1529-1533
    [16] Vo-Dinh T, Alarie J P, Cullum B M, et al. Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nature Biotechnology,2000,18(7):764-767
    [17] Safarikova M, Kibrikova I, Ptackova L, et al. Magnetic solid phase extraction of non-ionic surfactants from water. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 377-381
    [18] Safarikova M, Safarik I. Magnetic solid-phase extraction. Journal of Magnetism and Magnetic Materials, 1999, 194(1-3): 108-112
    [19] Ashtari P, Wang K, Yang X, et al. Novel separation and preconcentration of trace amounts of copper(II) in water samples based on neocuproine modified magnetic microparticles. Analytica Chimica Acta, 2005, 550(1-2): 18-23
    [20] Papisov M I, Torchilin V P. Magnetic drug targeting. II. targeted drug transport by magnetic microparticles: factors influencing therapeutic effect. International Journal of Pharmaceutics, 1987, 40 (3) :207-214
    [21] Rosengart A J, Kaminski M D, Chen H, et al. Magnetizable implants and functionalized magnetic carriers: a novel approach for noninvasive yet targeted drug delivery. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 633-638
    [22] Jeong J, Ha T H, Chung B H. Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Analytica Chimica Acta, 2006, 569(1-2): 203-209
    [23] Zeng L, Luo K, Gong Y. Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. Journal of Molecular Catalysis B: Enzymatic, 2006, 38(1): 24-30
    [24] Demirel D, ?zdural A R, Mutlu M. Preparation and characterization of magnetic duolite–polystyrene composite particles for enzyme immobilization. Journal of Food Engineering, 2004, 62(3): 203-208
    [25] Schoepf U, Marecos E M. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. BioTechniques,1998, 24(4): 642-651
    [26] Handgretinger R, Lang P, Schumm M, et al. Isolation and transplantation of autologous peripheral CD34+ progenitor cells highly purified by magnetic-activated cell sorting. Bone Marrow Transplantation, 1998, 21(10):987-993
    [27] Weissleder R, Cheng H C, Bogdanova A, et al. Magnetically labeled cells can be detected by MR imaging. Journal of Magnetic Resonance Imaging: JMRI, 1997, 7(1):258-263
    [28] Zhao L, Jin-Ming Lin J. Development of a micro-plate magnetic chemiluminescence enzyme immunoassay (MMCLEIA) for rapid- and high-throughput analysis of 17β-estradiol in water samples. Journal of Biotechnology, 2005, 118(2): 177-186
    [29] Zhang R Q, Hirakawa K, Seto D, et al. Sequential injection chemiluminescence immunoassay for anionic surfactants using magnetic microbeads immobilized with an antibody. Talanta, 2005, 68 (2):231-238
    [30] 罗新,方裕勋,陈建新.磁流体在医药中的应用进展.华东地质学院学报,2003,26(4):397-400.
    [31] 陈琨,马明,顾宁.采用纳米磁性材料的肿瘤热疗技术.中国医疗器械杂志,2003,27(4):276-278
    [32] Widder K J, Senyei A E. Magnetic microspheres: a vehicle for selective targeting of drugs. Pharmacology & Therapeutics,1983,20(3):377-395
    [33] 赵强,庞小峰.磁性纳米生物材料研究进展及其应用.原子与分子物理学报,2005,22(2):222-225
    [34] 向娟娟,朱诗国,吕红斌等.用氧化铁磁性纳米颗粒作为基因载体的研究.癌症,2001,20(10):1009-1014
    [35] 曹正国, 周四维, 孙凯等.超顺磁性葡聚糖氧化铁纳米颗粒的制备及其作为基因载体的可行性研究.癌症,2004,23(10):1105-1109
    [36] 杨文胜,高明远,白玉白.纳米材料与生物技术.北京:化学工业出版社, 2005,3
    [37] 卢圣栋.现代分子生物学实验技术. 北京:高等教育出版社,1999,155
    [38] Stuart D A. Biomolecular imaging and spectroscopy with metal and semiconductor nanoparticles:[dissertation]. Indiana University, 2003, 6-7
    [39] 孙望强,谢长生.纳米技术在药学研究中的若干应用(一):药物中的应用.材料导报,2004,18(10):31-33
    [40] Bruchez Jr. M, Moronne M, Gin P, et al. Semiconductor nanocrystals asfluorescent biological labels. Science,1998,281(5385):2013-2016
    [41] Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018
    [42] Schultz S, Smith D R, Mock J J, et al. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceeding of the National Academy of Sciences of the United States of America, 2000, 97(3):996-1001
    [43] Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Analytical Biochemistry, 1998, 262(2):157–176
    [44] Oldenburg S J, Genick C C, Keith A. Clark K A. Base pair mismatch recognition using plasmon resonant particle labels. Analytical Biochemistry, 2002, 309(1):109-116
    [45] Schultz D A. Plasmon resonant particles for biological detection. Current Opinion in Biotechnology, 2003, 14(1):13-22
    [46] Doering W E, Nie S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Analytical Chemistry, 2003, 75(22):6171-6176
    [47] Raman C V and Krishman K S. A new type of secondary radiation. Nature, 1928, 121(3048):501-502
    [48] 兰燕娜,周玲. 表面增强拉曼光谱.南通工学院学报(自然科学版),2004,3(2):21- 3
    [49] 刘 玲.激光拉曼光谱及其应用进展.山西大学学报(自然科学版),2001,24 (3): 279- 82
    [50] 叶 勇,胡继明,曾云鹗.表面增强拉曼技术及 FT 拉曼的研究及应用.大学化学,1998,13(1):6-10
    [51] 田中群.表面增强拉曼光谱学中的纳米科学问题.中国基础科学,2001,3 期,4-10
    [52] Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002, 14(18): R597-R624
    [53] Fleischmann M, Hendra P J, McQuillan A. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974, 26(2):163-166
    [54] Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry, 1977, 84(1):1-20
    [55] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at asilver electrode. Journal of the American Chemical Society, 1977, 99(15):5215-5217
    [56] Creighton J A, Blatchford C G, Albrecht M G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1979, 75(5):790-798
    [57] Moskovits M. Surface-enhanced spectroscopy. Reviews of Modern Physics, 1985, 57(3):783-826
    [58] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102-1106
    [59] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, 78(9):1667-1670
    [60] Yang H, Yang Y, Yang Y, et al. Formation of inositol hexaphosphate monolayers at the copper surface from a Na-salt of phytic acid solution studied by in situ surface enhanced Raman scattering spectroscopy, Raman mapping and polarization measurement. Analytica Chimica Acta, 2005, 548(1):159–165
    [61] Chan H Y H, Takoudis C G, Weaver M J. Oxide film formation and oxygen adsorption on copper in aqueous media as probed by surface-enhanced Raman spectroscopy. Journal of Physical Chemistry B, 1999, 103(2):357-365
    [62] Graff M, Bukowska J, Zawada K. Surface enhanced Raman scattering (SERS) of 1-hydroxybenzotriazole adsorbed on a copper electrode surface. Journal of Electroanalytical Chemistry, 2004, 567(2):297–303
    [63] Zawada K, Bukowska J. Surface-enhanced Raman spectroscopy studies of phenylpyridines interacting with a copper electrode surface. Surface Science, 2002, 507–510:34–39
    [64] Tian Z Q, Ren B, Mao B W. Extending surface Raman spectroscopic studies to transition metals for practical applications , I. vibrational properties of thiocyanate and monoxide adsorbed on electrochemical activated platinum surfaces. Journal of Physical Chemistry B, 1997, 101(8):1338-1346
    [65] Huang Q J, Yao J L, Mao B W, et al. Surface Raman spectroscopic studies of pyrazine adsorbed onto nickel electrodes. Chemical Physics Letters, 1997, 271 (1-3):101-106
    [66] Cao P G, Yao J L, Ren B, et al. Surface enhanced Raman scattering from bare Fe electrode surfaces. Chemical Physics Letters, 2000, 316(1-2):1-5
    [67] Xie Y, Wu D Y, Liu G K, et al. Adsorption and photon-driven charge transfer of pyridine on a cobalt electrode analyzed by surface enhanced Raman spectroscopy and relevant theories. Journal of Electroanalytical Chemistry, 2003, 554-555: 417-425
    [68] Ren B, Lin X F, Yan J W, et al. Electrochemically roughened rhodium electrode as asubstrate for surface enhanced Raman spectroscopy. Journal of Physical Chemistry B, 2003, 107(4):899-902
    [69] Tian Z Q, Ren B, Wu D Y. Surface enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. Journal of Physical Chemistry B, 2002, 106(37):9463~9483
    [70] Weaver M J, Zou S Z, Chan H Y H. The new interfacial ubiquity of surface enhanced Raman spectroscopy. Analytical Chemistry, 2000, 72(1):38A~47A
    [71] Leung L W, Weaver M J. Extending surface enhanced Raman spectroscopy to transition metal surfaces: carbon monoxide adsorption and electroxidation on platinum and palladium2coated electrodes. Journal of the American Chemical Society, 1987, 109(17):5113-5119
    [72] Bilmes A, Rubim J C, Otto A, et al. SERS from pyridine adsorbed on electrodispersed platinum electrodes. Chemical Physics Letters, 1989, 159(1):89-96.
    [73] Bryant M A, Joa S L, Pemberton J E. Raman scattering from monolayer films of thiophenol and mercaptopyridine at Pt surfaces. Langmuir, 1992, 8(3):753- 756
    [74] Ren B, Huang Q J, Cai W B, et al. Surface Raman spectra of pyridine and hydrogen adsorbed at Pt and Ni electrodes. Journal of Electroanalytical Chemistry, 1996, 415(1-2):175-178
    [75] Huang Q J , Li X Q, Yao J L, et al. Extending surface Raman spectroscopy studies to transition metals for practical applications III. effects of surface roughening procedure on surface-enhanced Raman spectroscopy from nickel and platinum electrodes. Surface Science, 1999, 427-428:162- 166
    [76] Cai W B, Ren B, Liu F M, et al. Investigation of surface enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surface Science, 1998, 406(1-3):9-22
    [77] Gao J S, Tian Z Q. Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates. Spectrochimca Acta A: Molecular and Biomolecular Spectroscopy, 1997, 53(10):1595- 1600.
    [78] Cao P G, Yao J L, Ren B, et al. Surface-enhanced Raman scattering from bare Fe electrode surfaces. Chemical Physics Letters, 2000, 316(1-2):1-5
    [79] Cai W B, She C X, Ren B, et al. Surface Raman spectroscopic investigation of pyridine adsorbed at platinum electrodes effects of potential and electrolyte. Journal of the Chemical Society, Faraday Transactions, 1998, 94(20):3127- 3133.
    [80] Yao J L, Ren B, Huang Z F, et al. Extending surface Raman spectroscopy to transition metals for practical applications IV. a study on corrosion inhibition of benzotriazole on bare Fe electrodes. Electrochimica Acta, 2003, 48(9):1263-1271
    [81] Ren B, Li X Q , She C X, et al. Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes. Electrochimca Acta, 2000, 46(2-3):193- 205
    [82] Ren B, Huang Q J, Xie Y, et al. Analyzing the adsorption behavior of thiocyanide on pure Pt and Ni electrode surfaces by confocal microprobe Raman spectroscopy. Analytical Science, 2000, 16(2):225- 230
    [83] Ren B, Li X Q , Wu D Y, et al. Orientation behavior of cyanide on a roughened platinum surface investigated by surface enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 322(6):561- 566
    [84] Zou S Z, Willians C T, Chen E K Y, et al. Probing molecular vibrations at catalytically significant interfaces: A new ubiquity of surface enhanced Raman scattering. Journal of the American Chemical Society, 1998, 120(15):3811-3812.
    [85] de Vooys A C A, Mrozek M F, Koper M T M, et al. The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy. Electrochemistry Communications, 2001, 3(6):293-298
    [86] Ren B, Liu F M, Xie J, et al. In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions. Applied Physics Letters, 1998, 72(8): 933-935
    [87] Kerker M, Wang D S, Chew H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Applied Optics, 1980,19(19):3373-3388。
    [88] Kerker M, Wang D S, Chew H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Applied Optics, 1980,19(24):4159-4174
    [89] Gersten J, Nitzan A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. The Journal of Chemical Physics,1980,73(7):3023-3037
    [90] Efrima S, Metiu H. Classical theory of light scattering by an adsorbed molecule. I.Theory. The Journal of Chemical Physics, 1979, 70(4):1602-1613
    [91] Aravind P K, Nitzan A, Metiu H. The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surface Science, 1981, 110(1):189-204
    [92] Gersten J I. The effect of surface roughness on surface enhanced Raman scattering. The Journal of Chemical Physics, 1980,72(1):5779-5780
    [93] Chew H, Cooke D D, Kerker M. Raman and fluorescent scattering by molecules embedded in dielectric cylinders. Applied Optics, 1980,19(1):44-52
    [94] Chen C Y, Burstein E. Giant Raman Scattering by molecules at metal-island films. Physical Review Letters, 1980,45(15):1287–1291
    [95] King F W, Van Duyne R P, Schatz G C. Theory of Raman scattering by molecules adsorbed on electrode surfaces. The Journal of Chemical Physics, 1978,69(10):4472-4481
    [96] Kliewer K L, Fuchs R. Anomalous skin effect for specular electron scattering and optical experiments at non-normal angles of incidence. Physical Review, 1968,172(3):607–624。
    [97] Beaglehole D, Hunderi O. Study of the interaction of light with rough metal surfaces. I. Experiment. Physical Review B, 1970,2(2):309–321
    [98] 赵金涛,吴冬青,廖永畔等.SERS 天线共振子模型理论对 Ag, Cu 和 Au 增强因子的研究.宁夏大学学报(自然科学版),1998,19(2):130-132
    [99] Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics,1978,69(9):4159-4161
    [100] Aravind P K, Hood E, Metiu H. Angular resonances in the emission from a dipole located near a grating. Surface Science,1981,109(1):95-108
    [101] Billmann J, Kovacs G, Otto A. Enhanced Raman effect from cyanide adsorbed on a silver electrode. Surface Science,1980,92(1):153-173
    [102]方景礼,武勇.表面增强激光拉曼光谱的原理及应用.表面技术,1994,23(4):167-194
    [103] 武建劳,郇宜贤,傅克德等.表面增强拉曼散射概述.光散射学报,1994,6(1):52-62
    [104] 武建劳,郇宜贤,傅克德等.表面增强拉曼散射概述.光散射学报,1994,6(2):109-118
    [105] 陆天虹.表面增强拉曼光谱及其在化学中的应用.腐蚀科学与防腐技术,1995,7(2):102-107
    [106] Vo-Dinh T, Houck K, Stokes D L. Surface-enhanced Raman gene probes. Analytical Chemistry, 1994, 66(20):3379-3383
    [107] Isola N R, Stokes D L, Vo-Dinh T. Surface-enhanced Raman gene probe for HIV detection. Analytical Chemistry, 1998, 70(7):1352-1356
    [108] Allain L R, Vo-Dinh T. Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Analytica Chimica Acta, 2002, 469(1):149–154
    [109] Graham D, Mallinder B J, Whitcombe D, et al. Simple multiplex genotyping by surface-enhanced resonance Raman scattering. Analytical Chemistry, 2002, 74(5):1069-1074
    [110] Ni J, Lipert R J, Brent Dawson G, et al. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Analytical Chemistry, 1999, 71(21):4903-4908
    [111] Charles Cao Y , Jin R, Mirkin C A , et al. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297 (5586):1536-1540
    [112] Charles Cao Y, Jin R, Nam J M, et al. Raman dye-labeled nanoparticle probes for proteins. Journal of the American Chemical Society, 2003, 125(48):14676-14677
    [113] Mulvaney S P, Musick M D, Keating C D, et al. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir, 2003, 19(11):4784-4790
    [114] Penn S G, He L, Natan M J, et al. Nanoparticles for bioanalysis. Current Opinion in Chemical Biology, 2003, 7(5):609-615
    [115] Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 1999, 99(10):2957-2976
    [116] Fabian H, Anzenbacher P. New developments in Raman spectroscopy of biological systems. Vibrational Spectroscopy 1993, 4(2): Pages 125-148
    [117] Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews, 1998, 27(4):241-250
    [118] Pemberton J E, Guy A L, Sobocinski R L, et al. Surface enhanced Raman scattering in electrochemical systems: The complex roles of surface roughness. Applied Surface Science, 1988, 32(1-2):33-56
    [119] Grubisha D S, Lipert R J, Park H Y, et al. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Ramanscattering and immunogold labels. Analytical Chemistry, 2003, 75(21): 5936-5943
    [120] Olson L G, Lo Y S, Beebe T P, et al. Characterization of silane-modified immobilized gold colloids as a substrate for surface-enhanced Raman spectroscopy. Analytical Chemistry, 2001, 73(17):4268-4276
    [121] Yu L, Yin Y, Li Z Y, et al. Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids. Nano Letters, 2002, 2(7):785-788
    [122] Liz-Marzán L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir, 1996, 12(18):4329-4335
    [123] Mine E, Yamada A, Kobayashi Y, et al. Direct coating of gold nanoparticles with silica by a seeded polymerization technique. Journal of Colloid and Interface Science, 2003, 264(2):385-390
    [124] Bao L, Mahurin S M, Sheng Dai S. Controlled Layer-By-Layer Formation of Ultrathin TiO2 on Silver Island Films via a Surface Sol-Gel Method for Surface-Enhanced Raman Scattering Measurement. Analytical Chemistry, 2004, 76(15):4531 -4536
    [125] Yan W, Chen B, Mahurin S M, et al. Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. Journal of Physical Chemistry B, 2004, 108(9):2793 -2796
    [126] Kunitake T, Lee S W. Molecular imprinting in ultrathin titania gel films via surface sol–gel process. Analytica Chimica Acta, 2004, 504(1):1-6
    [127] Kovtyukhova N I, Buzaneva E V, Waraksa C C, et al. Surface Sol-Gel Synthesis of Ultrathin Semiconductor Films. Chemical Materials, 2000, 12(2):383-389
    [128] Krug J T, Wang G D, Emory S R, et al. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. Jounal of the American Chemical Society, 1999, 121(39):9208-9214
    [129] Ung T, Liz-Marzán L M, Mulvaney P. Optical properties of thin films of Au@SiO2 particles. Journal of Physical Chemistry B, 2001, 105(17):3441-3452
    [130] Hoar T P, SchuIman J H. Transparent water-in-oil dispersions:the oleopathic hydro-micelle. Nature, 1943, 152:102-103
    [131] Schulman J H,Stoeckenius W, Prince L. Mechanism of foreation and structure of micro emulsions by electron microscopy. Journal of Physical Chemistry, 1959, 63(10):1677-1680
    [132] Boutonnet M, Kizling J, Stenins P, et al. The preparation of monodispersecolloidal metal particles from microemulsions. ColIoids and Surfaces. 1982, 5(3):209-225
    [133] 梁文平.乳状液科学与技术基础.北京:科学出版社,2001, 211
    [134] 苏良碧,官建国.微乳液及其制备纳米材料的研究.化工新型材料,2002,30(9):17-19
    [135] 王学川,安华瑞.徼乳的发展及应用.北京皮革:中外皮革信息版,2005,3:90-93
    [136] 邵庆辉,古国榜,章莉娟等.微乳液系统的研究和应用现状与展望.江苏化工,2002, 30(1):18-23
    [137] 徐冬梅,张可达,王 平等.微乳液法制备纳米粒子.化学研究与应用,2002,14(5):501-506
    [138] Pileni M P. Reverse micelles as microreactors. Journal of Physical Chemistry, 1993, 97(27):6961-6973
    [139] Shinoda K, Lindman B. Organized surfactant systems: microemulsions. Langmuir, 1987, 3(2):135-149
    [140] Loo B H. Surface-enhanced Raman spectroscopy of platinum. 2. enhanced light scattering of chlorine adsorbed on platinum. Jounal of Physical Chemistry, 1983, 87(16):3003-3007
    [141] Aroca R, Jennings C, Kovacs G. J, et al. Surface-enhanced Raman scattering of Langmuir-Blodgett monolayers of phthalocyanine by indium and silver island films. Journal of Physical Chemistry, 1985, 89(19):4051-4054
    [142] Wu Y, Zhao B, Xu W, et al. Near-infrared surface-enhanced Raman scattering study of ultrathin films of azobenzene-containing long-chain fatty acids on a silver surface prepared by silver mirror and nitric acid etched silver foil methods. Langmuir, 1999, 15(13):4625-4629
    [143] Xue G, Dong J. Stable silver substrate prepared by the nitric acid etching method for a surface-enhanced Raman scattering study. Analytical Chemistry, 1991, 63(20):2393-2397
    [144] Nickel U, Zu Castell A, Poppl K, et al. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir, 2000, 16(23):9087-9091
    [145] Emory S R, Nie S. Screening and enrichment of metal nanoparticles with novel optical properties. Journal of Physical Chemistry B, 1998, 102(3):493-497
    [146] Cai W B, Ionel I C, Scherson D A. Determination of adsorption isotherm of species adsorbed on roughened silver electrodes from in situ quantitative surfaceenhanced Raman spectroscopy. Journal of Electroanalytical Chemistry, 2002, 524-525:36-42
    [147] Wang H, Wu G. The monothiocyanate complexes of chromium ion (III) on the silver electrode by the surface enhanced Raman scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 62(1-3):415-419
    [148] Yao J L, Mao B W, Gu R A, et al. Time-dependent Raman spectra from two types of adsorption sites at Ag electrodes. Chemical Physics Letters, 1999, 306(5-6):314-318
    [149] Cao P G, Yao J L, Ren B,et al. Surface-enhanced Raman scattering from bare Fe electrode surfaces. Chemical Physics Letters, 2000, 316(1-2):1-5
    [150] Nirode W F, Devault G L, Sepaniak M J. On-column surface-enhanced Raman spectroscopy detection in capillary electrophoresis using running buffers containing silver colloidal solutions. Analytical Chemistry, 2000, 72(8):1866-1871
    [151] Cui Y, Ren B, Yao J L, et al. Synthesis of Ag core Au shell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. Journal of Physical Chemistry B, 2006, 110(9):4002-4006
    [152] Mosier-Boss P A, Lieberman S H. Surface-enhanced Raman spectroscopy substrate composed of chemically modified gold colloid particles immobilized on magnetic microparticles. Analytical Chemistry, 2005, 77(4):1031-1037
    [153] Gu H, Zheng R, Zhang X X, et al. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. Jounal of the Americal Chemical Society, 2004, 126(18): 5664-5665
    [154] Wang D, He J, Rosenzweig N, et al. Superparamagnetic Fe2O3 beads?CdSe/ZnS quantum dots core?shell nanocomposite particles for cell separation. Nano Letters, 2004, 4(3):409-413
    [155] Yi D K, Tamil Selvan S, Lee S S, et al. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. Journal of the American Chemical Society, 2005, 127(14):4990-4991
    [156] Mandal M, Kundu S, Ghosh S K, et al. Magnetite nanoparticles with tunable gold or silver shell. Journal of Colloid and Interface Science, 2005, 286(1):187–194
    [157] Sakai H, Kanda T, Shibata H, et al. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. Journalof the American Chemical Society, 2006, 128(15):4944-4945
    [158] Liu Y, Liu C Y, Zhang Z Y, et al. The surface enhanced Raman scattering effects of composite nanocrystals of Ag–TiO2. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2001, 57(1):35–39
    [159] Shibata H, Ogura T, Mukai T, et al. Direct synthesis of mesoporous titania particles having a crystalline wall. Journal of the American Chemical Society, 2005, 127(47):16396-16397
    [160] Seydack M. Nanoparticle labels in immunosensing using optical detection methods. Biosensors and Bioelectronics, 2005, 20(12):2454-2469
    [161] Wang J. Nanoparticle-based electrochemical DNA detection. Analytical Chimica Acta, 2003, 500(1-2):247-257
    [162] Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society, 2003,125(38):11474 -11475
    [163] Merko?i A, Aldavert M, Marín S, et al. New materials for electrochemical sensing V: nanoparticles for DNA labeling. TrAC Trends in Analytical Chemistry, 2005, 24(4):341-349
    [164] Kubitschko S, Spinke J, Brückner T, et al. Sensitivity enhancement of optical immunosensors with nanoparticles. Analytical Biochemistry, 1997, 253(1):112-122
    [165] Lyon L A, Musick M D, Natan M J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Analytical Chemistry, 1998, 70(24):5177-5183
    [166] Nithipatikom K, McCoy M J, Hawi S R, et al. Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Analytical Biochemistry, 2003, 322(2):198-207
    [167] Zhou X, Zhou J. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Analytical Chemistry, 2004, 76(18):5302-5312
    [168] Hirsch L R, Jackson J B, Lee A, et al. A whole blood immunoassay using gold nanoshells. Analytical Chemistry, 2003, 75(10):2377-2381
    [169] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 2001, 19(7):631-635
    [170] Peńa S R N. Metal particles for bioanalysis: optical properties and bioassay development: [dissertation]. The Pennsylvania State University, 2002, 2-5
    [171] Aslan K, Gryczynski I, Malicka J, et al. Metal-enhanced fluorescence: anemerging tool in biotechnology. Current Opinion in Biotechnology, 2005, 16(1):55-62
    [172] Mer G, Chazin W J. Enzymatic Synthesis of Region-Specific Isotope-Labeled DNA Oligomers for NMR Analysis. Journal of the American Chemical Society, 1998, 120(3):607 -608
    [173] Miranker A, Kruppa G H, Robinson C V, et al. Isotope-Labeling Strategy for the Assignment of Protein Fragments Generated for Mass Spectrometry. Journal of the American Chemical Society, 1996, 118(31):7402 -7403
    [174] Deng Y, Pan H, Smith D L et al. Selective Isotope Labeling Demonstrates That Hydrogen Exchange at Individual Peptide Amide Linkages Can Be Determined by Collision-Induced Dissociation Mass Spectrometry. Journal of the American Chemical society,1999, 121(9):1966 -1967
    [175] Shelver W L, Smith D J. Application of a Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for the Determination of Ractopamine in Incurred Samples from Food Animals. Journal of Agricultural and Food Chemistry, 2002, 50(10):2742 -2747
    [176] Schraer S M, Shaw D R, Boyette M, et al. Comparison of Enzyme-Linked Immunosorbent Assay and Gas Chromatography Procedures for the Detection of Cyanazine and Metolachlor in Surface Water Samples. Journal of Agricultural and Food Chemistry, 2000, 48(12):5881 -5886
    [177] Pomes M J, Thurman E M, Aga D S, et al. Evaluation of Microtiter-Plate Enzyme-Linked Immunosorbent Assay for the Analysis of Triazine and Chloroacetanilide Herbicides in Rainfall. Environmental Science & Technology, 1998, 32(1):163 -168
    [178] Steffens D L, Jang G Y, Sutter S L, et al. An infrared fluorescent dATP for labeling DNA. Genome Research, 1995, 5(4):393-399
    [179] Yang M, Millar D P. Fluorescence resonance energy transfer as a probe of DNA structure and function. Methods in Enzymology, 1997, 278:417-444
    [180] Tyagi1 S, Bratu1 D P, Kramer F R. Multicolor molecular beacons for allele discrimination. Nature Biotechnology, 1998, 16:49-53
    [181] Waggoner A. Covalent labeling of proteins and nucleic acids with fluorophores. Methods in Enzymology, 1995, 246: 362-373
    [182] LeDuc P R, Whiteley E M, Bao G, et al. Investigating the secretory pathway of the baculovirus-insect cell system using a secretory green fluorescent protein. Biotechnology Progress, 2000, 16(5):716-723
    [183] Albano C R, Randers-Eichhorn L, Bentley W E, et al. Green fluorescent protein as a real time quantitative reporter of heterologous protein production. Biotechnology Progress, 1998, 14(2):351-354
    [184] Wachter R M, King B A, Heim R. Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry, 1997, 36 (32), 9759 -9765
    [185] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceeding of the National Academy of Sciences of the United States of America, 1994, 91(24):12501-12504
    [186] Orm? M, Cubitt A B, Kallio K, et al. Crystal structure of the aequorea victoria green fluorescent protein. Science, 1996, 273(5280):1392-1395
    [187] Chrisey L A, Lee G U, O'Ferrall C E. Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic Acids Research, 1996, 24(15):3031-3039
    [188] Pappas D, Smith B W, Winefordner J D. Raman spectroscopy in bioanalysis. Talanta, 2000, 51(1):131–144
    [189] Amri C E, Baron M H, Maurel M C. Adenine and RNA in mineral samples.Surface-enhanced Raman spectroscopy (SERS) for picomole detections. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(11): 2645-2654
    [190] Dou X, Takama T, Yamaguchi Y, et al. Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Analytical Chemistry, 1997, 69(8):1492-1495
    [191] Rohr T E, Cotton T, Fan N, et al. Immunoassay employing surface-enhanced Raman spectroscopy. Analytical Biochemistry, 1989, 182(2):388-398
    [192] Talley C E, Jusinski L, Hollars C W, et al. Intracellular pH sensors based on surface-enhanced Raman scattering. Analytical Chemistry, 2004, 76(23): 7064-7068
    [193] Kneipp J, Kneipp H, Rice W L, et al. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Analytical Chemistry, 2005, 77(8):2381-2385
    [194] Wabuyele M B, Vo-Dinh T. Detection of Human Immunodeficiency Virus Type 1 DNA Sequence Using Plasmonics Nanoprobes. Analytical Chemistry, 2005, 77 (23): 7810 -7815
    [195] Faulds K, Smith W E, Graham D. Evaluation of surface-enhanced resonanceRaman scattering for quantitative DNA analysis. Analytical Chemistry, 2004, 76(2):412-417
    [196] Mustafa Culha, David Stokes, Leonardo R. Allain, et al. Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Analytical Chemistry, 2003, 75(22):6196-6201
    [197] Vo-Dinh T, Allain L R, Stokes D L. Cancer gene detection using surface-enhanced Raman scattering (SERS). Journal of Raman Spectroscopy, 2002, 33(7):511–516
    [198] Gong J L, Jiang J H, Liang Y, et al. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core–shell nanostructures using reverse micelle technology. Journal of Colloid and Interface Science, 2006, 298(2):752-756
    [199] Yang H H, Zhang S Q, Chen X L, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Analytical Chemistry, 2004, 76(5):1316-1321
    [200] Ito A, Shinkai M, Honda H, et al. Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005, 100(1):1-11
    [201] Tsai W L, Miller C E, Richter E R. Determination of the sensitivity of a rapid escherichia coli O157:H7 assay for testing 375-gram composite samples. Applied and Environmental Microbiology, 2000, 66(9):4149–4151
    [202] Luxton R, Badesha J, Kiely J, et al. Use of external magnetic fields To reduce reaction times in an immunoassay using micrometer-sized paramagnetic particles as labels (magnetoimmunoassay). Analytical Chemistry, 2004, 76(6):1715-1719
    [203] Neuberger T, Sch?pf B, Hofmann H, et al. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 2005, 293(1):483–496.
    [204] Liu Z M, Liu Y L, Yang H F, et al. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Analytical Chimica Acta, 2005, 533(1):3–9
    [205] Josephson L, Perez J M, Weissleder R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angewandte Chemie International Edition, 2001, 40(17):3204-3206
    [206] Won J, Kim M, Yi Y W, et al. A magnetic nanoprobe technology for detecting molecular interactions in live cells. Science, 2005, 309(5731):121-125
    [207] Fan A, Lau C, Lu J Z. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry, 2005, 77(10): 3238-3242
    [208] Zhao X Y, Shippy S A. Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection. Analytical Chemistry, 2004, 76(7):1871-1876
    [209] Zhao X J, Tapec-Dytioco R, Wang K M, et al. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Analytical Chmeistry, 2003, 75(14):3476-3483.
    [210] Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometer-size Fe3O4 and -Fe2O3 particles. Chemistry of Materials, 1996, 8(9):2209-2211
    [211]Su X, Zhang J W, Sun L, et al. Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Letters, 2005, 5(1):49-54
    [212] Ji X H, Xu S P, Wang L Y, et al. Immunoassay using the probe-labeled Au/Ag core-shell nanoparticles based on surface-enhanced Raman scattering. Colloid Surface A: Physicochemical and Engineering Aspects, 2005, 257–258:171–175
    [213] 常俊标. 艾滋病的分子生物学及防治. 北京:科学出版社,2001,1.
    [214] Carusu F. Nanoengineering of particle surfaces. Advanced Materials, 2001, 13(1):11-22
    [215] Wang L, Yang C, Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Letters, 2005, 5 (1):37 -43
    [216] Storhoff J J, Mirkin C A. Programmed materials synthesis with DNA. Chemical Reviews, 1999, 99 (7):1849-1862
    [217] Niemeyer C M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angewandte Chemie International Edition, 2001, 40(22):4128-4158
    [218] Wang J, Xu D, Kawde A N, et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Analytical Chemistry, 2001, 73(22):5576-5581
    [219] Authier L, Grossiord C, Brossier P. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Analytical Chemistry, 2001, 73(18):4450-4456
    [220] Cai H, Xu Y, Zhu N, et al. An electrochemical DNA hybridization detectionassay based on a silver nanoparticle label. Analyst, 2002, 127(6):803–808
    [221] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society. 1998, 120(9):1959-1964
    [222] Taton T A, Lu G, Mirkin C A. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. Journal of the American Chemical Society, 2001, 123(21):5164-5165
    [223] Durán N, Rosa M A, D’Annibale A, et al. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and Microbial Technology, 2002, 31(7):907–931.
    [224] Boncheva M, Scheibler L, Lincoln P, et al. Design of oligonucleotide arrays at interfaces. Langmuir, 1999, 15(13):4317-4320
    [225] Dickey H F. The preparation of specific adsorbents. Proceeding of the National Academy of Sciences of the United States of America, 1949, 35 (5):227-229
    [226] Wulff G,Sarhan A,Zabrocki K.Enzyme-analogue built polymers and their use for the resolution of racemates.Tetrahedron Letters,1973, 14(44):4329-4332
    [227] Norrl?w O, Glad M , Mosbach K. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates . Journal of Chromatography,1984,299(1):29-41
    [228] Kempe M, Mosbach K. Separation of animo acids, peptides and proteins on molecMarly imprinted stationary phases.Journal of Chromatogrphy,1995,691(2):317-323
    [229]刘慧君,徐伟箭,刘耀驰.分子印迹技术在药物手性分离和分析中的研究进展.精细化工中间体,2003,33(6):1-5
    [230] Malitesta C, Losito I, Zambonin P G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Analytical Chemistry, 1999, 71(7):1366-1370
    [231] Panasyuk T L, Mirsky V M, Piletsky S A. et al. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors. Analytical Chemistry, 1999, 71(20):4609-4613
    [232] Deore B, Chen Z D, Nagaoka T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Analytical Chemistry, 2000, 72(17):3989-3994
    [233] Panasyuk T, Dall’Orto V C, Marrazza G, et al. Molecular imprinted polymers prepared by electropolymerization of Ni-(protoporphyrin IX). Analytical Letters,1998, 31(11):1809-1824
    [234] Peng H, Liang C D, Zhou A H, et al. Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine. Analytical Chimica Acta, 2000, 423(2):221-228
    [235] Perrin F X, Pagetti J. Characterization and mechanism of direct film formation on a Cu electrode through electrooxidation of 2-mercaptobenzimidazole. Corrosion Science, 1998, 40(10):1647-1662
    [236] Assouli B, Ait Chikh Z A, Idrissi H, et al. Electrosynthesis of adherent poly(2-mercaptobenzimidazole) films on brass prepared in nonaqueous solvents. polymer, 2001, 42(6):2449-2454
    [237] Taj S, Sankarapapavinasam. Electropolymerisation of 2 mercaptobenzimidazole and electrowinning of copper. Bulletin of Electrochemistry, 1997, 13:213-215
    [238] Xue G, Huang X Y, Dong J, et al. The formation of an effective anti-corrosion film on copper surfaces from 2-mercaptobenzimidazole solution. Journal of Electroanalytical Chemistry, 1991, 310(1-2):139-148
    [239] Van Allan J A, Deacon B D. 2-mercaptobenzimidazole. Organic Syntheses, 1950, 30:56-57
    [240] Piletsky S A, Piletskaya E V, Sergeyeva T A, et al. Molecularly imprinted self-assembled films with specificity to cholestrol. Sensors and Actuators B, 1999, 60(2-3):216-220
    [241] Sicbaldi F, Sarra A, Mutti D, et al. Use of gas-liquid chromatography with electron-capture and thermionic-sensitive detection for the quantitation and identification of pesticide residues. Journal of Chromatography A, 1997, 765(1): 13-22
    [242] Lehotay S J, Lightfield A R, Harman-Fetcho J A, et al. Analysis of pesticide residues in eggs by direct sample introduction/gas chromatography/tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2001, 49(10):4589-4596
    [243] Pang G F, Fan C L, Chao Y Z, et al. Rapid method for the determination of multiple pyrethroid residues in fruits and vegetables by capillary column gas chromatography. Journal of Chromatography A, 1994, 667(1-2):348-353
    [244] Fernández-Gutiérrez A, Martínez-Vidal J L, Arrebola F J, et al. Determination of endosulfan and some pyrethroids in waters by micro liquid-liquid extraction and GC-MS. Fresenius Journal of Analytical Chemistry, 1998, 360(5):568-572
    [245] López-López T, Gil-Garcia M D, Martínez-Vidal J L, et al. Determination of pyrethroids in vegetables by HPLC using continuous on-line post-elution photoirradiation with fluorescence detection. Analytical Chimica Acta, 2001, 447(1-2):101-111
    [246] Pasha A, Vijayashankar Y N. Thin-layer chromatographic detection of pyrethroid insecticides using 0-tolidine. Analyst, 1993, 118(7):777-778
    [247] Patil V B, Sevalkar M T, Padalikar S V. Thin-layer chromatographic detection of pyrethroid insecticides containing a nitrile group. Analyst, 1992, 117(1):75-76
    [248] Corbini G, Biondi C, Proietti D, et al. Polargraphic determinaiton of total pyrethroid residues in stored cereals. Analyst, 1993, 118(2):183-187
    [249] Arrebola F J, Martínez-Vidal J L, Fernández-Gutiérrez A, et al. Monitoring of pyrethroid metabolites in human urine using solid-phase extraction followed by gas chromatography-tandem mass spectrometry. Analytical Chimica Acta, 1999, 401(1-2):45-54
    [250] Matveeva E G, Shan G M, Kennedy I M, et al. Homogeneous fluoroimmunoassay of a pyrethroid metabolite in urine. Analytical Chimica Acta, 2001, 444(1): 103-117
    [251] McNeil C J, Athey D, Ball M, et al. Electrochemical sensors based on impedance measurement of enzyme-catalyzed polymer dissolution: theory and applicatons. Analytical Chemistry, 1995, 67(21):3928-3935
    [252] Baranski A S, Krogulec T, Neison L J, et al. High-frequency impedance spectroscopy of platinum ultramicroelectrodes in flowing solutions. Analytical Chemistry, 1998, 70(14):2895-2901
    [253] Ho W O, Krause S, McNeil C J, et al. Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Analytical Chemistry, 1999, 71(10): 1940-1946
    [254] Hsueh C C, Brajter-Toth A. Electrochemical preparation and analytical applications of ultrthin overoxidized polypyrrole films. Analytical Chemistry, 1994, 66(15): 2458-2464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700