用户名: 密码: 验证码:
硅氮氧陶瓷纤维增强氮化硼陶瓷基透波复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文瞄准高超音速飞行器对天线罩(天线窗)提出的长时、耐温、透波、承载的工作要求,尤其是长时间耐高温的特别要求,在综述国内外透波材料研究进展的基础上,分析现有耐高温透波材料的优缺点,以硅氮氧纤维和环硼氮烷分别作为增强体和陶瓷先驱体,采用先驱体浸渍-裂解(PIP)工艺制备了(单向)硅氮氧纤维增强氮化硼(SiNO_f/BN)陶瓷基透波复合材料,对其力、电、热性能进行了测试和评价。
     研究了裂解速率、裂解温度等因素对氮化硼陶瓷先驱体环硼氮烷的陶瓷产率以及裂解产物性质的影响。结果表明,陶瓷产率随裂解速率升高而降低;裂解温度越高,其产物密度和结晶度越高,稳定性越好,在升温速率10℃/min、1000℃裂解温度条件下,环硼氮烷聚合物的陶瓷产率约为88.95wt%。
     研究和分析了热处理工艺对硅氮氧纤维力学性能的影响规律,采用SEM、TEM、XRD表征了纤维热处理前后外观形貌、内部结构的变化。结果表明,纤维力学性能对热处理温度和次数比较敏感。在空气气氛中,纤维强度随温度升高而降低,在1100℃处理后强度只有原纤维的40%左右;随着热处理次数的增加,纤维的强度有所损失,在第一次处理后,下降幅度约20%,但在第二次处理以后,下降幅度约5%的水平。热处理升温速率、保温时间对纤维力学性能影响不大。
     采用PIP工艺制备了SiNO_f/BN复合材料,并对影响其力学性能的关键工艺因素进行研究和分析。先驱体环硼氮烷对硅氮氧纤维浸润性较好,单向纤维预制件内部孔隙较大,使得SiNO_f/BN复合材料致密化效率高,经过2次PIP循环以后,即可达到较高密度,此后增长幅度趋于平缓。随着循环次数增加,SiNO_f/BN复合材料孔隙率逐渐降低,密度逐渐提高,弯曲强度和弯曲模量随之提高。在800℃~1000℃裂解温度范围内,SiNO_f/BN复合材料的弯曲强度和弯曲模量与裂解温度正相关,分别由800℃的128.9MPa和23.5GPa上升到1000℃的148.2MPa和26.2GPa;但在不同裂解温度下,SiNO_f/BN复合材料的致密化行为保持一致。延长裂解保温时间,SiNO_f/BN复合材料密度提高,相应地其弯曲强度和弯曲模量均有所提高,但提高幅度不大,裂解保温时间不是影响SiNO_f/BN复合材料力学性能的关键因素。在1600℃热处理后,SiNO_f/BN复合材料中的硅氮氧纤维因结晶和部分分解,失去增强功能,导致复合材料的力学性能严重下降。
     考察了SiNO_f/BN复合材料的介电性能和热物理性能。在800℃~1000℃裂解温度范围内,其相对介电常数与裂解温度正相关,由3.45上升到3.83;而其介电损耗角正切则与裂解温度负相关,由7.0x10~(-3)下降到4.6x10~(-3)。不同裂解温度制备的SiNO_f/BN复合材料介电性能相差不大。在室温100℃和室温~200℃范围内,其比热分别为0.91kJ/kg·℃和0.97kJ/kg·℃,导热系数分别为1.2W/m·K和1.3W/m·K。在室温~800℃范围内,热膨胀系数为2.20~2.75x10~(-6)/K,其平均变化在10%范围以内。
     将SiNO_f/BN和SiO_(2f)/BN复合材料各项性能进行了对比研究,二者在介电性能和热稳定性方面相差不大,但是在耐高温性能方面,前者相对后者能够保持更强的高温力学性能。
As the key component of hypersonic aircraft, the radome must possess multifunction such as long life, thermal protection, electromagnetic tranparence and load bearing, especially the former two requirements. In this dissertation, aiming at requirements of radome, based on the review of wave-transparent materials, the disadvantages of existing material systems were analyzed, the SiNO fiber reinforced boron nitride ceramic matrix (SiNO_f/BN) wave-transparent composites were prepared by precursor infiltration and pyrolysis (PIP) process with Borazine as the precursor. The mechanical, dielectric and thermophysical properties of the composites were measured and evaluated. The following research was designed and conceived.
     The discipline of the pyrolytic product characteristics with heating ratio and pyrolysising temperature was investigated. The ceramic yield was decreased when the heating ratio elevated. With the increasing of pyrolysis temperature, the density, crystallinity and stability of pyrolytic product inceased. In N2 atmosphere, with 10℃/min, at 1000℃, the ceramic yield was about 88.95wt%.
     The effects of the calefactive velocity, treating time, temperature and times on the mechanical properties of SiNO fiber were studied via XRD, SEM, TEM to examine its surface performances and structures. It showed that the strength of SiNO fiber was sensitive to the treating temperature and times. The strength decreased while the heating temperature increased. After heated at 1100℃in air, the residual strength ratio of the fiber is only 40%. With the increase of treating time, the strength of SiNO fiber also decreased with more than 20% after the first time and smoothly at 5% level after the following times. But the calefactive velocity and treating time had low influence to the strength of SiNO fiber.
     SiNO_f/BN composites were prepared from Borazine by PIP process and the key factors that effect the mechanical properties of it were investigated and analyzed. Because the precursor Borazine had good wet-ability to SiNO fibers and the preformed unit of unidirectional fibers had comparatively holes, the density of the composites increased fast with the PIP cycle doing. With the increase of PIP cycles, the porosity of the composites decreased, the density increased, hence the mechanical properties enhanced. With the increase of pyrolysis temperature from 800℃to 1000℃, the flexural strength and elastic modulus of the composites increased from 128.9MPa and 23.5GPa to 148.2MPa and 26.2GPa respectively. But at different pyrolysis temperature, the densification behavior was consistent. The mechanical properties of the composites varied little with different pyrolysis time. After heat treated at 1600℃, the SiNO fibers in the composites were crystallized and partial decomposed led to lost the enhancing function, hence the mechanical properties of the composites decreased seriously.
     The dielectric and thermo physical properties of SiNO_f/BN composites were tested and studied. When the pyrolysis temperature increased from 800℃to 1000℃, the dielectric constant increased from 3.45 to 3.83, while the loss tangent decreased from 7.0x10~(-3) to 4.6x10~(-3). Composites pyrolyzed at different temperature all had good dielectric properties that could meet the operating requirements. The specific heat capacity and thermal conductivity (from R.T. to 100℃and R.T. to 200℃) was 0.91kJ/kg·℃~0.97kJ/kg·℃and 1.2W/m·K~1.3W/m·K respectively. From R.T. to 800℃, the average CTE was 2.20~2.75x10~(-6)/K and varied less than 10%.
     Various performances of SiNO_f/BN were studied contrast to that of SiO_(2f)/BN. They were differed tiny in dielectric and thermo physical properties. But the former could maintain most of the mechanical properties at high temperature better than that of the latter.
引文
[1] Hhttp://baike.baidu.com/view/5401.htm.
    [2] Hhttp://baike.baidu.com/view/4556.htm.
    [3]杨亚政,李松年,杨嘉陵.高超音速飞行器及其关键技术简论.力学进展,2007(4):537~550
    [4] J. D. Anderson.Hypersonic and High Temperature Gas Dynamics.New York:McGraw-Hill Book Company,1989.
    [5] K. N. Ahmed,L. V. Samuel.Future aeronautical and space systems.Progress in Astronautics and Aeronautics,AIAA,ISBN:1563471884,1996.
    [6] Committee on Review and Evalution of the Air Force Hypersonic Technology Program,National Research Council.Review and Evalution of the Air Force Hypersonic Technology Program.Washington D C:National Academies Publications.ISBN:0309061423,1998.
    [7]魏毅寅,刘鹏,张冬青.国外高超声速技术发展及飞行试验情况分析.飞航导弹,2010(5):2~9
    [8]魏毅寅,张冬青,叶蕾,等.美国X-51A飞行器完成首次动力飞行试验.飞航导弹,2010(6):2~7
    [9]康志敏.高超声速飞行器发展战略研究.现代防御技术,2000(4):27~33
    [10]郭振华,董长虹.关于高超声速导弹总体设计问题的探讨.飞航导弹,1999(3):9~13
    [11]邓以高,尚安利,雷军委.高超声速巡航导弹关键技术的探讨.海军航空工程学院学报,2005(2):215~217
    [12]刘桐林,倪永华,刘愔.高技术战争中的撒手锏:巡航导弹.北京:解放军文艺出版社,2002.
    [13] M. C. Gilreath,S. L. Castellow.High-temperature dielectric properties of candidate spaceshuttle thermal-protection-system and antenna-window materials.NASA TN D-7523,1974.
    [14] R. C. Johnson.Antenna engineering handbook.New York:McGraw-Hill, Inc.,1984.
    [15]卞荫贵,徐立功.气动热力学.合肥:中国科学技术大学出版社,1997.
    [16]韩桂芳,陈照峰,张立同,等.高温透波材料研究进展.航空材料学报,2003(1):57~62
    [17]彭望泽.防空导弹天线罩.北京:宇航工业出版社,1993.
    [18] D.G. Paquette.Method of making a radar transparent window material operable above 2000℃.US Patent,5627542,1997.
    [19] C. G. Dodds,R. A. Tanzilli.Boron nitride-toughened single phase silicon aluminum oxynitride composite, article and method of making same.US Patent,5925584,1999.
    [20]张大海,黎义,高文,等.高温天线罩材料研究进展.宇航材料工艺,2001(6):1~3
    [21]姜勇刚,张长瑞,曹峰,等.高超音速导弹天线罩透波材料研究进展.硅酸盐通报,2007(26):500~505
    [22] D. Lewis,J. R. Spann.Assessment of new radome materials as replacement for pyroceram 9606.Proceedings of the 16th symposium on electromagnetic windows,Atlanta,GA,1982.
    [23] D. W. Roy,J. L. Hastert.Evaluation of coors CD-1 cordierite as a radome material.Proceedings of 16th symposium on electromagnetic windows,Atlanta,GA,1982.
    [24] H. Leggett.Ceramic broadband radome.US Patent,4358772,1982.
    [25] K. N. Letson,W. G. Burleson.Final evaluation of rain erosion sled test results at Mach 3.7 to 5.0 for slipcast fused silica radome structures.AD A077348,1979.
    [26] J. T. Neil,L. J. Bowen,B. E. Michaud.Fused silica radome.US Patent,4949095,1990.
    [27] T. M. Place , D. W. Bridges . Fused quartz reinforced silica composites.Proceedings of the 10th symposium on electromagnetic windows,Atlanta,GA,1970.
    [28] W. Ho,D. R. Clarke.High temperature millimeter wave dielectric properties of hot pressed silicon nitride . Proceedings of the 16th symposium on electromagnetic windows,Atlanta,GA,1982.
    [29] M. Y. Hsieh,H. Mizuhara.Silicon nitride having low dielectric constant.US Patent,4708943,1987.
    [30] M. Y. Hsieh.Low dielectric loss silicon nitride based material.US Patent,4654315,1987.
    [31] T. Arakawa,T. Mori,Y. Matsumoto.Silicon nitride sintered body and process for preparation thereof.US Patent,5017530,1991.
    [32] K. Miura,Y. Hattori,Y. Matsuo.Process for the production of silicon nitride sintered bodies.US Patent,4521358,1985.
    [33] D. R. Messier,P. Wong.Effect of processing conditions on microwave dielectric properties of reaction-sintered silicon nitride.Proceedings of the 13th symposium on electromagnetic windows,Atlanta,GA,1976.
    [34]郝元恺,肖加余.高性能复合材料学.北京:化学工业出版社,2004.
    [35]胡连成,黎义,于翘.俄罗斯航天透波材料现状考察.宇航材料工艺,1994(1):48~52
    [36]胡连成,于翘,刘连元,等.俄罗斯航天透波材料技术.航天出国考察技术报告,1994(1):136~142
    [37] R. W. Rice,W. J. Mcdonough,S. W. Freiman,et al.Ablative-resistant dielectric ceramic articles.US Patent,4304870,1981.
    [38] G. W. Wen,G. L. Wu,T. Q. Lei,et al.Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications.J. Euro. Ceram. Soc.,2000(11):1923~1928
    [39]张伟儒,王重海,刘建,等.高性能透波Si3N4-BN基陶瓷复合材料的研究.硅酸盐通报,2003(3):3~6
    [40]刘谊.化学气相法制备颗粒强韧氮化硅复合材料的探索[硕士学位论文].西安:西北工业大学,2006.
    [41]王思青,张长瑞,王圣威,等.Si3N4基复相陶瓷天线罩材料的制备及性能.国防科技大学学报,2006(2):44~47
    [42]吴洁华,李包顺,黄校先,等.SiO2-AlN复合材料的介电性能.功能材料与器件学报,1999(2):115~120
    [43]吴洁华,李包顺,李承恩,等.SiO2-AlN复合材料的抗热震性.机械工程材料,2000(4):29~31
    [44]吴洁华,李包顺,李承恩,等.SiO2-AlN复合材料的介电性能--温度特性和频率特性.功能材料与器件学报,2001(1):73~76
    [45]李晓云,施书哲,丘泰,等.热压烧结AlN-BN复合陶瓷的制备及介电性能.电子元件与材料,2003(6):6~8
    [46]赵海洋.AlN-BN复合材料的制备及其介电和热导性能研究[硕士学位论文].武汉:武汉理工大学,2007.
    [47]张长瑞,郝元恺.陶瓷基复合材料-----原理、工艺、性能与设计.长沙:国防科技大学出版社,2001.
    [48] I. G. Talmy,C. A. Martin,D. A. Haught,et al.Electromagnetic window.US Patent,5573986,1996.
    [49]吉村昌弘,小笠原尚上.日本ウミシワス协会1998年秋季シソボウム讲演予稿集.1988(3-22C):20
    [50]张伟儒.高性能氮化物透波材料的设计、制备及特性研究[博士学位论文].武汉:武汉理工大学,2007.
    [51]吕震宇,张明习,耿浩然,等.硼酸铝晶须—磷酸铝陶瓷透波材料的制备.陶瓷,2008(1):16~20
    [52] J. N. Harris,E. A. Welsh.Processing requirement for slip cast fused silica radome.AD 745793.
    [53]曾剑平,黎义,吴远秀,等.有机硅树脂在SiO2基复合材料中的应用研究.宇航材料工艺,1997(3):26~31
    [54]魏美玲,滕祥红,赵小玻.石英陶瓷天线罩封孔增强涂层的研究.硅酸盐通报,2005(4):3~5
    [55]陈虹,王耀明,陈达谦,等.石英陶瓷的增强方法.陶瓷工程,2003(4):12~14
    [56]温广武,雷廷权,周玉.石英玻璃基复合材料的研究进展.材料工程,2002(1):40~43
    [57] J. P. Brazel,R. Fenton.ADL-4D6: a silica/silca composite for hardened antenna windows.Proceedings of the 13th symposium on electromagnetic windows,Atlanta,GA,1976.
    [58]陈虹,张联盟,罗文辉.透微波陶瓷材料的研究现状.陶瓷学报,2003(3):189~192
    [59] D. L. Purinton,L. R. Semff.Broadband composite structure fabricated from inorganic polymer matrix reinforced with glass or ceramic woven cloth.US Patent,6080455,2000.
    [60] D. L. Purinton,L. R. Semff.Method of making a broadband composite structure fabricated from an inorganic polymer matrix reinforced with ceramic woven cloth.US Patent,5738750,1998.
    [61]王思青.石英-氮化物陶瓷基天线罩材料及构件的制备工艺与性能研究[博士学位论文].长沙:国防科技大学,2006.
    [62]韩爽,蒋凯辉,唐军务,等.2.5D Si02f/Si02复合材料制备工艺及性能研究.稀有金属材料与工程,2009(z2):458~461
    [63] V. A. Chase,R. L. Copeland.Development of a 1200℃radome.Interim Engineering Report 3,1963.
    [64]曹海琳,张杰,黄玉东,等.磷酸铬铝高温透波材料的制备和性能研究.宇航材料工艺,2004(2):29~32
    [65]肖永栋,刘红影,方晓敏.新型无机烧蚀材料的性能及潜在用途.玻璃钢/复合材料,2002(3):46~47
    [66]周燕,郭卫红,罗进文,等.磷酸盐基复合材料的纤维涂膜与性能的研究.功能材料,2004(S):2127~2135
    [67]王锋.磷酸铝系透波复合材料的制备技术[硕士学位论文].武汉:武汉理工大学,2006.
    [68]王东,刘永胜,成来飞,等.氮化物高温透波材料及其应用研究进展.航空制造技术,2008(3):70~72,91
    [69] T. M. Place.Properties of BN-3DX, a 3-dimensional reinforced boron nitride composite.Proceedings of the 13th symposium on electromagnetic windows,Atlanta,GA,1976.
    [70] T. M. Place.Low loss radar window for reentry vehicle.US Patent,4786548,1988.
    [71]徐鸿照,王重海,张铭霞,等.BN纤维织物增强陶瓷透波材料的制备及其力学性能初探.现代技术陶瓷,2008(2):10~12
    [72] G. J. Qi,C. R. Zhang,H. F. Hu,et al.Preparation of three-dimensional silica fiber reinforced silicon nitride composite using perhydropolysilazane as precursor.Mater. Lett.,2005(26):3256~3258
    [73]李斌.氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究[博士学位论文].长沙:国防科技大学,2007.
    [74]齐共金.先驱体合成及其转化制备石英织物增强氮化物基天线罩材料研究[博士学位论文].长沙:国防科技大学,2006.
    [75]邹晓蓉,张长瑞,王思青,等.空心石英纤维增强氮化物基低介电复合材料的制备及其性能.航空材料学报,2010(3):38~42
    [76]甄强,张大海,王金明,等.石英纤维热损伤机制.复合材料学报,2008(1):105~111
    [77]黎义,张大海,陈英,等.航天透波多功能材料研究进展.宇航材料工艺,2000(5):1~5
    [78]黄新松,李文钦,简科.耐高温陶瓷透波纤维研究进展.安全与电磁兼容,2010(2):53~56
    [79]李永强.由聚碳硅烷纤维制备SiBNO透波纤维的研究[硕士学位论文].长沙:国防科技大学,2009.
    [80]秦明礼,曲选辉,黄栋生,等.氮化铝(AlN)陶瓷的特性、制备及应用.陶瓷工程,2000(8):39~42
    [81]陈虹,胡利明,贾光耀,等.陶瓷天线罩材料的研究进展.硅酸盐通报,2002(4):40~44
    [82]邓世均.高性能陶瓷涂层.北京:化学工业出版社,2004.
    [83]齐共金,张长瑞,胡海峰.陶瓷基复合材料天线罩制备工艺进展.硅酸盐学报,2005(5):632~638
    [84]陈虹,张联盟,李勇.三维编织基复合材料性能的研究.硅酸盐学报,2003(10):918~922
    [85] T. Wideman,L. G. Sneddon.Conveninent Procedures for the Laboratory Preparation of Borazine.Inorg. Chem,1995(4):1002~1003
    [86] Y. Fan,J. Luo,Y. Wang,et al.The study on pyrolysis mechanism in SNB-C-N polymer-to-ceramic transformation by FTIR and resonance raman spectra.Rare Metal Materials and Engineering,2005(34):492
    [87] M Scarlete.Spectroscopic Investigation of the Synthesis of Thin Silicon Nitride Films on Silicon Single-Crystal Wafers via Ammonia-Assisted Pyrolysis of Organosilicon Polymers.Chemical Materials,2001(13):655~661
    [88]曾竟成,陈朝晖,向阳春,等.氮化硼纤维先驱体的合成及其热解研究.高分子材料科学与工程,1999(6):53~55
    [89] C. Duriez,E. Framery,B. Toury,et al.Boron Nitride Thin Fibres Obtained from a New Copolymer Borazine tri(methylamino)borazine Precursor.J . Organomet . Chem. ,2002(657):107~114
    [90]李兴华.密度、浓度测量.北京:中国计量出版社,1991.
    [91]曹英斌.先驱体转化--热压工艺制备Cf/SiC复合材料工艺、结构、性能研究[博士学位论文].长沙:国防科技大学,2001.
    [92]张耀明,李巨白,姜肇中.玻璃纤维与矿物棉全书.北京:化学工业出版社,2001.
    [93] GB/T 3362-2005.碳纤维复丝拉伸性能试验方法.2005.
    [94] GB 6569-1986.工程陶瓷弯曲强度试验方法.1986.
    [95] GB/T 4339-1999.金属材料热膨胀特征参数的测定.1999.
    [96] GJB 330a-2000.固体材料60~2773K比热容测试方法.2000.
    [97] GB/T 10295-1988.绝热材料稳态热阻及有关特性的测定.1988.
    [98] D. P. Kim,J. Economy.Fabrication of oxidation-resistant carbon fiber/boron nitride matrix composites.Chem. Mater.,1993(5):1216~1220
    [99] D. P. Kim,C. G. Cofer,J. Economy.Fabrication and properties of ceramic composites with a boron nitride matrix.J. Am. Ceram. Soc.,1995(78):1546~1552
    [100] S. Seghi,B. Fabio,J. Economy.Carbon/carbon-boron nitride composites with improved wear resistance compared to carbon/carbon.Carbon,2004(42):3043~3048
    [101] W. V. Hough,C. R. Guibert,G. T. Hefferan.Method for the Synthesis of Borazine.US Patent,4150097,1979.
    [102] S. G. Shore,R. W. Parry.The Crystalline Compound Ammonia Borazine H3N?BH3.J. Am. Chem. Soc.,1955(77):6084~6085
    [103]王乃兴.核磁共振谱学:在有机化学中的应用.北京:化学工业出版社,2006.
    [104]梁晓天.核磁共振:高分辨氢谱的解析和应用.北京:科学出版社,1976.
    [105]胡海峰.陶瓷先驱体的分子设计与合成及其在CMCs制备中的应用[博士学位论文].长沙:国防科技大学,1998.
    [106]张俊宝,雷廷权,温广武,等.先驱体法合成氮化硼研究进展.材料科学与工艺,2000(2):1~7
    [107]陈腾飞,黄伯云,廖寄乔,等.热处理温度对PAN基炭纤维结构的影响.功能材料,2002(4):447~449
    [108]马恒怡,黄玉东,张志谦.γ-射线辐照对碳纤维结构的影响.高技术通讯,2001(3):101~103
    [109]顾立德.氮化硼陶瓷.北京:中国建筑工业出版社,1982.
    [110]楚增勇.先驱体法碳化硅纤维缺陷形成机理与性能提高研究[博士学位论文].长沙:国防科技大学,2003.
    [111]闫玉华,王思青.氮氧化硅研究现状与前景.陶瓷研究,1997(2):10~14
    [112] W. D. Forgen,B. F. Decker.硅氮氧衍射图Nitrides of Silicon.Trans A M E,1958(3):343~348
    [113] K. Jian,Z. Cheng,Q. Ma.Effect of pyrolysis process on the microstructures and mechanical properties of Cf/SiC composites using polycarbosilane.Matterial Science and Engjneering A,2005(1-2):154~158
    [114]齐共金,张长瑞,胡海峰,等.逾渗模型在计算材料学中的研究进展.材料科学与工程学报,2004(1):132~137
    [115] Masayoshi Ohashi,Kazuo Nakamura,Kiyoshi Hirao,et al.Factors Affecting Mechanical Properties of Silicon Oxynitride Ceramics.Ceramics International,1997(23):27~37
    [116] D. P. Kim,J. Economy.Occurrence of Liquid Crystallinity in a Borazine Polymer.Chem. Mater.,1994(6):395~400
    [117]杜耀惟.天线罩电信设计方法.北京:国防工业出版社,1993.
    [118]王零森.特种陶瓷.长沙:中南工业大学出版社,2003.
    [119]仝毅,周馨我.微波透波材料的研究进展.材料导报,1997(3):1~5
    [120] A. V. Goncharenko,V. Z. Lozovski,E. F. Venger.Lichtenecker`s equation: applicability and limitations.Opt Commun,2000(174):19~32
    [121] C. M. Regalado.A physical interpretation of logarithmic TDR calibration equations of volcanic soils and their solid fraction permittivity based on Lichtenecker's mixing formulae.Geoderma,2004(123):41~50
    [122]王从曾.材料性能学.北京:北京工业大学出版社,2001.
    [123]姚俊杰,李包顺,黄校先,等.SiO2-Si3N4天线窗材料的介电性能研究.功能材料与器件学报,1996(2):65~70
    [124]杨备.宽频透波陶瓷基复合材料夹层结构设计、仿真与验证[硕士学位论文].长沙:国防科技大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700