用户名: 密码: 验证码:
美国白蛾NPV与Bt混合致病机理及其对寄主种群持续控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美国白蛾核型多角体病毒(Hyphantria cunea Nucleopolyhedrovirus,HcNPV)生物杀虫剂能有效控制寄主美国白蛾种群的数量,在生物防治中起到了重要的控害作用,具有重要的经济、生态、环保价值,应用前景十分广阔。本文应用生物测定、组织病理切片、电镜技术、分子生物学、免疫组化等方法,初步研究HcNPV与Bt混合致病机理及其病毒对寄主种群中的持续控制作用,力争从多个角度揭示HcNPV与寄主的互作机理。主要研究内容和结果如下:
     混合感染试验表明,当两病原浓度接近LC50时,美国白蛾幼虫可表现出病毒或细菌的症状,并依次出现细菌和病毒两个发病高峰期。用各病原浓度接近LC50混合感染,与各单剂单独作用相比,可提前发病高峰期12-24h,表明病原混合作用可加强各病的致病力;当Bt浓度为10、25mg/L时对HcNPV的毒力有增效作用;而Bt浓度为5mg/L时,对HcNPV的毒力表现出减效作用;而HcNPV浓度为1.6×105、1.6×106、1.6×107 PIBs/mL时,对Bt的毒力均有增效作用。混合感染增效可使半数致死时间(LT50)缩短0.5-2.1d。说明病原混合感染寄主对其病原的致病性有明显影响,浓度配比是混合侵染提高效力的关键因素。
     4龄初幼虫接种后按不同时间取样,制成石蜡切片,进行H.E染色。观察了HcNPV、Bt和HcNPV+Bt混合侵染寄主所引起的中肠上皮细胞、脂肪体细胞、表皮细胞、精巢的病变过程。观察发现,病毒和细菌混合感染,6-48h中肠上皮细胞顶端肿胀呈囊泡状,细胞质积聚在顶部;72h-144h表现病毒病症,与病毒单独感染相比,出现病毒症状的时间略早,病变的程度也较严重,组织细胞降解的速度也明显加快,说明混合感染加重了病理变化,加速了幼虫死亡。
     对寄主的超微结构观察表明,Bt感染24h,中肠上皮细胞、杯状细胞出现病理变化,48h细胞质出现空泡,72h病变加重,上皮细胞大多从基底膜脱落。混合感染幼虫,感染24h,中肠上皮细胞出现病理变化,96h出现病毒粒子复制,而脂肪体24h无明显病理变化,48h出现病理变化,120h出现病毒粒子复制,至144h-168h中肠、脂肪体细胞核内病毒粒子大量复制,出现包埋病毒粒子多角体,尤其中肠细胞核内充满了多角体,细胞核胀大,几乎占满了整个细胞。HcNPV感染精巢组织细胞核在144h出现病毒发生基质,168h有病毒核衣壳形成。上述结果表明,病毒侵染中肠细胞比脂肪体细胞早24h,中肠在中后期出现带囊膜病毒粒子的复制,在晚期有大量的多角体在细胞核内形成,而在多数鳞翅目昆虫中,这种情况比较少见。同时在精巢细胞发现病毒发生基质,这些变化在美国白蛾寄主中还未见报道。
     免疫组化观察HcNPV在寄主组织中的定位情况,结果表明其经口感染寄主的病理时相:感染后48h,在中肠检测到个别阳性信号;72-96小时,在气管、脂肪体、表皮同时检测到病毒抗原,中肠的阳性信号也在增多;感染后120小时,气管上皮细胞、脂肪体和真皮细胞的细胞核肿大,阳性信号增强;感染后144小时,在脂肪体、气管、真皮的上皮组织中全部检测到阳性信号。上述结果说明,中肠细胞阳性信号出现的早,但数量增加缓慢,其它组织阳性信号出现的晚,但病毒增殖速度快;HcNPV+Bt混合感染阳性信号出现的时间早于病毒单独感染,说明混合感染增强了病毒在寄主体内的复制。肌肉组织中始终未见阳性信号,表明肌肉未被侵染。需要指出的是,在感染144h后,精巢的精囊细胞内检测到病毒抗原的阳性信号,表明病毒侵染了精巢组织。
     对染病寄主的血淋巴蛋白浓度和SDS-PAGE分析表明,HcNPV使寄主的血淋巴蛋白在染病后连续6d中,除在第72h、96h突然升高,明显高于对照外,其余时间血淋巴蛋白含量浓度均低于对照;三种蛋白(普通蛋白、糖蛋白、脂蛋白)电泳图谱与对照相比变化不明显,普通蛋白在第72h、96h的血淋巴蛋白,在中分子量区域出现相对含量上的变化及迁移位置的变动。糖蛋白、脂蛋白图谱变化相似。上述结果说明,HcNPV对寄主的血淋巴代谢有抑制作用,可能是病毒感染破坏了脂肪体组织,损坏了合成代谢蛋白质的功能,导致了血淋巴蛋白浓度的变化。
     用HcNPV感染美国白蛾幼虫后,对其亲代、子一代、子二代的幼虫致死率、蛹重、产卵量、卵孵化率及染病成虫繁殖对子代影响进行了生物测定和观察研究,结果表明,与对照比较,各项检测指标经生物统计,均表现出差异显著。说明HcNPV在寄主种群中能够传代,对种群的数量起到了一定控制作用。应用PCR检测染病寄主当代、次代卵总DNA,发现HcNPV的扩增产物,证明HcNPV在分子水平上可以垂直传播给子代。
     HcNPV在寄主中连续传代7次后,对第0、3、5、7代进行了生物活性测定、电镜观察、病毒粒子蛋白SDS-PAGE电泳、基因组DNA限制性内切酶酶解分析等研究,生物活性测定结果说明,各代病毒毒力没有明显差异。第7代病毒与原始感染病毒电镜观察,在多角体和病毒粒子形态方面未发现明显变化。各代病毒的结构多肽基本一致,有25-26条多肽,只是第3、7代病毒出现了一条新增条带,分子量约为42.0 kD。病毒核酸经BGⅡ,EcoRI,PST,PVUⅡ4种酶解,各代NDA的酶切位点、片段大小基本完全一致。说明,HcNPV经传代7次后,病毒核酸遗传稳定,病毒粒子多肽的变化只是病毒与寄主互作的适应性改变,并未改变其遗传特性。
     对HcNPV的5种分离株进行了比较研究,结果发现,其多角体、病毒粒子在形态方面没有明显差异;生物活性比较,其中一株LC50、LT50明显优于其它毒株;结构多肽电泳、病毒DNA酶切图谱存在一定差异。
Hyphantria cunea nucleopolyhedrovirus (HcNPV), an effective baculoviral insecticide to control population of the severe intrusive insect pest the Fall webworm, has been used on a large scale in China. The application of HcNPV will present very important value in economy, ecology and environment and will boost biological control in forestry insect pest management. Investigation of mechanism of its infection, transmission among its host and combination infectious mechanisms with Bt will contribute practical and theoretical references to the bio-insecticide application in control of the fall webworm.
     Bioassay experiments of the virus and Bt showed that the larvae of H. cunea exhibited either symptom of virus infection or that of Bt infection when the inoculating concentration approached their respective LC50 of the two pathogens, and the respective peaks of incidence of diseases also occurred under the same concentrations. Compared with inoculation of single pathogen, peak stage of combined pathogenesis was 12-24h earlier. The results indicated that combination of the two pathogens could enhance their respective pathogenesis. Enhancement of HcNPV virulence was observed when concentration of Bt was at 10 and 25 mg/L, while antagonism occurred at 5 mg/L. Virulence of Bt was enhanced when concentration of HcNPV was at 1.6×105、1.6×106、1.6×107 PIBs/mL, respectively. The LT50 was 0.5-2.1d shorter at HcNPV and Bt co-infection illustrated that application of the two pathogens could significantly effect their pathogenesis on the host insect. Allotment of the two pathogens concentrations was the key factor to enhance the efficiency of infection.
     The H. cunea larvae were sampled at different time after the two pathogens inoculation at early 4th instar and stained with H.E. after wax sectioned. Pathologies of the larval midgut epithelia, fat body cells and testis cells were observed microscopically. During 6 to 48 h co-infection of the virus and Bt, top of midgut epithelium showed swell and cystoid, where cytoplasm accumulated. Virus infectious symptom occurred during 72-144 h co-infection, which was earlier than that of virus single infection. The pathogenic changes and cellular dissociation also accelerated comparing to single infection, which led to rapid death of the larvae.
     Ultrastructural observation of the larvae infected with Bt showed that cytoplasm of the midgut epithelia and goblet cells appeared vacuoles 48 h after inoculation. At 72 h, pathological changes aggravated that most epithelia shed from the basal membrane. For the co-infected larvae, disease changes occurred in midgut epithelia at 24 h and virion amplified at 96 h, while no disease changes were observed in fat body at 24 h. Disease changes occurred in fat body at 48 h and virion amplified at 120 h. During 144 h to 168 h after co-infection, virion amplified actively in the nuclei of the epithelia and fat body cells. At the same time the nuclei swelled that were full of the viral polyhedra. In the nuclei of testis cells infected with HcNPV at 144 h virogenic stroma appeared. The results showed that infection of the virus occurred in midgut epithelia 24 h earlier than that in fat body cells.
     Location of HcNPV in the host tissue was studied by immunohistochemistry. Some positive signals were detected in midgut 48 h after infection. During infection of 72-96 h viral antigen was detected in the tissues of trachea, fat body and epidermis, while positive signal increased in midgut, At 120 h nuclei of tracheal epidermis, fat body cells and dermal cells swelled where positive signals increased. At 144 h positive signals were detected in the tissues mentioned above. The results indicated that positive signals appeared earliest in the midgut and increased slowly, while they appeared later in other tissues and proceeded faster. Occurrence of the signals in HcNPV and Bt co-infection were earlier than that in single infection of HcNPV indicated that co-infection enhanced amplification of the virus in the host. No signals were detected in muscle tissue showed no infection of the virus occurred in the tissue.
     Concentrations of the infected host hemolymph proteins were detected and SDS-PAGE was used to analyze. Concentrations of the infected hemolymph proteins were higher than those of no-infected controls except at 72 h and 96 h after infection. The results implied that infection of the virus probably suppressed synthesis of hemolymph protein via destroying fat body tissue. There were no significant differences in hemolymph protein patterns (including total proteins, glycoproteins and lipoproteins) between infected and no-infected host.
     Some impact indices, such as larval mortalities, pupal weight, oviposition, percentage of egg hatch of respective parental, first offspring, second offspring generations after infection, were studied by bioassay. Significant differences existed between treatments and controls. The results indicated that HcNPV could pass through different host’s generations and provided a sustainable control to the host population. Amplified PCR product of HcNPV polyh gene was detected in total DNA of the first and second generations of host’s eggs showed HcNPV could vertically pass through parent host to its offspring.
     There were no significant differences of the viral virulence after 7 passages through the host analyzing with the techniques of bioassay, ultrastructure, SDS-PAGE, genomic DNA restriction endonuclease analysis. However, a 42.0 kD band was observed in SDS-PAGE of virion proteins of the third and 7th viral generation. These results showed that genetic characteristics of the virus remained stable after 7 generation passages. The newly occurred 42.0 kD protein was probably the change of interaction between the virus and its host.
     This paper also compared biology of 5 HcNPV strains. One of a strain was more virulent than other 4 strains expressed in LC50 and LT50. There were some differences in viral proteins and restriction endonuclease patterns of the 5 viral strains.
引文
[1]蒲蛰龙.昆虫病理学.广州:广东科技出版社. 1994.
    [2]Bishop D H L. Genetic engineering of microbes: virus insecticides-a case study In:Darby,G.K.Hunter, P.A., Russel, A.D.(Eds),50 Years of Microbials. England Cambridge: Cambridge University Press. 1995 249-277.
    [3]Burden J P, Hails R S, Windass J D, et al. Infectivity, speed of Kill, and productivity of a baculovirus expressing the itch mite toxin txp-1 in second and fourth instar Larvae of Trichoplusia ni. Journal of Invertebrate Pathology, 2000. 75(3):226-236.
    [4]Cory J S. Field trials of genetically improveed baculovirus insecticide. Nature, 1994. 370(138-140).
    [5]McCutchen B F, Choudary P V, Crenshaw R, et al. Development of a recombinant baculovirus expressing an insect-sensitive:potential for pest control. Biol Technology, 1991. 9:848-852.
    [6]Keddie B A, Aponte G W, Volkman L E. The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science, 1989. 243(4899):1728-1730.
    [7]Pringle C R. Virus taxonomy--1999. The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Archives of Virology, 1999. 144(2):421-429.
    [8]Black B C, B rennan L A, Dierks P M, et al. Commercialization of baculoviral insecticides in baculoviruses. Edited by Lois, K .Miller. Plenum Press. New York. 1997.
    [9]Federici B A. Naturally occurring baculoviruses for insect pest control. Methods in Biotechnology, 1999. 5:301-320.
    [10]Blissard G W, Black B C, Crook N. Family Baculoviridae, P. 195-202. In C.M. van Regenmortel, D. Fauquet, D.H.L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. MaGeoch, C. R. Pringle, and R. B. Wickner(ed.),Virus taxonomy classification and nomenclature of viruses: seventh report of the International Committee on Taxonomy of Viruses. Academic press, San Diego, Wein New york. . 2000.
    [11]Blissard G W. Baculovirus-insect cell inereactions. Cytotechnology, 1996. 20(1-3):73-93.
    [12]黎路林,王旬章,陈曲侯.已鉴定的杆状病毒基因及其功能.病毒学报, 1997. 13(1):88-96.
    [13]Whitford M,Faulkner P. A structural polypeptide of the baculovirus Autographa californica nuclear polyhedrosis virus contains O-linked N-acetylglucosamine. Journal of Virology, 1992. 66(6):3324-3329.
    [14]Whitford M,Faulkner P. Nucleotide sequence and transcriptional analysis of a gene encoding gp41, a structural glycoprotein of the baculovirus Autographa californica nuclear polyhedrosis virus. Journal of Virology, 1992. 66(8):4763-4768.
    [15]Kuzio J, Jaques R, Faulkner P. Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology, 1989. 173(2):759-763.
    [16]Faulkner P, Kuzio J, Williams G V, et al. Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. Journal of General Virology, 1997. 78:3091-3100.
    [17]Russell R L,Rohrmann G F. A 25-kDa protein is associated with the envelopes of occluded baculovirus virions. Virology, 1993. 195(2):532-540.
    [18]Hong T, Braunagel S C, Summers M D. Transcription, Translation, and Cellular Localization of PDV-E66: A Structural Protein of the PDV Envelope of Autographa californica Nuclear Polyhedrosis Virus Virology,1994. 204(1):210-222.
    [19]Braunagel S C,Summers M D. Autographa californica nuclear polyhedrosis virus, PDV, and ECV viral envelopes and nucleocapsids: structural proteins, antigens, lipid and fatty acid profiles. Virology, 1994. 202(1):315-328.
    [20]Braunagel S C, Elton D M, Ma H, et al. Identification and Analysis of anAutographa californicaNuclear Polyhedrosis Virus Structural Protein of the Occlusion-Derived Virus Envelope: ODV-E56 Virology, 1996. 217:1.
    [21]Theilmann D A, Chantler J K, Stewart S, et al. Characterization of a highly conserved baculovirus structural protein that Is specific for occlusion-derived virions Virology, 1996. 218(1):148-158.
    [22]Braunagel S C, He H, Ramamurthy P, et al. Transcription, Translation, and Cellular Localization of ThreeAutographa californicaNuclear Polyhedrosis Virus Structural Proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology, 1996. 222(1):100-114.
    [23]Zanotto P M, Kessing B D, Maruniak J E. Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. Journal of invertebrate pathology, 1993. 62(2):147-164.
    [24]Bulach D M, Kumar C A, Zaia A, et al. Group II Nucleopolyhedrovirus Subgroups Revealed by Phylogenetic Analysis of Polyhedrin and DNA Polymerase Gene Sequences. Journal of Invertebrate Pathology, 1999. 73(1):59-73.
    [25]Thiem S M,Miller L K. A baculovirus gene with a novel transcription pattern encodes a polypeptide with a zinc finger and a leucine zipper. Journal of Virology, 1989. 63(11):4489-4497.
    [26]Lu H, Rajam o F, Dean D H. Identification of amino acid residues of Bacillus thuringiensis d-endotoxin CryI Aa associated with membrane binding and toxicity toBombyx mori. J. Bact, 1994. 176:5554-5559.
    [27]Wolgamot G M, Gross C H, Russell R L Q, et al. Immunocytochemical characterization of p24, a baculovirus capsid-associated protein. Journal of General Virology, 1993. 74:103-107.
    [28]Vialard J E,Richardson C D. The 1,629-nucleotide open reading frame located downstream of the Autographa californica nuclear polyhedrosis virus polyhedrin gene encodes a nucleocapsid-associated phosphoprotein. Journal of Virology, 1993. 67(10):5859-5866.
    [29]Wilson B C, Patterson M S, Flock S T. Indirect versus direct techniques for the measurement of the optical properties of tissue. Photochemistry and Photobiology, 1987. 46(5):601-608.
    [30]Federici B A,Miller L K. Baculovirus pathogenesis. In The baculovirus. New York: Plenum Press. 1997 33-60.
    [31]Kawanishi C Y, Summers M D, Stoltz D B, et al. Entry of an insect virus in rivo by fusion of viral envelope and microvillus membrane. Journal of Invertebrate Pathology 1972. 20(104-108).
    [32]Tanada Y, Hess R T, Omi E M. Invasion of a nuclear polyhedrosis virus in midgut of the armyworm, Pseudaletia unipuncta, and the enhancement of a synergistic enzyme. Journal of invertebrate pathology, 1975. 26(1):99-104.
    [33]Granados R R. Infectivity and mode of baculoviruse. Biotechnol.Bioengin, 1980. 22:1377- 1405.
    [34]Keating S T, Hunter M D, Schultz J C. Leaf phenolic inhibition of gypsy moth nuclear polyhedrosis virus Role of polyhedral inclusion body aggregation. Journal of Chemical Ecology, 1990. 16(5):1445-1457.
    [35]Granados R R. Early events in the infection of Hiliothis zea midgut cells by a baculovirus. Virology, 1978. 90(1):170-174.
    [36]Vail P V, Romine C L, Vaughn J L. Infectivity of nuclear polyhedrosis virus extracted with digestive juices [Autographa californica, Estigmene acrea, Trichoplusia ni]. Journal of Invertebrate Pathology 1979. 33(3):328-330.
    [37]van.Loo N-D, Fortunati E, Ehlert E, et al. Baculovirus Infection of Nondividing Mammalian Cells: Mechanisms of Entry and Nuclear Transport of Capsids. Journal of Virology, 2001. 75(2):961-970.
    [38]Raghow R,Grace T D. Studies on a nuclear polyhedrosis virus in Bombyx mori cells in vitro. 1. Multiplication kinetics and ultrastructural studies. Journal of Ultrastructure Research, 1974. 47(3):384-399.
    [39]Teakle R E. A nuclear-polyhedrosis virus of Anthela varia (Lepidoptera: Anthelidae). Journal of invertebrate pathology, 1969. 14(1):18-27.
    [40]Wilson M E,Consigli R A. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology, 1985. 143(2):526-535.
    [41]Oppenheimer D I,Volkman L E. Proteolysis of p6.9 Induced by Cytochalasin D in Autographa californica M Nuclear Polyhedrosis Virus-Infected Cells Virology, 1995. 207(1):1-11.
    [42]Granados R R,Lawler K A. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology, 1981. 1O8:297-308.
    [43]Volkman L E,Goldsmith P A. Budded Autographa california NPV 64K protein: further biochemical analysis and effects of postimmunoprecipitaiton sample preparation conditions. Virology, 1984. 139(2):295-302.
    [44]Volkman L E. The 64K envelope protein of budded Autographa californica nuclear polyhedrosis virus. Current Topics in Microbiology and Immunology 1986. 131:103-108.
    [45]Volkman L E,Goldsmith P A. Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: inhibition of entry by adsorptive endocytosis. Virology, 1985. 143(1):185-195.
    [46]Blissard G W,Wenz J R. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. Journal of Virology, 1992. 66(11):6829-6835.
    [47]Kozuma K,Hukuhara T. Fusion characteristics of a nuclear polyhedrosis virus in cultured cells: time course and effect of a synergistic factor and pH. Journal of invertebrate pathology, 1994. 63(1):63-67.
    [48]Monsma S A,Blissard G W. Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. Journal of Virology, 1995. 69(4):2538-2595.
    [49]Chernomordik L, Kozlov M, Zimmerberg J. Lipids in biological membrane fusion. Journal of Membrane Biology, 1995. 146(1):1-14.
    [50]White J M. Membrane fusion. Science, 1992. 258(5084):917-924.
    [51]杨忠岐,张永安.重大外来入侵害虫—美国白蛾生物防治技术研究.昆虫知识2007. 44(4):72-80.
    [52]Ohkuma S,Poole B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. The Journal of Cell Biology, 1981. 90:656-664.
    [53]Marsh M,Helenius A. Virus entry into animal cells. Advances in Virus Research, 1989. 36:107-151.
    [54]Charlton C A,Volkman L E. Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation. Virology, 1993. 197(1):245-254.
    [55]Volkman L E. Autographa californica MNPV nucleocapsid assembly: inhibition by cytochalasin D. Virology, 1988. 163(2):547-553.
    [56]Funk C J,Consigli R A. Phosphate cycling on the basic protein of Plodia interpunctella granulosis virus. Virology, 1993. 193(1):396-402.
    [57]Summers M D,Anderson D L. Characterization of deoxyribonucleic acid isolated from the granulosis viruses of the cabbage looper, Trichoplusia ni and the fall armyworm, Spodoptera frugiperda. Virology, 1972. 50(2):459-471.
    [58]Bud H M,Kelly D C. The DNA Contained by Nuclear Polyhedrosis Viruses Isolated from Four Spodoptera spp. (Lepidoptera, Noctuidae); Genome Size and Configuration Assessed by Electron Microscopy. Journal of General Virology, 1977. 37:135-143.
    [59]Summers M D,Anderson D L. Granulosis virus deoxyribonucleic acid: a closed, double-stranded molecule. Journal of Virology, 1972. 9:710-713.
    [60]彭建新.杆状病毒分子生物学.武汉:华中师范大学出版社. 2000 32-84.
    [61]Smith I R,Crook N E. In vivo isolation of baculovirus genotypes. Virology, 1988. 166(1):240-244.
    [62]Crozier R H,Crozier Y C. The cytochrome b and ATPase genes of honeybee mitochondrial DNA. Molecular Biology and Evolution, 1992. 9(3):474-482.
    [63]Maruniak J E, Brown S E, L.Knudson D. Physical maps of SfMNPV baculovirus DNA and its genomic variants. Virology, 1984. 136(1):221-234.
    [64]Stiles B,Himmerich S. Autographa californicaNPV Isolates: Restriction Endonuclease Analysis and Comparative Biological Activity. Journal of Invertebrate Pathology, 1998. 72(2):174-177.
    [65]Lee H H,Miller L K. Isolation of genotypic variants of Autographa californica nuclear polyhedrosis virus. Journal of Virology, 1978. 27(3):754-767.
    [66]Smith G E,Summers M D. Analysis of baculovirus genomes with restriction endonucleases. Virology, 1978. 89(2):517-527.
    [67]Allaway G P,Payne C C. A biochemical and biological comparison of three European isolates of nuclear polyhedrosis viruses fromAgrotis segetum. Archives of Virology, 1983. 75(1):43-54.
    [68]Ebling P M,Kaupp W J. Differentiation and Comparative Activity of Six Isolates of a Nuclear Polyhedrosis Virus from the Forest Tent Caterpillar, Malacosoma disstria, Hübner. Journal of invertebrate pathology, 1995. 66(2):198-200.
    [69]Hatfield P R,Entwistle P F. Biological and biochemical comparison of nuclear polyhedrosis virus isolates pathogenic for the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Journal of invertebrate pathology 1988. 52(1):168-176.
    [70]Slavicek J M, Mercer M J, Kelly M E, et al. Isolation of a baculovirus variant that exhibits enhanced polyhedra Production Stability during Serial Passage in Cell Culture Journal of invertebrate pathology, 1996. 67(2):153-160.
    [71]Bull J C, Godfray H C J, O'Reilly D R. A few-polyhedra mutant and wild-type nucleopolyhedrovirus remain as a stable polymorphism during serial coinfection in Trichoplusia ni. Application and Environmental Microbiology, 2003. 69( 4):2052-2057.
    [72]Chakraborty S, Monsourb C, Teakleb R, et al. Yield, Biological Activity, and Field Performance of a Wild-TypeHelicoverpaNucleopolyhedrovirus Produced inH. zeaCell Cultures. Journal of invertebrate pathology, 1999. 73(2):199-205.
    [73]Tompkins G J, Dougherty E M, Adams J R, et al. Changes in the virulence of nuclear polyhedrosis when propagated in alternated noct Lepidoptra:Noctuidae) cell lines and hosts. J Econ. Entomol, 1988. 81:1027-1032.
    [74]Young S Y. Effect of nuclear polyhedrosis virus infection in Spodoptera ornithogalli larvae on post larval stages and dissemination by adults. Journal of invertebrate pathology, 1990. 55(1):69-75.
    [75]Smits P H,Vlak J M. Biological activity of Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae. Journal of invertebrate pathology 1988. 51(1):107-114.
    [76]Murray K D,Elkinton J S. Environmental contamination of egg masses as a major component of trans-generation transmission of gypsy moth nuclear polyhedrosis virus(LdNPV) Journal of invertebrate pathology, 1989. 53:324-334.
    [77]Fuxa J R,Richter A R. Selection for an increased rate of vertical transmission of Spodoptera frugiperda (Lepidoptera: Noctuidae) nuclear polyhedrosis virus. Environmental Entomology, 1991. 20(2):603-609.
    [78]曲良建,张永安,王玉珠. PCR法证实棉铃虫核型多角体病毒对棉铃虫经卵和蛹的垂直传递.中国生物防治, 2005. 21(1):45-48.
    [79]苏志坚,庞义,余健秀.污染寄主卵面的斜纹夜蛾核多角体病毒PCR检测及其消除.农业生物技术学报, 2001. 9(2):119-122.
    [80]席景会,潘洪玉,刘伟成.八字地老虎核型多角体病毒对寄主昆虫繁殖潜势的影响.中国病毒学, 2000.15:76-79.
    [81]Hughes D S, Possee R D, King L A. Activation and detection of a latent baculovirus resembling Mamestra brassicae nuclear polyhedrosis virus in M. brassicae insects. Virology, 1993. 194(608-615).
    [82]Khurad A M, Mahulikar A, Rathod M K, et al. Vertical transmission of nucleopolyhedrovirus in the silkworm, Bombyx mori L. Journal of Invertebrate Pathology, 2004. 87(1):8-15.
    [83]Han M S,Watanabe H. Transovarial transmission of two microsporidia in the silkworm, Bombyx mori, and disease occurrence in the progeny population. Journal of invertebrate pathology 1988. 51(1):41-45.
    [84]Fuxa J R, Sun J-Z, Weidner E H, et al. Stressors and Rearing Diseases of Trichoplusia ni: Evidence of Vertical Transmission of NPV and CPV. Journal of Invertebrate Pathology, 1999. 74(2):149-155.
    [85]Charpentier G, Desmarteaux D, Bourassa J P, et al. Utilization of the polymerase chain reaction in the diagnosis of nuclear polyhedrosis virus infections of gypsy moth (Lymantria dispar, Lep., Lymantriidae) populations. Journal of Applied Entomology, 2003. 127(7):405-412.
    [86]段立清.昆虫病毒对鳞翅目食叶害虫的亚致死作用.中国森林病虫, 2002. 21(3):33-35.
    [87]刘祖强,杨复华,齐义鹏.杆状病毒的垂直传播及绿色荧光蛋白在棉铃虫幼虫中的表达.昆虫学报, 2001. 44(1):1-7.
    [88]Kelly D C. Baculovirus replication. J .Gen .Viriol, 1982. 63:1- 13.
    [89]苏德明.大袋蛾杆状病毒的初步研究.中国林业科学, 1978. 4:40-41.
    [90]庞义,陈其津.樟叶蜂的一种中肠核多角体病毒的鉴定.昆虫天敌, 1982. 4:47-48.
    [91]Watanabe H, Kobara R, Hosaka M. Electrophoretic separation of the hemolymph proteins in the silkworm, Bombyx mori L., infected with the nuclear polyhedrosis virus. Journal of Sericultural Science of Japan, 1968. 37:319-322.
    [92]Adams T R, Goodwi R H, Wilcox T A. Electron microscopic investtigations on invasion and replication of insect Baculovirus,in vivo and in vitro. Biologie Cellulaire, 1977. 28:261-268.
    [93]朱国凯.茶尺蛙核多角体病毒的鉴定.微生物学通报, 1981. 8:102-103.
    [94]Smith K M,Xeros N. Development of virus in the cell nucleus. Nature, 1953. 172:670~671.
    [95]乐云仙.棉铃虫核多角体病毒研究(1)病症和病原物.复旦学报, 1978. 1:79-85.
    [96]Vail P V,Jay D L. Pathology of a nuclear polyhedrosis virus of the alfalfa looper in alternate hosts. Journal of invertebrate pathology, 1973. 21:198-204.
    [97]Doane W W. Amylase variants in Drosophila melanogaster: linkage studies and characterization of enzyme extracts. The Journal of Experimental Zoology, 1969. 171(3):31-41.
    [98]吕鸿声.昆虫病毒与昆虫病毒病.北京:科学出版社. 1982 220--290.
    [99]Adams J R, Wi11is R L, Wilcox. A previous undescribed polyhedrosis of the zebra caterpillar Ceramica pitta. Journal of Invertebrate pathology, 1968. 11:45-53.
    [100]郑桂玲,李长友,张履鸿, et al.八字地老虎核型多角体病毒的寄主范围和室内增殖以及寄主组织病理的研究.东北农业大学学报, 1998. 29:340-344.
    [101]邓塔,蔡秀玉.烟青虫核型多角体病毒的复制和染病后血淋巴蛋白的变化.昆虫学报, 1993. 36(4):423-429.
    [102]邓塔,蔡秀玉.核型多角体病毒在烟青虫脂肪体细胞内复制的电镜观察.杀虫微生物, 1989 2:l20-122.
    [103]Watanabe H. Protein synthesis in the tissues of the silkworm, Bombyx morii infected with nuclear polyhedrosis virus. Journal of invertebrate pathology 1967. 9:428-429.
    [104]Watanabe H,Kobara R. Synthesis of hemolymph proteins in the silkworm, Bombyx mori L., infected with a nuclear and cytoplasmic polyhedrosis virus. pn. J. Appl. Ent. Zool., 1971. 15:198~202.
    [105]Watanabe H,Kobayashi M. Effects of a virus infection on the protein synthesis in the silk gland of Bombyx mori. Journal of invertebrate pathology 1969. 14:102-103.
    [106]Shigematsu H. Synthesis of blood protein by the fat body in the silkworm. ombyx mori L.Nature, 1958.182:880-882.
    [107]West A W. Persistence of Bacillus thuringiensis and Bacillus cereus in soil supplemented with grass or manure. Plant and soil, 1985. 83:389-398.
    [108]Entwistle P F, Corey J S, Bayley M T. Bacillus thuringiensis, an environmental biopescitide: theory and practice. Chichester, England: John Wiley and Sons Ltd. 1993.
    [109]喻子牛主编.苏云金杆菌.北京:科学出版社. 1990.
    [110]Percy J,Fast P G. Bacillus thuringiensis crystal toxin: ultrastructural studies of its effect on silkworm midgut cells. Journal of Invertebrate Pathology, 1983. 41:86-98.
    [111]Ellar. Fundamental and Applied Aspects of Invertebrate Pathology: Foundation of 4th International Colloquin of Inverb,Pathol,. 1986.
    [112]Knowles B H,Ellar D J. Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensis var. kurstaki lepidopteran-specific delta-endotoxin. Journal of Cell Science, 1986. 83(1):89-101.
    [113]Ge A Z, Shivarova N l, Dean D H. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein. Proc Natl Acad Sci USA, 1989. 86:4037-4041.
    [114]Indrasith L S,Hori H. Isolation and partial characterization of binding proteins for immobilized delta endotoxin from solubilized brush border membrane vesicles of the silkworm, Bombyx mori, and the common cutworm, Spodoptera litura. 1992. 102(3):605-610.
    [115]Lee M K, Milne R E, Ge A Z, et al. Location of a Bombyx mori receptor binding region on a Bacillus thuringiensisδ-endotoxin. Journal of Biological Chemistry, 1992. 267(5):3115-3121.
    [116]Aronson, Bacillus subtilis and other gram-positive bacteria, biochemistry, physiology and molecular genetics Sonenshein, Abraham L, Hoch J A, et al., Editors. 1993, American Society for Microbiology: Washington. U S. p. 953-963.
    [117]Knowles B H. Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Advances in Insect Physiology, 1994. 24:275-308.
    [118]陈涛.有害生物的微生物防治原理和技术.武汉:湖北科学技术出版社. 1995.
    [119]Kumar P A, Sharma R P, Malik V S. The insecticidal protein of Bacillus thuringiensis. Adavances in Applied Microbiology, 1996. 42:1-43.
    [120]Hannay C L,Fitz-James P. The protein crystals of Bacillus thuringiensis Berliner. Canadian Journal of Microbiology, 1995. 1:674-710.
    [121]Fast P G. Thed-endotoxin of Bacillus thuringiensis II. On the mode of action. J. Invertebr. Pathology., 1971. 18:135-138.
    [122]王志英,岳书奎,贾春生, et al.苏芸金杆菌感染落叶松毛虫的组织病理.东北林业大学学报, 1996. 24(4):22-25.
    [123]吴福泉,蔡月仙,廖森泰. BmNPV对鳞翅目害虫的侵染试验初报.广东农业科学, 1999. 4:35-36.
    [124]王厚伟,林永中,张志芳.苜蓿尺蠖核型多角体病毒对家蚕核型多角体病毒在蚕体内复制的干扰.中国蚕业, 2001. 2:9.
    [125]Aruga H,Watanabe H. Interaction between inactivated virus of mid-gut polyhedrosis in the silkworm,Bombyx mori L. J. Sericult. Sci.Japan, 1962. 31(17-24).
    [126]Aruga H,Watanabe H. Interference between cytoplasmic polyhedrosis virus in the silkworm,Bombyx mori L. J. Sericult. Sci. Japan, 1970. 39:420-424.
    [127]阿部广明.两种浓核病毒对家蚕的双重感染.国外农学-蚕业, 1987:23-25.
    [128]李海涛,于洪成,刘志洋. Bt杀虫晶体蛋白的研究概述.黑龙江农业科学, 2004. 5:37-39.
    [129]Pingel R L,Lewis L C. Field application of Bacillus thuringiensis and Anagrapha falcifera multiple nucleopolyhedrovirus against the corn earworm, (Lepidoptera: Noctuidae). Journal of EconomicEntomology, 1997. 90(5):1195-1199.
    [130]侯建文,赵烨烽,姚国强, et al.复配型苜蓿银纹夜蛾核型多角体病毒制剂对两种夜蛾的毒力测定.中国病毒学, 1998. 13(4):345-350.
    [131]张慧,几种增效因子对昆虫杆状病毒增效作用的初步研究2006,华中农业大学硕士学位论文:武汉.
    [132]刘年翠.两种颗粒体病毒的单感交叉感染和混合感染试验及其应用效果.病毒学集刊, 1979:72-78.
    [133]薛榕. AcNPV、xGV单感染及混合感染对小菜蛾的影响.自然杂志, 1995. 17(5):307.
    [134]郭慧芳,方继朝,韩召军.昆虫病毒增效剂研究进展.昆虫学报, 2003. 46(6):766-772.
    [135]M I C, C G, J K M. Effects of bacteria and a fungus fed singly or in combination on mortality of larvae of the cabbage looper (Lepidoptera: Noctuidae). J. Kans. Entomo1. Soc, 1980. 53(4):797-800.
    [136]Nadarajan L,Martouret D. Synergistic action of different strains of Bacillus thuringiensis against cotton leaf worm Spodoptera littoralis (Boisduval). Current Science, 1994. 67(8):610-612.
    [137]蔡文琴,王伯沄.实用免疫细胞化学与核酸分子杂交技术. Vol. 4.成都:四川科学技术出版社. 1994 72-97.
    [138]杨忠岐.中国寄生于美国白蛾的啮小蜂一新属一新种.昆虫分类学报, 1989. 11(1-2):117-130.
    [139]杨忠岐.美国白蛾的有效天敌一白蛾周氏啮小蜂.森林病虫通讯, 1990(2):17.
    [140]杨忠岐.白蛾周氏啮小蜂雌性成虫内部生殖系统的解剖研究.林业科学, 1995. 31(I ):23-25.
    [141]杨忠岐.利用天敌昆虫控制我国重大林木害虫研究进展.中国生物防治, 2004. 20(4):221-228.
    [142]杨忠岐,王小艺,王传珍, et al.白蛾周氏啮小蜂可持续控制美国白蛾的研究.林业科学, 2005. 41(5):72-80.
    [143]Yang Z-q, Wei J-r, Wang X-y. Mass rearing and augmentative releases of the native parasitoid Chouioia cunea for biological control of the introduced fall webworm Hyphantria cunea in China. BioControl, 2006. 51(4):401-418.
    [144]Yang Z Q, Wang X Y, Wei J R, et al. survey of the native insect natural enemies of Hyphantria cunea (Drury)(Lepidopter:Arctiidae) in China. Bulletin of Entomological Research, 2008. 98(3):293-302.
    [145]Im D J, Hyun J S, Paik W H, et al. Studies on the nature and pathogenicity of nuclear polyhedrosis virus ofthe fall webworm, Hyphantria cunea(Drury). Korean Journal of Plant Protection, 1979. 18(1):1-10.
    [146]Boucias D S,Nordin G L. Susceptibility of Hyphantria cunea to a cytoplasmic polyhedrosis virus. Journal of the Kansas Entomological Society, 1979. 52(4):641-647.
    [147]Pritchett D W,Young S Y. Efficacy of baculoviruses against field population of fall webworm, Hyphantria cunea. Journal of the Georgia Entomollogical Society, 1980. 15(3):332-336.
    [148]Tomita K,Ebihara T. Cross-transmission of the granulosis virus of the Hyphantria cunea DRURY (Lepidoptera:Arctiidae), to other lepidopterous insect species. Japanese Journal of Applied Entomology and Zoology, 1982. 26(4):224-227.
    [149]Kunimi Y. Transovum transmission of a nuclear polyhedrosis virus of the fall webworm, Hyphantria cunea DRURY (Lepidoptera:Arctiidae). Applied Entomology and Zoology, 1982. 17(3):410-417.
    [150]Lee H H, Lee M K, Cho I H, et al. Location and cloning of the polyhedrin gene of Hyphantria cunea nuclear polyhedrosis virus. Journal of the Korean Society Virology, 1991. 21(1):25-34.
    [151]刘岱岳,居蜀生.美国白蛾病毒的繁殖与飞机喷施.生物防治通报, 1986. 2(2):74.
    [152]Lee H H,Lee H J. Reseach map of the geneme of Hyphantria cunea nuclear polyhedrosis virus. Kon Kun Journal of Genetic Engineering, 1991. 4(0):9-56.
    [153]Lee H y-H. Cloning of the Hyphantria cunea Nuclear Polyhedrosis Virus Partial EcoRI Genome DNA Fragments in Plasmid Vectors pUC8 and pBR322 J. of Kor. Soc. of Virology, 1991. 21(1):35-40.
    [154]Flipsen J T, Mans R M, Kleefsman A W, et al. Deletion of the baculovirus ecdysteroid UDP-glucosyltransferase gene induces early degeneration of Malpighian tubules in infected insects.Journal of Virology, 1995. 69(7):4529-4532.
    [155]贡成良,小林淳,宫岛成寿, et al. HcNPV半胱氨酸蛋白酶基因的核苷酸序列研究.生物化学与生物物理学报, 1998. 30(3):307-310.
    [156]贡成良,小林淳,宫岛成寿.美国白蛾核型多角体病毒几丁质酶基因核苷酸序列研究.病毒学报, 1999. 15(3):260-269.
    [157]贡成良,小林淳,金伟, et al. HcNPV半胱氨酸蛋白酶、几丁质酶基因失活分析.生物化学与生物物理学报, 2000. 32(2):187-191.
    [158]曹广力,薛仁宇,朱越雄, et al.美国白蛾核型多角体病毒超氧化物歧化酶基因的序列分析和表达.微生物学报, 2001. 41(2):173-180.
    [159]曹广力,薛仁宇,朱越雄, et al.美国白蛾核型多角体病毒p35基因的克隆及序列分析.昆虫学报, 2002. 45(6):711-716.
    [160]Ikeda M. Gene organization and complete sequence of the Hyphantria cunea nucleopolyhedrovirus genome. Journal of General Virology, 2006. 87:2549-2562.
    [161]白东清,路福平,王玉, et al.活酵母衍生物对丁鳞抗氧化能力和部分免疫活性指标的影响.动物学报, 2005. 51(4):646-668.
    [162]包建中,古德祥.中国生物防治.太原:山西科学技术出版社. 1998 421-474.
    [163]刘广生,牟志美,陈春花.苏云金杆菌与核型多角体病毒对家蚕的联合致病作用.蚕业科学, 2005. 31(2):195-198.
    [164]邬开朗,胡建芳,尹宜农, et al.菜青虫颗粒体病毒对苏云金杆菌的增效作用.中南民族学院学报(自然科学版), 2000. 19(2):78-80.
    [165]邬开朗,尹宜农,胡远扬.松毛虫质型多角体病毒对苏云金杆菌的增效作用.中国生物防治, 2001. 17(3):141-142.
    [166]胡蓉,马永平,徐进平, et al. AcNPV·Bt·En复配剂对甜菜夜蛾幼虫的毒力测定.中国生物防治, 2002. 15 (1):47-封三.
    [167]廖玲洁,彭建新,洪华珠.昆虫病毒增强蛋白的研究新进展.中国生物防治, 1999. 15(1):41-44.
    [168]郭慧芳,方继朝,罗伟杰, et al.不同昆虫病毒对斜纹夜蛾和甜菜夜蛾的联合增效作用.中国生物防治, 2003. 19(1):23-26.
    [169]Goto C. Enhancement of a nuclear polyhedrosis virus (NPV) infection by a granulosis virus (GV) isolated from the spotted cutworm, Xestia c-nigrum L.:Lepidoptera: Noctuidae. Applied entomology and zoology, 1990. 25(1):135-137.
    [170]Lobinger G. On the synergism of a cytoplasmic polyhedrosis virus (DpCPV) isolated from Dasychira pudibunda L. (Lep., Lymantriidae) in mixed infections with different nuclear polyhedrosis viruses. Journal of Applied Entomology, 1991. 112(4):335-340.
    [171]肖仕全,潘敏慧,万永继.家蚕病原微生物的交叉感染研究.蚕学通讯, 2003. 23(3):1-5.
    [172]Hackett K J,Deming A B. HaGV interference with progression of HzNPV disease in Helicoverpa zea larvae. Vol. 25: Proceeding of 30th Annual Meeting of Society for Invertebrate Pathology. 1997.
    [173]Bell M R,Rornine G L. Heliothis viresens and H. zea (Lepidoptera:Noctuidae):dosage effects of feeding mixtures of Bacillus thuringiensis and a nuclear polyhedrosis virus on mortality and growth. Environmental Entomology, 1986. 15(6):1161-1165.
    [174]Cunningham J C. A N Ultrastrurtural study of the development of a nuclear polyhedrosis ? of the eastern herabck looper.Lambdi.nafi~ellsria[J] Cauaddian J Microbio.1971.17:69—72.. 1968.
    [175]Begon M, Haji Daud K B, Young P, et al. The invasion and replication of a granulosis virus in the Indian meal moth, Plodia interpunctella: an electron microspore study. Journal of invertebrate pathology, 1993(61):281-295.
    [176]Tanada Y,Hess R T. Development of a nuclear polyhedrosis virus in midgut cells and penetration of the virusinto the hemocoel of the armyworm(Pseudaletia Unipuncta. J lnvertbr Pathol, 1976. 28:67-76.
    [177]王伯沄,李玉松,黄高昇.病理学技术. Vol. 6:人民卫生出版社. 2000.
    [178]谢富康.组织学与胚胎学实验指南. Vol. 8.北京:科学出版社. 2003.
    [179]Boenisch T. Handbook of Immunochemical Staining Methods. 3nd Edition. CA, USA: DAKO Corporation. 2001 26-33.
    [180]丁翠,蔡秀玉.棉铃虫感染核型多角体病毒后血淋巴蛋白的变化.昆虫学报, 1981. 24(2):l60-165.
    [181]丁翠,蔡秀玉.烟青虫感染核型多角体病毒后耗氧量变化.昆虫学报, 1989. 32(1):l7-21.
    [182]乔鲁芹,美国白蛾核型多角体病毒及其感病寄主检测方法的研究. 2007,中国林业科学研究院博士论文. p. 47.
    [183]冀卫荣,刘贤谦,师光禄.核型多角体病毒杀虫剂的开发.山西农业大学学报, 1998. 18(4):302-305.
    [184]徐旭士.家蚕质型多角体病毒多角体形态变异的分析.蚕业科学, 1994. 20(3):150-153.
    [185]Kolodny-Hirsch D M,Van Beek N A M. Selection of a morphological variant of autographa californicanuclear polyhedrosis virus with increased virulence following serial passage in Plutella xylostella. Journal of Invertebrate Pathology, 1997. 69(3):205-211.
    [186]徐旭士,徐景士,刘润忠, et al.棉铃虫核型多角体和质型多角体在宿主昆虫继代后的毒力分析与比较.棉花学报, 1996. 8(3):155-160.
    [187]韩一侬,杨玲,于在林.四种限制性内切酶对美国白蛾核型多角体病毒DNA酶解分析.林业科学研究, 1999. 3(4):341-344.
    [188]Cory J S. Assessing the risks of releasing genetically modified virus insecticides: progress to date. Crop Protection, 2000. 19(8-10):779-785.
    [189]贾放,中国棉铃虫核型多角体病毒VHA273原毒株与其克隆株的比较以及原毒株几丁质酶基因的序列分析. 2003,华中师范大学硕士学位论文:武汉.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700