用户名: 密码: 验证码:
重组人干扰素-γ在毕赤酵母中的表达及对乳腺癌抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人干扰素-γ(human interferon-γ,hIFN-γ)是一种常见的天然糖蛋白,属于干扰素(Interferon,IFN)家族的一员,具有多种生物活性。根据蛋白来源和结构不同可将IFN家族分为Ⅰ、Ⅱ、Ⅲ型,而hIFN-γ属于Ⅱ型IFN,其主要通过作用于巨噬细胞及T细胞来调节机体免疫来达到抗病毒的效果,而体外研究发现IFN-γ可抑制体外培养癌细胞的增殖并诱导其凋亡,同时对多种移植瘤模型亦有效,表明其有较好的抗肿瘤潜能。以上提示IFN有巨大的临床应用前景。
     乳腺癌发病率和死亡率均较高,是最常见的女性恶性肿瘤,预后极差。其异常生物学行为是导致难以治愈的关键因素,故探讨有效的抑制乳腺癌增殖、侵袭和转移的策略,对降低乳腺癌患者术后复发及延长生存期有重要意义。研究表明IFN-γ具有抗肿瘤活性,本研究以此为研究基础,探讨IFN-γ在抑制乳腺癌增殖、侵袭及转移方面的作用。
     获得大量的高纯度的hIFN-γ对临床研究及其机制研究有重要意义。但由于天然hIFN-γ来源有限,故需借助生物工程技术进行大规模制备。先前报道指出可采用腺病毒、大肠杆菌、酿酒酵母及中国仓鼠卵巢细胞来制备重组hIFN-γ(rhIFN-γ),但操作工艺复杂、生产成本高及产量和生物活性降低限制了以上表达系统的应用。本研究应用巴斯德毕赤酵母(Pichia pastoris)表达系统制备出与hIFN-γ组分相似的rhIFN-γ制剂,同时通过体内和体外实验检测了该生物制剂的生物学活性,取得以下结果:
     一、rhIFN-γ毕赤酵母表达载体的构建、表达、纯化及活性检测
     1.成功构建了重组人干扰素-γ的分泌型表达载体pPICZ-rhIFN-γ,利用巴斯德毕赤酵母表达系统稳定分泌表达了rhIFN-γ。
     2.免疫印迹及N末端测序显示rhIFN-γ成功表达,从毕赤酵母培养液分离和浓缩后,采用阳离子交换色谱系统进行纯化。从5L的培养基中共获得总量为0.601g的rhIFN-γ。TRICINE-SDS-PAGE电泳及高效液相色谱显示获得rhIFN-γ的纯度为95.6%。
     二、rhIFN-γ的抗肿瘤活性
     采用乳腺癌常用细胞株MDA-MB-231及乳腺癌皮下移植瘤模型分别在体外、体内水平研究rhIFN-γ的抗肿瘤作用。
     1.体外水平:rhIFN-γ能呈时间依赖的方式抑制癌细胞生长、提高凋亡率及凋亡指数、阻滞细胞周期并抑制PI3K/Akt信号通路的激活。
     2.体内水平:rhIFN-γ能降低乳腺癌皮下移植瘤模型的成瘤率、降低血清及瘤内血管内皮生长因子水平,显著降低肿瘤组织中的MMP-2和MMP-9的表达。
     本研究的创新之处在于:(1)建立了利用巴斯德毕赤酵母高效分泌表达rhIFN-γ的真核表达系统;(2)通过Tricine-SDS-PAGE、免疫印迹及氨基酸直接测序技术鉴定rhIFN-γ,阳离子交换色谱系统纯化得到高纯度rhIFN-γ;(3)在体外水平、体内水平证实rhIFN-γ具有广泛的抗肿瘤作用。
Human interferon-γ (hIFN-γ) is a common natural glycoprotein, a member ofinterferon (Interferon, IFN) family, possessing a variety of biological activities.hIFN-γ can achieve the anti-viral effect mainly by acting on macrophages and T cellsto regulate immune. In vitro studies have found that IFN-γ can inhibit the proliferationof cancer cells in vitro and induce apoptosis. IFN-γ also can be effective for a varietyof xenograft model, indicating a better anti-tumor potential. The incidence andmortality rates of breast cancer are high and it is the most common female cancer withpoor prognosis. The abnormal biological behaviors are key factors leading todifficulty to cure for breast cancer. The above indicates hIFN-γ may become a strategyfor breast cancer treatment, may reduce the recurrence and prolong survival ofpatients with breast cancer. Large quantity high-purity hIFN-γ is important for clinicalresearch and their mechanisms. Due to the limitation of acquiring natural hIFN-γ, itrequires the use of bio-engineering technology for large-scale preparation. Theprevious expression systems are improper for their complex process operation, highproduction costs and lower yields. If the efficient bio-engineering vector can beemployed for obtaining rhIFN-γ with the similar functions as natural hIFN-γ, thesource problem of hIFN-γ can be well solved.
     In this study, the Pichia pastoris expression system was employed to producerhIFN-γ with similar components as hIFN-γ. Meanwhile, the biological activity ofrhIFN-γ was evaluated by in vivo and in vitro studies,including the following aspects:1Preparation and optimized fermentation conditions of rhIFN-γ
     The sequence of hIFN-γ was designed according to GeneBank (accessionnumber: BC070256).After the gene synthesis, hIFN-γ was connected to pPICZvector and then transferred to construct engineered bacteria. The successful-expreesedengineered bacteria were hereby selected. The optimal condition for Pichia pastoris toexpress rhIFN-γ was pH of6.0at the temperature of28℃.And the optimal inductiontime point was the6thday.A Total amount of0.601g purified rhIFN-γ was obtained from5L medium. The Tricine-SDS-PAGE electrophoresis and high performanceliquid chromatography showed a purity of95.6%for rhIFN-γ.2Studies of in vitro inhibitory effect of rhIFN-γ
     The human breast cancer MDA-MB-231cells were treated with rhIFN-γ at thedose of0,100,500and1000U/mL, respectively. MTT shows the rhIFN-γ can inhibitcell proliferation of MDA-MB-231cells at24th,48thand96thh after treatment. TheHoechst staining and flow cytometry indicate that rhIFN-γ can increase the apoptoticindex and apoptosis rate in a dose-dependent manner. The DHE staining showsrhIFN-γ can reduce the ROS levels in a dose-dependent manner. The western blotshow rhIFN-γ can decrease levels of Bcl-2and p-Akt/Akt, and increase levels ofCleaved caspase-3and Bax in a dose-dependent manner.3Studies of in vivo inhibitory effect of rhIFN-γ
     The breast cancer xenografts in nude mice model were treated with rhIFN-γ atthe dose of0,100,500and1000U/g, respectively. The rhIFN-γ can decerase the tumorsize in a dose-dependent manner. The immunohistochemical staining shows thatrhIFN-γ can reduce the expression of MMP-2and MMP-9in the tumor tissue in adose-dependent manner. Elisa shows rhIFN-γ can reduce the VEGF levels of tumortissue and serum in a dose-dependent manner. The western blot shows rhIFN-γ candecrease the level of p-Akt/Akt in a dose-dependent manner.
     In conclusion, Pichia pastoris stably secret,and express rhIFN-γ and the newmethod for large-scale purification of the recombinant protein was established. The invivo and in vitro studies proved rhIFN-γ can inhibit the development of breast cancer.
引文
[1]许崇利,胡静涛,许崇波,等.重组人γ-干扰素摇瓶生产工艺优化[J].中国兽药杂志,2011,45(8):15-19.
    [2] Ferreira RC Guo H, Coulson RM, Smyth DJ, Pekalski ML, Burren OS, CutlerAJ, Doecke JD, Flint S, McKinney EF, Lyons PA, Smith KG, AchenbachP,Beyerlein A, Dunger DB, Wicker LS, Todd JA, Bonifacio E, WallaceC, Ziegler AG. A type I interferon transcriptional signature precedesautoimmunity in children genetically at-risk of type1diabetes[J]. Diabetes,2014Feb21.[Epub ahead of print]
    [3] Sivro A, Su RC, Plummer FA, Ball TB. Interferon Responses in HIV Infection:From Protection to Disease [J]. AIDS Rev,2014,16(1).[Epub ahead of print]
    [4]侯玉立,周培斌,刘桂芬等.干扰素β治疗复发缓解型多发性硬化疗效分析及安全性评价[J].中国药物与临床,2009,9(1):21-25.
    [5]刘金宏,卞咏梅,夏建胜等.-干扰素联合化疗对初治多发性骨髓瘤的疗效观察[J].临床血液学杂志,2002,15(3):125-127.
    [6]周强,丁娅,李春燕等.中国黑色素瘤患者对大剂量干扰素辅助治疗的耐受性观察[J].中国肿瘤临床,2010,37(5):271-273.
    [7]胡代菊,梅晓冬.复方苦参注射液、IL-2及-干扰素治疗肺癌伴恶性胸腔积液疗效[J].临床肺科杂志,2012,17(10):1844-1845.
    [8]雷其洪,季纯珍,姚劲等.γ-干扰素雾化吸入治疗呼吸道合胞病毒诱发儿童哮喘疗效观察[J].中国实用儿科杂志,2000,15(8):478-480.
    [9]刘光伟,王春芳,赵文霞等.聚乙二醇干扰素-2a联合利巴韦林治疗代偿期丙肝后肝硬化疗效观察[J].中华实验和临床病毒学杂志,2011,25(6):477-479.
    [10]赵鑫,齐义新,魏林,等.IFN-λ对人食管癌细胞增殖的抑制作用及机制[J].山东医药,2011,51(39):6-8.
    [11] Xu B1, He Y, Wu X, Luo C, Liu A, Zhang J. Exploration of the correlationsbetween interferon-γ in patient serum and HEPACAM in bladder transitionalcell carcinoma, and the interferon-γ mechanism inhibiting BIU-87proliferation [J]. J Urol,2012,188(4):1346-1353.
    [12]李威,吴昊,张宏伟等.干扰素λ对人肺腺癌细胞A549的增殖抑制作用及其机制研究[J].现代肿瘤医学,2012,20(7):1337-1340.
    [13]严鹏霄,丁岩,范萍,等.转基因表达的γ干扰素对小鼠结肠移植癌的细胞周期与细胞凋亡的影响[J].江苏医药,2007,33(7):703-705.
    [14]金戈,王涛,吴逸明,等.-干扰素对人肺腺癌A549细胞周期和P53蛋白表达的影响[J].河南医科大学学报,2000,35(5):429-430.
    [15] Matsuzawa T, Kim BH, Shenoy AR, Kamitani S, Miyake M, Macmicking JD.IFN-γ elicits macrophage autophagy via the p38MAPK signaling pathway[J].J Immunol,2012,189(2):813-818
    [16]刘颖,侯利华,陈薇.干扰素的信号传导和抗病毒效应机制[J].生物技术通讯,2011,23(1):123-126.
    [17] Ramana CV, Grammatikakis N, Chernov M, Nguyen H, Goh KC, WilliamsBR, Stark GR.Regulation of c-myc expression by IFN-gamma through Stat1-dependent and–independent pathways[J].EMBO J,2000,19(2):263-272.
    [18] Matsuoka M, Tani K, Asano S. Interferon-alpha-induced G1phase arrestthrough up-regulated expression of CDK inhibitors, p19Ink4D and p21Cip1inmouse macrophages[J]. Oncogene,1998,16(16):2075-2086.
    [19]吴广洲,沈振亚,刘国锋等.rshCD40L、IFN-γ对食管癌Eca109、Eca9706、TE13细胞增殖和凋亡的影响[J].山东医药,2011,51(6):23-25.
    [20]董兆如,李涛,曲思凤等.小剂量阿司匹林协同干扰素-诱导肝癌BEL-7402细胞凋亡的实验研究[J].中华肝胆外科杂志,2012,18(4):292-295.
    [21]王珍,刘梅,李铁男等.IFN-γ联合全反式维A酸对人皮肤鳞状细胞癌SCL-1细胞生长凋亡的影响[J].中华皮肤科杂志,2011,44(1):35-38.
    [22] Wang XY, Crowston JG,White AJ,Zoellner H, Healey PR. Interferon-alphaand interferon-gamma modulate Fas-mediated apoptosis inmitomycin-C-resistant human Tenon's fibroblasts [J].Clin ExperimentOphthalmol,2013Nov14. doi:10.1111/ceo.12268.[Epub ahead of print]
    [23] Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y.Combination ofinterferon and angiotensin-converting enzyme inhibitor, perindopril,suppresses liver carcinogenesis and angiogenesis in mice [J]. Oncol Rep,2005,13(3):491-495.
    [24] Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty [J]. Immunity,2012,36(4):503-514.
    [25]王曦龙,陶中华,何洪卫等.干扰素-抑制高转移潜能人肝癌裸鼠肝细胞生长因子及血管内皮生长因子的表达[J].中华实验外科杂志,2010,27(12):1812-1814.
    [26]左朝晖,邱晓昕,林劲冠等.干扰素和环氧合酶2抑制剂对裸鼠肝癌移植瘤生长和肿瘤血管生成的抑制作用[J].中华普通外科杂志,2013,28(12):956-960.
    [27]王苹,杜宝东,杜波等.TNF-和IFN-γ对Hep-2喉癌细胞MMPs表达的调节作用[J].吉林大学学报(医学版),2002,28(6):587-590.
    [28]赵瑞皎,李锦军,葛超等.IFN-和TGF-β1对卵巢癌细胞SKOV3端粒酶活性的影响[J].肿瘤,2003,23(2):124-128.
    [29] Forero A, Moore PS, Sarkar SN. Role of IRF4in IFN-stimulated geneinduction and maintenance of Kaposi sarcoma-associated herpesvirus latencyin primary effusion lymphoma cells [J].J Immunol,2013,191(3):1476-1485.
    [30]李丽,雷林生,余传林等.荷S-180移植瘤小鼠血清干扰素γ含量的变化及免疫调节药物的干预作用[J].南方医科大学学报,2008,28(1):65-68.
    [31]潘驰,黄建瑾.干扰素抗肿瘤个性化标记物研究进展[J].中国肿瘤临床,2012,39(5):292-295.
    [32] Matsushita K, Takenouchi T, Shimada H. Strong HLA-DR antigen expressionon cancer cells relates to better prognosis of colorectal cancer patients:Possible involvement of c-myc suppression by interferon-gamma in situ [J].Cancer Sci,2006,97(1):57-63.
    [33] Elias L, Crissman H. Interferon effects upon the adenocarcinoma38andHL-60cell lines:antiproliferative response and synergistic interaction withhalogenated pyrimidine antimetabolites[J]. Cancer Res,1988,48:4868-4873.
    [34]袁泉,郭胜春.干扰素对晚期胃癌化疗效果的影响[J].山东医药,2007,47(27):85-86.
    [35] Patt YZ, Jones DV Jr, Hoque A, Lozano R, Markowitz A, Raijman I, LynchP, Charnsangavej C.Phase Ⅱ trial of intravenous flourouracil andsubcutaneous interferon alfa-2b for biliary tract cancer[J]. J Clin Oncol,1996,14(8):2311-2315.
    [36]王蕾,吴平,胡其艳等.白细胞介素-2、a-干扰素联合5-氟尿嘧啶治疗肾癌的疗效观察[J].四川医学,2009,30(3):350-351.
    [37]李祥引,蒋波,赵晋湘等.-干扰素联合5-氟尿嘧啶治疗肝细胞癌术后复发转移的临床研究[J].中外医疗,2010,29(26):93.
    [38]谢风祥,毛海婷,李晓冰,等.-干扰素与5-FU联合作用对肝癌细胞HepG2.2.15生物学特性的影响[J].中华肿瘤防治杂志,2008,15(7):494-498.
    [39]夏强,王绮雯,张继民等.干扰素2a对人结肠癌细胞胸苷磷酸化酶表达和5′-脱氧氟尿苷抗癌活性的影响[J].中华胃肠外科杂志,2012,15(7):719-722.
    [40]隋文君,刘永兰,雷小英等.肿瘤血管导向性干扰素IFN-2a-NGR与5-氟尿嘧啶联合应用对A549细胞增殖的影响[J].生物技术通讯,2011,22(3):317-320.
    [41]臧世利,韩建立,赵浩亮,等.干扰素-联合5-氟尿嘧啶对HepG-2细胞DLC-1和Bcl-2表达的影响[J].中国药物与临床,2010,10(1):28-31.
    [42] Koike K, Takaki A, Tatsukawa M, Suzuki M, Shiraha H, Iwasaki Y, SakaguchiK, ShiratoriY.Combination of5-FU and IFNalpha enhances IFN signaling pathway and caspase-8activity, resulting in markedapoptosis in hepatoma cell lines [J].Int J Oncol,2006,29(5):1253-1261.
    [43]黄翼然,马建辉,黄健等.索拉非尼联合干扰素一线治疗晚期肾癌Ⅳ期临床试验中期分析[J].中华泌尿外科杂志,2010,31(1):5-7.
    [44]周爱萍,马建辉,郭军等.索拉非尼联合干扰素-2b治疗转移性肾癌的初步报告[J].中华泌尿外科杂志,2009,30(1):21-24.
    [45]金永东,卢进,陈萍等.GEMOX方案联合干扰素治疗晚期原发性肝癌32例的临床分析[J].现代生物医学进展,2013,13(22):4295-4297,4312.
    [46]梅静峰,秦叔逵,刘秀峰等.HELF方案联合干扰素治疗晚期胆囊癌的临床研究[J].临床肿瘤学杂志,2005,10(4):408-410.
    [47]梁群涛.干扰素对晚期胃癌ECF方案化疗的影响[J].河南科技大学学报(医学版),2010,28(2):106-107.
    [48] Shimonishi T, Isse K, Shibata F, Aburatani I, Tsuneyama K, Sabit H, HaradaK, Miyazaki K, Nakanuma Y.Shimonishi T,Isse K,Shibata F,etal.Up-regulation of Fas ligand at early stages and down-regulation of Fas atprogressed stages of intrahepatic cholangio carcinoma reflect evasion fromimmune surveillance[J]. Hepatology,2000,32:761-769.
    [49]王展宏,孙保存,赵秀兰等.大肠上皮恶性转化不同阶段中Fas/FasL表达及在凋亡逃逸中的意义[J].天津医科大学学报,2003,9(3):383-387.
    [50] Ahn EY, Pan G, Vickers SM, McDonald JM. IFN-gammaupregulatesapoptosis-related molecules and enhances Fas-mediated apoptosis in humancholangio-carcinoma [J]. Nt J Cancer,2002,100(4):445-451.
    [51]张明宇,葛春林.γ-干扰素对胆囊癌组织中VEGF表达影响的实验研究[D].辽宁,沈阳.中医科大学,2011.
    [52]孙涛,张明宇,葛春林,等.通过IFN-γ影响肿瘤相关巨噬细胞抑制胆囊癌血管发生的实验研究[J].山东医药,2011,51(48):25-27.
    [53]葛春林,孙涛,程颖,等.IFN-γ对胆囊癌荷瘤小鼠IL-10和单核-巨噬细胞的影响[J].中华消化外科杂志,2014,13(1):51-54.
    [54]沈东炎,陈清西,李文岗,等.三苯氧胺抗胆管癌机制的研究进展[J].世界华人消化杂志,2010,18(4):368-372.
    [55] Vickers SM, Jhala NC, Ahn EY, McDonald JM, Pan G, Bland KI.SelwynM.Vickers,MD,Nirag C.Jhala,MD,Eun-Young Ahn,MS,et al. Tamoxifen(TMX)/Fas Induced Growth Inhibitionof HumanCholangiocarcinoma(HCC)by GammaInterferon(IFN-γ)[J]. Ann Surg2002,235(6):872-878.
    [56]周凤丽,毕筱刚,张天托等.INF-γ基因转染肺泡巨噬细胞抗肿瘤活性的研究[J].中国肺癌杂志,2011,14(5):452-455.
    [57] Sun QL, Zhang XG, Xing QT, Ding P, Feng JB, Wu XP, Wang ZM.A study ofmifepristone/IFN-γ-induced apoptosis of human cholangiocarcinoma cell lineFRH-0201in vitro[J]. Onco Targets and Therapy,2012,5:335-342.
    [58]李山平,吴晓强.中西药三联疗法治疗晚期胆管癌28例[J].中国中医药科技,2009,16(5):419-420.
    [59]沈历宗,华一兵,吴文溪等.胞嘧啶脱氨酶基因联合干扰素-γ基因治疗大肠癌的实验研究[J].南京医科大学学报(自然科学版),2004,24(6):618-620.
    [60] Zeusem S, Arora S, Bacon B, et al. Pegylated inteferron-lambda(Peg-IFNλ)shows superior viral response with improved safety and tolerability versusPegIFN-2a in HCV patients (G l/2/3/4): emerge phseⅡB through week12[J].J HePatol,2011,54:S538.
    [61] Pestka S.The interferons:50years after their discovery, there is much more tolearn [J]. J Biol Chem,2009,282:20047-20051.
    [62] Wheelock EF: Interferon-like virus-inhibitor induced in human leukocytes byphytohemagglutinin. Science149:310-311,1965.
    [63]高德宗,孙靖中,高华等.γ-干扰素增强他莫昔芬抗乳腺癌作用的体外研究[J].中国肿瘤生物治疗杂志,2006,13(1):45-49.
    [64]罗荣城,范义湘,方永鑫等.不同干扰素-γ浓度上调乳腺癌细胞系Her2/neu表达的实验研究[J].中国癌症杂志,2006,16(3):161-164.
    [65]石利涛,杨宗伟,孙立新等.干扰素-γ、干扰素-α2b联合应用诱导MCF-7乳腺癌细胞凋亡及机制[J].中国医学创新,2010,7(17):1-2.
    [66]武广恒,张家颖,陆培信等.IFN-γ基因+874位点单核苷酸多态性与乳腺癌的相关性[J].肿瘤防治研究,2008,35(9):651-652,670.
    [67] Parvez MK, Sehgal D, Sarin SK, Basir SF and Jameel S: Inhibition of hepatitisB virus DNA replicative intermediate forms by recombinant interferon-gamma.World J Gastroenterol12:3006-3014,2006.
    [68] Xu R, Ying B, Zhao S, Li C and Wang Y: Construction and identification of arecombinant adenovirus which expresses human interferon-gamma. Chin JBiotechnol13:1-8,1997.
    [69] Arakawa T, Hsu YR and Yphantis DA: Acid unfolding and self-association ofrecombinant Escherichia coli derived human interferon gamma. Biochemistry26:5428-5432,1987.
    [70] Zhang Z, Tong KT, Belew M, Pettersson T and Janson JC: Production,purification and characterization of recombinant human interferon gamma. JChromatogr604:143-155,1992.
    [71] Mohammadian-Mosaabadi J, Naderi-Manesh H, Maghsoudi N, Nassiri-KhaliliMA, Masoumian MR and Malek-Sabet N: Improving purification ofrecombinant human interferon gamma expressed in Escherichia coli; effect ofremoval of impurity on the process yield. Protein Expr Purif51:147-156,2007.
    [72] Fieschko JC, Egan KM, Ritch T, Koski RA, Jones M and Bitter GA:Controlled expression and purification of human immune interferon fromhigh-cell-density fermentations of Saccharomyces cerevisiae. BiotechnolBioeng29:1113-1121,1987.
    [73] Chen YJ, Chen WS and Wu TY: Development of a bi-cistronic baculovirusexpression vector by the Rhopalosiphum padi virus5' internal ribosome entrysite. Biochem Biophys Res Commun335:616-623,2005.
    [74] Devos R, Opsomer C, Scahill SJ, Van der Heyden J and Fiers W: Purificationof recombinant glycosylated human gamma interferon expressed intransformed Chinese hamster ovary cells. J Interferon Res4:461-468,1984.
    [75] Tan HK, Lee MM, Yap MG and Wang DI: Overexpression of cold-inducibleRNA-binding protein increases interferon-gamma production inChinese-hamster ovary cells. Biotechnol Appl Biochem49:247-257,2008.
    [76] Li K, Gao H, Gao L, Qi X, Gao Y, Qin L, Wang Y and Wang X: Recombinantgp90protein expressed in Pichia pastoris induces a protective immuneresponse against reticuloendotheliosis virus in chickens. Vaccine30:2273-2281,2012.
    [77] Sch gger H: Tricine-SDS-PAGE. Nat Protoc1:16-22,2006.
    [78] Reddy PK, Reddy SG, Narala VR, Majee SS, Konda S, Gunwar S and ReddyRC: Increased yield of high purity recombinant human interferon-gammautilizing reversed phase column chromatography. Protein Expr Purif52:123-130,2007.
    [79] Zaidi MR and Merlino G: The two faces of interferon-gamma in cancer. ClinCancer Res17:6118-6124,2011.
    [80] Yan X, Hu S, Guan YX and Yao SJ: Coexpression of chaperoninGroEL/GroES markedly enhanced soluble and functional expression ofrecombinant human interferon-gamma in Escherichia coli. Appl MicrobiolBiotechnol93:1065-1074,2012.
    [81] Petrov S, Nacheva G and Ivanov I: Purification and refolding of recombinanthuman interferon-gamma in urea-ammonium chloride solution. Protein ExprPurif73:70-73,2010.
    [82] Jin T, Guan YX, Yao SJ, Lin DQ and Cho MG: On-column refolding ofrecombinant human interferon-gamma inclusion bodies by expanded bedadsorption chromatography. Biotechnol Bioeng93:755-760,2006.
    [83] Ghosalkar A, Sahai V and Srivastava A: Secretory expression ofinterferon-alpha2b in recombinant Pichia pastoris using three differentsecretion signals. Protein Expr Purif60:103-109,2008.
    [84] Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu Kand Ohmura T: High-level expression of recombinant human serum albuminfrom the methylotrophic yeast Pichia pastoris with minimal proteaseproduction and activation. J Biosci Bioeng89:55-61,2000.
    [85] He Z, Huang Y, Qin Y, Liu Z, Mo D, Cong P and Chen Y: Comparison ofalpha-factor preprosequence and a classical mammalian signal peptide forsecretion of recombinant xylanase xynB from yeast Pichia pastoris. JMicrobiol Biotechnol22:479-483,2012.
    [86] Cho IJ, Yeo IC, Lee NK, Jung SH and Hahm YT: Heterologous expression ofpolygalacturonase genes isolated from Galactomyces citri-aurantii IJ-1inPichia pastoris. J Microbiol50:332-340,2012.
    [87] Ealick SE, Cook WJ, Vijay-Kumar S, Carson M, Nagabhushan TL, Trotta PPand Bugg CE: Three-dimensional structure of recombinant humaninterferon-gamma. Science252:698-702,1991.
    [88] Sadir R, Forest E and Lortat-Jacob H: The heparan sulfate binding sequence ofinterferon-gamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation. J Biol Chem273:10919-10925,1998.
    [89] Folkman J. Tumor angiogenesis: therapeutic implications [J]. N Engl J Med,1971,285(21):1182-1186.
    [90] Carmen U, Stefanie D. Endothelial progenitor cells: Characterization and rolein vascular biology[J]. Circ Res,2004,95(4):343-353.
    [91]李宏江,敬静,汪静,吕青,陈琳,赵杨冰.乳腺肿瘤中VEGF的表达和MVD分布。四川大学学报(医学版).2005;36(2):288-289.
    [92] Cole BF, Gelber RD, Kirkwood JM. Quality-of-life-adjusted survival analysisof interferon alfa-2b adjuvant treatment0f high-risk resected cutaneousmelanoma:an Eastern Cooperative Oncology Group study [J]. J Clin Oncol,1996.14(10):2666-2673.
    [93] Ueno T, Chow LWC, Toi M. Increases in circulating VEGF levels duringCOX-2inhibitor treatment in breast cancer patients [J]. Biomed Pharmacother,2006,60(6):277-279.
    [94] Wu G, Mannam AP, Wu J, et al. Hypoxia induces myocyte-dependent COX-2regulation in endothelial cells: role of VEGF [J]. Am J Physiol Heart CircPhysiol,2003,285(6):2420-2429.
    [95] Linderholm B, Grankvist K, Wilking N, et al. Correlation of vascularendothelial growth factor content with recurrences, survival, and first relapsesite in primary node-positive breast carcinoma after adjuvant treatment [J]. JClin Oncol,2000,18(7):1423-1431.
    [96] Foekens JA, Peters HA, Grebenchtchikov N, et al. Breast Cancer Predict PoorResponse to Systemic Therapy in Advanced High Tumor Levels of VascularEndothelial Growth Factor [J]. Cancer Res.2001,61(14):5407-5414.
    [97] GM G, Epstein JB, Morton TH. Intraoral melanoma:long-term follow-up andimplication for dental clinicians.A case report and literature review[J]. OralSurg Oral Med Oral Pathol Oral Radiol Endod,2003,96(4):404-413.
    [98] Kirkpatrick K, Ogunkolade W, Elkak A, et al. The mRNA expression ofcyclooxygenase-2(COX-2) and vascular endothelial growth factor (VEGF) inhuman breast cancer [J]. Curr Med Res Opin,2002,18(4):237-241.
    [99] Williams CS, Tsujii M, Reese J, et al. Host cyclooxygenase-2modulatescarcinoma growth [J]. J Clin Invest,2000,105(11):1589-1594.
    [100] Jianguo W, Tianhang L, Hong Z, et al. Optimization of culture conditions forendothelial progenitor cells from porcine bone marrow in vitro [J]. Cell Prolif,2010,43(4):418-426.
    [101] Li C, Feng Y, Coukos G, et al.Therapeutic microRNA strategies in humancancer.AAPS J,2009,11(4):747-57.
    [102] Wang M, Su Y, Sun H, et al. Induced endothelial differentiation of cells from amurine embryonic mesenchymal cell line C3H/10T1/2by angiogenic factorsin vitro [J]. Differentiation,2010,79(1):21-30.
    [103] Zhou J, Tian Y, Li J, et al. miR-206is down-regulated in breast cancer andinhibits cell proliferation through the up-regulation of cyclinD2[J]. BiochemBiophys Res Commun.2013,433(2):207-12.
    [104] Kaplan HG, Malmgren JA. Impact of Triple Negative Phenotype on BreastCancer Prognosis [J]. Breast J,2008,14(5):456-463.
    [105] Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report oncutaneous and noncutaneous melanoma: a summary of84,836cases from thepast decade. The American College of Surgeons Commission on Cancer andthe American Cancer Society[J]. Cancer1998,83:1664.
    [106] Tavazoie SF, Alarcón C, Oskarsson T,et al.Endogenous human microRNAsthat suppress breast cancer metastasis[J]. Nature.2008,451(7175):147-152.
    [107] Iorio MV, Ferracin M, Liu CG,et al.MicroRNA gene expression deregulationin human breast cancer.Cancer Res[J].2005,65(16):7065-7070.
    [108] Leivonen SK, M kel R, Ostling P,et al.Protein lysate microarray analysis toidentify microRNAs regulating estrogen receptor signaling in breast cancercell lines [J].Oncogene.2009Nov5;28(44):3926-3936.
    [109] Ristimaki A, Sivula A, Lundin J, et al. Prognostic significance of elevatedcyclooxygenase-2expression in breast cancer[J]. Cancer Res.2002,62(3):632-635.
    [110] Dhakal HP, Naume B, Synnestvedt M, Expression of cyclooxygenase-2ininvasive breast carcinomas and its prognostic impact Histol Histopathol[J].2012,27(10):1315-1325.
    [111] Li Y, Hong F, Yu Z.Decreased expression of microRNA-206in breast cancerand its association with disease characteristics and patient survival.J Int MedRes.2013Jun;41(3):596-602.
    [112] Lewin AR, Reid LE, McMahon M, Stark GR, Kerr IM. Molecular analysis ofa human interferon-inducible gene family. Eur J Biochem.1991.199(2):417-23.
    [113]张晓丽,刘剑仑,杨华伟等.抑癌基因RSK4的表达与乳腺癌细胞体外侵袭力的相关性研究[J].中国肿瘤临床,2011,38(6):308-311.
    [114]王万荣,姚峰,姚晓莉等.多种人乳腺癌细胞株CCL5表达和其侵袭能力关系的初步研究[J].临床外科杂志,2008,16(2):111-113.
    [115]孔冕,李宝江,王军业等.MDA-MB-231乳腺癌细胞特异性多肽的初步筛选[J].国际肿瘤学杂志,2014,41(2):144-147.
    [116] Pan Z, Chen S, Pan X, et al. Differential gene expression identified in Uigurwomen cervical squamous cell carcinoma by suppression subtractivehybridization. Neoplasma.2010.57(2):123-8.
    [117] Rosner J, Stoneman V, Littlewood T, et al. Interferon-gamma induces Fastrafficking and sensitization to apoptosis in vascular smooth muscle cells via aPI3K-and Akt-dependent mechanism [J]. Am J Pathol,2006,168(6):2054-2063.
    [118] Dedoni S, Olianas MC, Onali P. Interferon-β induces apoptosis in humanSH-SY5Y neuroblastoma cells through activation of JAK-STAT signalinganddown-regulation of PI3K/Akt pathway [J]. J Neurochem,2010,115(6):1421-33.
    [119] Yu F, Ng SS, Chow BK, et al. Knockdown of interferon-inducedtransmembrane protein1(IFITM1) inhibits proliferation, migration, andinvasion of glioma cells. J Neurooncol.2011.103(2):187-95.
    [120] He JD, Luo HL, Li J, Feng WT, Chen LB. Influences of the interferon inducedtransmembrane protein1on the proliferation, invasion, and metastasis of thecolorectal cancer SW480cell lines. Chin Med J (Engl).2012.125(3):517-22.
    [121] Negrini M, Rasio D, Hampton GM, et al. Definition and refinement ofchromosome11regions of loss of heterozygosity in breast cancer:identification of a new region at11q23.3. Cancer Res.1995.55(14):3003-7.
    [122] Yang G, Xu Y, Chen X, Hu G. IFITM1plays an essential role in theantiproliferative action of interferon-gamma. Oncogene.2007.26(4):594-603.
    [123]刘大海,杜建时,韩冬梅等.干扰素在老年乳腺癌术后患侧上肢淋巴水肿综合治疗中的作用[J].中国老年学杂志,2012,32(3):610-611.
    [124]高德宗,高华,郭秀会等.他莫昔芬与γ-干扰素联合抗人乳腺癌细胞株的作用及其机制研究[J].中国普通外科杂志,2007,16(11):1076-1080.
    [125]武广恒,张家颖,陆培信等.IFN-γ基因+874位点单核苷酸多态性与乳腺癌的相关性[J].肿瘤防治研究,2008,35(9):651-652,670.
    [126]罗荣城,范义湘,方永鑫等.不同干扰素-γ浓度上调乳腺癌细胞系Her2/neu表达的实验研究[J].中国癌症杂志,2006,16(3):161-164.
    [127] Yuan CH, Yang XQ, Zhu CL, Liu SP, Wang BC, Wang FB. Interleukin-7Enhances the in Vivo Anti-tumor Activity of Tumor-reactive CD8+T cellswith Induction of IFN-gamma in a Murine Breast Cancer Model [J]. Asian PacJ Cancer Prev,2014,15(1):265-271.
    [128] Bu H, Shu B, Gao F, Liu C, Guan X, Ke C, Cao F, Hinton AO Jr, Xiang H,Yang H, Tian X, Tian Y. Spinal IFN-γ-induced protein-10(CXCL10) mediatesmetastatic breast cancer-induced bone pain by activation of microglia in ratmodels [J]. Breast Cancer Res Treat,2014,143(2):255-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700